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Abstract: This paper presents a multifunctional battery-free wireless sensing node (SN) designed to
monitor physical parameters (e.g., temperature, humidity and resistivity) of reinforced concrete. The
SN, which is intended to be embedded into a concrete cavity, is autonomous and can be wirelessly
powered thanks to the wireless power transmission technique. Once enough energy is stored in a
capacitor, the active components (sensor and transceiver) are supplied with the harvested power. The
data from the sensor are then wirelessly transmitted via the Bluetooth Low Energy (BLE) technology
in broadcasting mode to a device configured as an observer. The feature of energy harvesting (EH) is
achieved thanks to an RF-to-DC converter (a rectifier) optimized for a low power input level. It is
based on a voltage doubler topology with SMS7630-005LF Schottky diode optimized at −15 dBm
input power and a load of 10 kΩ. The harvested DC power is then managed and boosted by a power
management unit (PMU). The proposed system has the advantage of presenting two different power
management units (PMUs) and two rectifiers working in different European Industrial, Scientific
and Medical (ISM) frequency bands (868 MHz and 2.45 GHz) depending on the available power
density. The PMU interfaces a storage capacitor to store the harvested power and then power
the active components of the sensing node. The low power digital sensor HD2080 is selected to
provide accurate humidity and temperature measurements. Resistivity measurement (not reported
in this paper) can also be achieved through a current injection on the concrete probes. For wireless
communications, the QN9080 system-on-chip (SoC) was chosen as a BLE transceiver thanks to its
attractive features: a small package size and extremely low power consumption. For low power
consumption, the SN is configured in broadcasting mode. The measured power consumption of
the SN in a deep-sleep mode is 946 µJ for four advertising events (spaced at 250 ms maximum)
after the functioning of sensors. It also includes voltage offset cancelling functionality for resistivity
measurement. Far-field measurement operated in an anechoic chamber with the most efficient PMU
(AEM30940) gives a first charging time of 48 s (with an empty capacitor) and recharge duration of
27 s for a complete measurement and data transmission cycle.

Keywords: wireless power transmission (WPT); wireless communications; wireless sensor node;
Bluetooth low energy (BLE); Internet of Things (IoT); power management unit (PMU); structural
health monitoring (SHM)

1. Introduction

In the field of the Internet of Things (IoT), small-size, multifunctional and ultra-
low-power systems are required to address issues of miniaturization, manufacturing,
deployment and maintenance costs. Reducing power consumption is one of the main
challenges when designing these systems. Thus, the need to continuously power electronic
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devices during operation has motivated the development of an energy harvesting technique.
Moreover, in the frame of the deployment of multiple connected and communicating objects
for long-term applications, the conventional power supply methods show their limitations:
batteries need to be changed periodically and recharged, and capacitors and supercapacitors
have limited energy storage capacities. Based on such limitations, a low-power and low-
cost IoT device for field data gathering in precision agriculture practices was proposed in
which the battery was charged with a solar panel [1].

The aim of this work is to monitor the physical parameters of a reinforced concrete
beam using an embedded wireless sensor. It should be autonomous and able to transmit
from inside the concrete to the communication nodes placed at a certain distance. A detailed
explanation of its purpose and architecture is given in Section 2.

In this paper, we will present the architecture of the proposed system, which consists
of the following: a rectifier, specifically designed to convert the radiofrequency (RF) power
to DC power energy and supply a wireless SN; two power management units (PMUs)
to efficiently manage and store the required energy in a storage capacitor; sensors and a
transceiver that allow wireless transmission of the measured temperature and humidity
data. The SN also offers the capability of harvesting EM waves at different frequencies.
Both rectifiers were tuned to work in the European Industrial, Scientific and Medical (ISM)
868 MHz and 2.45 GHz frequency bands. Their design and performance will be presented.
Finally, a comparative test between both PMUs and results of the use of the complete
system was performed in an anechoic chamber with the most efficient PMU.

2. Targeted Application: Structural Health Monitoring

The concept of “communicating material” is presented as a new paradigm for indus-
trial information systems firstly introduced in [2]. The material will be able to measure,
process, store and communicate data thanks to embedded wireless sensor devices meeting
the requirements of the IoT paradigm. Advanced studies showed interest in this concept
for materials such as wood and textiles [2,3]. The capability of wireless communication
in reinforced concrete was also studied through an embedded sensor for permeability
experiments in [4] and temperature monitoring through an embedded sensor tag in [5].
The works achieved in this field have proposed interesting results by providing diverse
functionalities to the users all along the lifecycle of the materials, as explained in [6,7].
The previous version of this work, which is dedicated to monitoring the physical state of
reinforced concretes, was implemented with a LoRaWAN technology [8]. To achieve such
an objective, research activities must face several obstacles when sensing nodes (SNs) are
embedded into concrete (currently in air cavities):

- The need for reliable and robust wireless communication that enables the signal to
be received from and through the materials, regardless of their composition (e.g.,
reinforcements) and state (e.g., wet, or dry);

- The need for energy autonomy despite the physical inaccessibility of the sensing nodes
(e.g., for replacing their batteries)

- The choice of a secure, long-range and trusted wireless communication between
sensing nodes and of a data management strategy controlling how data are spread.

Specific solutions should be found for this kind of application where the size and the
lifespan of the sensing nodes are limiting factors.

2.1. Lifetime Issues: Wireless Power Transfer

While working in the electronic domain, we are most of the time faced with power
issues. Meanwhile, electronic devices are becoming more and more powerful with multiple
and outstanding functionalities, thus always requiring more power. A WSN for temperature
and humidity monitoring within concrete structures was previously presented in [9].
However, this solution is battery-operated, which will limit its service lifetime.

Many research activities were completed to demonstrate the feasibility of using am-
bient energy harvesting (EH) to power battery-free devices efficiently from ambient en-
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ergy sources. The most widely utilized ambient energy sources are summarized in [10]
(pp. 1650–1651). Solar power is commonly used, but it is unpredictable as the available
power is a function of the climate, the size and the orientation of the solar panel and the
time of the day and of the year. Thermal energy harvesting is an alternative to the solar
EH to power wireless sensors, as shown in [11,12]. It works by converting the tempera-
ture gradient into electric power (the Seebeck effect) thanks to a thermoelectric generator
(TEG) [13] but has a limited power conversion efficiency. Based on using mechanical
deformation to generate electric power, the piezoelectric EH has found interest in wearable
and healthcare applications [14,15]. Finally, the radiofrequency (RF) EH solution consists
of converting ambient electromagnetic waves to DC power. However, EH technique does
not allow sufficient harvested power due to the limited power density level from ambient
EM waves (GSM, Bluetooth, WiFi and GPS) compared to solar energy. The available power
density obtained on in RF survey performed in [16], is less than −25 dBm/cm2 for several
frequency bands. An alternative to harvest EM waves from a dedicated RF energy source
is possible thanks to wireless power transfer (WPT) or wireless energy transmission (WET).
Two categories of WPT exist, and each presents advantages and disadvantages suitable for
a specific application. The near-field (NF) WPT is mostly used for high-power devices or
systems with a close distance (on the order of centimeters) between the power transmitter
and the power receiver [17]. Unlike NF, far-field (FF) WPT allows spreading EM waves
from a dedicated RF power source through an transmitting antenna at a certain distance
from the receiver [18]. The FF distance is limited by the frequency and the transmitter and
receiver antenna gain. The Table 1 summarizes the advanced research on the state of the
art using different energy sources for adequate applications.

Table 1. State of the art of several wireless sensors powered by different energy harvesting techniques.

Ref. EH Sources Power Density Applications Communicating
Protocol Size Harvested Power

[19] Solar: Indoor
Outdoor

600 lux
n. a

Wearable safety (CO2,
T◦ and H) LoRaWAN Round solar panel

(radius of 30 mm)
0.7 mW (@1.24 V)
90 mW (@1.8 V)

[20] Piezoelectric 600 µε at 10 Hz Aircraft (T◦, H and
Acc.) ZigBee 50 mm × 85 mm 3.2 mW

[12] Thermal 110 ◦C with a heater Industrial plants (T◦) ZigBee 40 mm × 40 mm 3.6 mW

[21] RF +26 dBm at 868 MHz IoT BLE 60 mm × 40 mm 48 µW (at 4 m)

Monitored parameters: T◦ is temperature, H is humidity, Acc. is accelerometer.

Regarding the advantages and disadvantages of each EH solution, the most suitable
to be used for wireless sensors embedded in an air cavity or a reinforced concrete cavity is
the RF EH or WPT solution. Recent progress in the field of WPT for wirelessly powered
sensor networks is presented [22]. It has proved its efficiency through some developments
reported in [23,24].

2.2. Wireless Communication: Bluetooth Low Energy

A reliable and secure communicating protocol must be used for the implementation
of a WSN for SHM applications. It must also present the advantage of transmitting a signal
that can be received at a long range through reinforced concretes. Relevant characteristics
of the wireless communication technologies are reported in a table in [25] (pp. 30–33). An
interesting passive RFID wireless sensor system for moisture monitoring in concrete, which
is supplied with power exclusively by the electromagnetic field from an external reader
device, was developed in [26]. Despite being battery-free and fully passive, this solution
presents the disadvantage of using the near-field communication (NFC) frequency band of
13.56 MHz and thus has a limited reading range of 3 cm. An RFID-based wireless system
with a central frequency of 868 MHz for temperature monitoring of concrete is presented
in [27]. The analytical results estimated a maximum distance of 1 m from the reader to the
RFID sensor embedded at 0.15 m inside concrete. The challenges of using wireless RFID



Sensors 2022, 22, 4054 4 of 18

sensor are studied in [28]. The main limitations reported are related to a limited EH and
read range, the sensor responses collisions, the cost of the reader and the lack of UHF RFID
mobile sensing platforms.

A LoRaWAN protocol was previously chosen for the implemented solution thanks
to its advantages (low cost and very long-range communication) [8]. It demonstrated the
feasibility of monitoring, processing and storing the physical parameters of the concrete
with a fully embedded sensing mode. The experimental results allow a communication
range of 1.3 km from the sensing node to a LoRA gateway. In this work, a trade-off has
been made between the range and the power consumption by choosing BLE technology.
The BLE technology has a higher data rate than LoRaWAN; thus, it is possible to send a
large amount of data at once. Further, it can be possible to receive and have access to the
monitored data with any wireless devices using BLE technology (such as smartphones,
tablets and even smartwatches).

2.2.1. Characteristics of the Bluetooth Low Energy

The BLE wireless communication technology is designed for low-power operation.
It operates in the 2.4 GHz Industrial, Scientific and Medical (ISM) frequency band from
2.402 GHz to 2.48 GHz [29]. The covered channels are separated into two parts with
3 advertising channels and 37 data channels. Related to the used type of connection (point
to point, mesh or broadcast), BLE can operate in four different modes (broadcaster, observer,
central or peripheral).

For optimized power consumption and knowing that the targeted application does
not require point-to-point or mesh communication, a simplified broadcaster/observer
mode is configured. The broadcaster device is used to transfer the data in the advertising
packets on the three primary advertising channels without any incoming connection. The
broadcast event corresponds to the duration of the primary advertising channels 37, 38 and
39. These channels are respectively transmitted at the frequencies of 2.402 GHz, 2.426 GHz
and 2.480 GHz as seen in Figure 1.
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Figure 1. Legacy advertising.

A payload sets each adverting packet with at least 37 bytes containing the adver-
tising specified data (advData that are the unique identification and the data measured
by sensors). The observer will continuously scan, in passive mode, the advertisements
on the three dedicated channels from other SNs. In addition, for accurate data transmis-
sion, both devices, broadcaster and observer, are synchronized by configuring the same
advertising interval.

2.2.2. BLE System-on-Chip (SoC)

Besides the interesting features of the BLE protocol, the choice of the components
is critical when designing a system with the lowest energy consumption. Several BLE
transceivers are now available. A discussion on the choice of the right BLE SoC is important
before sizing the global device. Most of these devices are compared and reported in Table 2
as a function of the key relevant features. It can be observed that most of the commercialized
transceivers have roughly the same sensitivity level of around −95 dBm, which can enable
a coverage range typically over several tens of meters. The default transmitting power is
generally defined at 0 dBm, which is enabled for all transceivers. Regarding the receive
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(Rx) and transmit (Tx) current, the QN908x has the lowest value despite its high current
consumption in deep-sleep mode compared to the RSL10 transceiver. The resolution of the
analog-to-digital converter (ADC) is also an important parameter to consider, and most of
the transceivers support at least 10 bits of resolution.

Table 2. Comparison of the key parameters of most used BLE transceivers in IoT applications.

Parameters QN908x [30] QN9090 [31] nRF52833 [32] BlueNRG-LP [33] RSL10 [34] EFR32BG22 [35] DA14531 [36]

Sensitivity (dBm) 1 −95 −97 −95 −97 −94 −98.9 −94
Tx power (dBm) −30 to +2 Up to +11 −20 to +8 −20 to +8 −17 to +6 −27 to +6 −19.5 to +2.5
Rx current (mA) 3.5 4.3 6.0 3.4 3.0 3.6 2.2

Tx current (mA) 2 3.5 7.4 6.0 4.3 4.6 4.1 3.5
Deep-sleep mode

current (nA) 1000 350 1300 900 100 1050 1200

Supply voltage (V) 1.62 to 3.6 1.9 to 3.6 1.7 to 5.5 1.7 to 3.6 1.1 to 3.3 1.71 to 3.8 1.1 to 3.3

ADC 16-bit
8-channel

12-bit
8-channel 12-bit 12-bit

8-channel 8 to 14-bit 12-bit 10-bit

1 The sensitivity is specified in 1 Mbps mode. 2 Value obtained for 0 dBm TX power with DC-DC.

3. Architecture of and Design of the Proposed Wireless Sensing Node

The functionalities of the sensing node are implemented based on the proposed
block diagram as seen in Figure 2. The proposed architecture is based on a previous
version of the designed sensing node reported in [25] (pp. 213–227), which presents
the same functionalities but with a unique PMU and unoptimized power consumption.
It consists of the following subsystems: two single-band rectifiers allowing RF-to-DC
conversion at different frequencies; a power management unit (PMU); a temperature and
relative humidity sensor; a resistivity measurement circuit; and a BLE system-on-chip
(SoC) transceiver. The SN is wirelessly powered by a rectenna, which is composed of the
integrated onboard rectifier for low power input levels and an external antenna. The PMU
is set up to manage, boost and store the available power from the rectifier. Then, it provides
the needed power to the sensors and BLE SoC even in deep-sleep mode. This mode is
considered when there is no available energy in the storage capacitor and all nodes are
deeply discharged.
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The resistivity sensing is not reported in the work. With the SN, it is possible to inject
a current into the concrete to compute the electrical resistivity by measuring a potential
difference thanks to probes embedded in the concrete. The evolution of this physical
parameter will allow estimating the corrosion rate.



Sensors 2022, 22, 4054 6 of 18

3.1. Design of the RF-To-DC Conversion Circuit: The Rectifier

The WPT technique is chosen to wirelessly power the implemented SN. It consists in
generating and transmitting time-varying EM waves across space from a power source
connected to an antenna to the receiving antenna of the SN. When the receiving and
transmitting antennas operate at the same frequency and are perfectly positioned with
the same polarization, enough power will be captured, and thus the RF power from the
receiving antenna will be converted to DC power thanks to the rectifier subsystem.

In this work, we will focus on powering first the SN without an external antenna for
a proof of concept. Therefore, the RF-to-DC converter (rectifier) embedded in the SN is
presented. We have made the choice of using two separate single-band rectifiers at different
frequencies rather than a dual-band rectifier to avoid not only the power dependence from
one rectifier (since it is damaged) but also the use of two external antennas on the opposite
side. By using a single-band rectifier, we also optimize the power conversion efficiency
thanks to a better matching network. Research activities have studied the comparison
between single-band and dual-band rectifiers. In [37], a rectifier at 2.45 GHz and a recti-
fier working at 2.45 GHz and 5.8 GHz are introduced. Based on the design without an
impedance compression network, the conversion efficiency for the single-band rectifier is
10% less than that for the double band at the same frequency (2.45 GHz) with an input
power of 0 dBm (which is not enough low to see the difference). This drop in efficiency
can also be observed in [38] when comparing the single-band and dual-band rectifiers at
900 MHz. Our strategy in the implementation of the SN is to use the same rectifier design
and select the working frequency by tuning the L-matching network. Different typologies,
selected diodes and rectifier frequencies are presented in the state of the art [18,39]. Apart
from the topology, the choice of a low-barrier Schottky diode is crucial in achieving better
performances in terms of DC voltage and efficiency for weak input signals. A comparison
of different types of Schottky diodes is proposed in [40,41]. It shows that the SMS7630
series from Skyworks is more efficient for RF input power lower than 0 dBm due to its low
forward voltage of 240 mV. The SMS7630-005LF model was selected in this work [42]. The
rectifiers are optimized to work at low input power and present the advantage of being
compact. The voltage doubler topology increases the harvested DC voltage across the
load (compared to the single-diode rectifier). However, in terms of efficiency, a single or
half-wave rectifier is often preferred, mostly for very-low-power applications. Its schematic
is presented in Figure 3. It consists of an LC matching network, a series pair Schottky diode
(SMS7630-005LF) and an output capacitor (a part of the low-pass filter with load considered
as the input impedance of the PMU). The component values and references are given in
Table 3. The design, simulation and experimental results were detailed in previous work
in [43]. Quick experimentations of the implemented SN give a DC voltage across a 10 kΩ
load with a −15 dBm input powers of 286 mV and 236 mV for the 868 MHz and 2.45 GHz
rectifiers, respectively.
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Table 3. Component value of the rectifier.

Frequency L1 C1

868 MHz 33 nH
LQW15AN33NG00

4 pF
GRM1551X1H4R0CA01D

2.45 GHz 3.9 nH
LQW15AN3N9B00D

2.1 pF
GRM1553C1H2R1BA01D

3.2. Sensing Subsystem

This subsystem is dedicated to measuring the targeted parameters and formatting
and wirelessly transmitting the collected data to the observer. It is powered by the DC
power available from the PMU, which stores energy in the capacitor from the power
available at the output of the rectifier. The BLE SoC and active sensors are then supplied
when there is sufficient energy available in the capacitor. Depending on the rectifier
chosen, the output can be selected using the jumper J1. In this work, we opt for using
two commercialized PMUs. These are tested and characterized; the performances are then
compared to determine the advantages of each according to the available electromagnetic
power density and the input power required for the sensors to be used. An integrated
temperature and humidity sensor HDC2080 with low power consumption is chosen from
TI [44]. Depending on the use, the input (the DC voltage source) and the PMU can be
selected by jumpers J1 and J2. The sensors and BLE transceiver can be also powered from
an external DC source.

3.2.1. Bluetooth Low Energy Transceiver QN9080

Wireless data communication is enabled by an ultra-low-power BLE, the QN9080
SoC [30] and a conventional Meandered Inverted-F Antenna (MIFA) designed at 2.45 GHz
as suggested in the application note [45].

Algorithm and Configuration

The BLE transceiver is programmed to operate only as a broadcaster, sending the
measured temperature and humidity data in advertising mode. A paper has examined
packet collisions for the BLE advertising mode [46]. The probability of packet collisions
can be decreased by increasing the advertising time and the number of packets, but this
increases the amount of energy required. We found a trade-off by sending four advertising
packets over the three allocated channels (37, 38 and 39) with an advertising interval of
250 ms. The packets are sent to the observer which is a QN9080 NPX development board
configured in observer mode [47].

As depicted in Figure 4, the broadcasting procedure starts with a device initialization
which takes into account the initialization of variables, the central processor unit (CPU),
peripherals and the host stack of the BLE protocol. The initConfig_sensor function is
dedicated to initializing the configurations of the HDC2080 sensor (about all registers,
GPIO and I2C pins and the timestamp module). The following step consists of triggering
the measurements through an I2C command by writing 0x01 on the allocated address of
the register. The trigger on demand mode allows the device to remain in sleep mode when
it is not requested. At the same time, the Voltage_Meas Resistivity task, which provides
resistivity measurement (not reported in this paper), is run before the sensor operation for
accurate measurement when the voltage is stable.

Thereafter, the measurement can start with the DataMeas_HDC2080 task where the
writing on the register function is called back before the data value on the register is read.
The returned value (Data_Valid) from this function is checked to validate or not the proper
functioning of the measurement. If “Data_Valid” is true, the relative humidity (RH) and
temperature (T) are converted; otherwise, the measurement process end. The integer and
the decimal parts of the measured data are allocated on 7-bit for a temperature range from
−40 ◦C to +85 ◦C and 2-bit for an accuracy of 0.25 ◦C, respectively. The data conversion is
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followed by the Generic Access Profile (GAP) configuration of the BLE stack in broadcasting
mode and the setting of the advertising parameters. A timer of 1 s is activated to allow
four advertising events with an interval of 250 ms. When the timer ends and the four data
are sent, the controller stops the advertising. Finally, it is mandatory to force the discharge
of the storage capacitor to enable the PMU to complete another charging procedure from
the deactivation threshold (detailed in the next section) and thus complete another data
measurement and advertising step.
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Evaluation of the Power Consumption

To configure the PMUs with the provided configuration tools from the manufacturer,
the total power required by the sensors and transceiver has been evaluated. This can be
carried out by determining the power budget (sum of the consumed power at each stage) or
using the power measurement tool in the NXP software (MCUXpresso IDE v11.1.1 [Build
3241] [2 March 2020]) [48].

The current consumption profile of the SN during broadcasting with a DC voltage of
3 V is represented in Figure 5. It goes through the following steps:

(1) Without any available or sufficient power, the SN stays permanently in power-off
mode without any activity of the hardware.
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(2) The functioning of the SN starts with an inrush current followed by register ini-
tialization and calibration of the sensors. This stage represents a large part of the
consumption during the broadcasting phase. The SN has a high peak demand of
14.6 mA in the start-up process once powered by DC voltage.

(3) A following adverting event after the initialization phase is produced to avoid restart-
ing the MCU, and thus a supplementary consumption as seen in the next three
advertising events. The advertising interval is set to 250 ms and a timer of 1 s is imple-
mented to send four advertisements. Each advertising event starts with a wake-up of
the MCU and transmission of packets on the dedicated channel (37, 38, 39). A detailed
view of advertising packets is shown in Figure 6.

(4) After each advertising event, the SN goes into sleep mode with low current consump-
tion. The average current measured is 27 µA.

(5) The last current consumption phase is produced by the function to stop advertisement
after the timer of 1 s. An additional function is programmed for the resistivity
measurement by canceling the measured current across the probes.
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Figure 5. The current consumption profile of the BLE SN during broadcasting, obtained with the
power measurement tool of MCUXpresso IDE software. The different states are identified: (1) SN is
power off; (2) Indicates the start-up, initialisation and calibration after power supplying the SN; (3) is
the 4 advertisements made by the SN with data; (4) is the sleep mode between adv. event for low
power consumption; (5) is the consumption needed to stop broadcasting and cancel the voltage offset
for resistivity measurement.

The total average current consumption during a broadcasting phase is approximately
282 µA during the 1216 ms. It can be computed thanks to Formula (1) but is less accurate
due to the approximation of time duration at each state.

Iaverage =
∑ IiTi

∑ Ti
=

I2·T2 + 4·I1·T1 + 3I3T3 + I4T4

4·T1 + T2 + 3·T3 + T4
(1)

The energy consumption of the SN is then 1028.7 µJ (Econs) with a DC voltage of
3 V. However, this method of calculating power consumption is not accurate due to the
variation in offset voltage, which induces an error for measured currents below 150 µA (as
described in the datasheet [49]). An alternative was found by increasing the advertising
interval and measuring the voltage across a resistor with a digital multimeter (Keithley
2000). The resulting current is 3.3 µA instead of 31.6 µA in a deep-sleep state as reported
in Table 4. According to Formula (1), the correct value of the average current is 260 µA,
resulting in the energy consumption of 946 µJ (Econs).
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Table 4. Current consumption during each state of a broadcasting event.

State Description Time Duration (ms) I (µA)

(4) Deep-sleep mode: Between advertising events 234 31.4
(2) First state (start-up, init., cal. and 1st adv. Event) 241 1074
(3) A full advertising event 8 1758
(5) Offset cancelation and stop advertising 11 1032

Total broadcasting event (from start-up to stop adv.) 1216 282

Thus, the final storage capacitor is determined thanks to Formula (2) for both PMUs
by defining the maximum (activation) and minimum (deactivation) threshold voltage at
4.2 V and 2 V, respectively, and subtracting 20% from the required value to compensate the
tolerance of the capacitance value in the worst case (Cstor−20%). The value above is chosen
knowing that the calculated value of 111 µA is not standard. The low-leakage-current
storage capacitor of 150 µF [50] from Würth Elektronik is selected for the prototype.

Econs =
1
2
·Cstor−20%·

(
V2

max − V2
min

)
(2)

3.2.2. The BQ22570 Power Management Unit

Knowing that the instantaneously available power from the harvester is not sufficient
to supply the BLE transceiver and active sensors continuously, we decided to manage, boost
and store it in a storage capacitor of 150 µF previously calculated, with the BQ25570 PMU as
a low-power device (its minimum input DC power is around 15 µW for 100 µF) [51]. Thanks
to the configuration tools, we obtain an activation voltage of 4.195 V and a deactivation
voltage of 1.936 V with an output voltage of 2.87 V. Figure 7 represents the evolution of the
DC voltage across the storage capacitor for an RF power of −6 dBm (868 MHz) at the input
of the rectifier. The real amount of energy stored in the capacitor is 1.04 mJ.

As seen in Figure 7, from an empty storage capacitor, the PMU requires a long cold
start procedure and recharge of 114 s and 21 s, respectively, for an RF power of −6 dBm at
the input of the rectifier. The recharge time is then shorter while the PMU allows activation
of the maximum power point tracking (MPPT) hardware system.

3.2.3. The AEM30940 Power Management Unit

This chip from e-peas [52] is a full-featured energy-efficient PMU that can be used
to generate the appropriate regulated supply voltage. It was chosen because of its ultra-
low-power start-up with a typical input power of 3 µW and can be configured to store the
energy for different elements (supercapacitor or conventional capacitor, thin-film battery,
Li-ion battery, LiFePO4 battery, etc.). The low drop-out voltage can generate various supply
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voltages: low voltage (LV) supply (1.2 V to 1.8 V) for microcontrollers and high voltage
(HV) supply (1.8 V to 3.3 V) for transceivers. An additional voltage path for a rechargeable
battery is possible with the DC-DC boost converter (2.2 V to 4.5 V). The HV LDO, which
consumes less than the boost converter, is selected for our proposal. With its configuration
tool, the threshold voltages are obtained for 4.22 V and 1.87 V, and the output high voltage
of the LDO is set to 2.87 V.
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Thanks to its ultra-low-power start-up, the cold start procedure takes only 13 s, but
the recharge time is longer (around 21 s) as seen in Figure 8. The next section will detail the
experimental results of the prototype with the same configuration as described above.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 7. Load time of the storage capacitor (cold start, first recharge and then a recharge) with the 
BQ25570 for an RF power of −6 dBm (868 MHz) at the input of the rectifier. 

As seen in Figure 7, from an empty storage capacitor, the PMU requires a long cold 
start procedure and recharge of 114 s and 21 s, respectively, for an RF power of −6 dBm at 
the input of the rectifier. The recharge time is then shorter while the PMU allows 
activation of the maximum power point tracking (MPPT) hardware system. 

3.2.3. The AEM30940 Power Management Unit 
This chip from e-peas [52] is a full-featured energy-efficient PMU that can be used to 

generate the appropriate regulated supply voltage. It was chosen because of its ultra-low-
power start-up with a typical input power of 3 µW and can be configured to store the 
energy for different elements (supercapacitor or conventional capacitor, thin-film battery, 
Li-ion battery, LiFePO4 battery, etc.). The low drop-out voltage can generate various 
supply voltages: low voltage (LV) supply (1.2 V to 1.8 V) for microcontrollers and high 
voltage (HV) supply (1.8 V to 3.3 V) for transceivers. An additional voltage path for a 
rechargeable battery is possible with the DC-DC boost converter (2.2 V to 4.5 V). The HV 
LDO, which consumes less than the boost converter, is selected for our proposal. With its 
configuration tool, the threshold voltages are obtained for 4.22 V and 1.87 V, and the 
output high voltage of the LDO is set to 2.87 V. 

Thanks to its ultra-low-power start-up, the cold start procedure takes only 13 s, but 
the recharge time is longer (around 21 s) as seen in Figure 8. The next section will detail 
the experimental results of the prototype with the same configuration as described above. 

 
Figure 8. Load time across the storage capacitor (cold start, first recharge and then a recharge) with 
the AEM30940 for an RF power of −6 dBm (868 MHz) at the input of the rectifier. 

Figure 8. Load time across the storage capacitor (cold start, first recharge and then a recharge) with
the AEM30940 for an RF power of −6 dBm (868 MHz) at the input of the rectifier.

4. Implementation and Experimental Results

The proposed solution of the SN combining two PMUs and two rectifiers at different
frequency bands was prototyped. The nomenclature of each subsystem of the proposed
SN is presented in a photo (Figure 9). In this chapter, we will present the implementation
of both PMUs. The output of either the 2.45 GHz rectifier or the 868 MHz rectifier input
can be used for the power supply, but only the experimental results of the SN with the
868 MHz rectifier are presented for the first proposal of this paper.
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4.1. Comparison of the Power Management Unit

The performance was evaluated first by measuring the charge time of the storage
capacitor and second by comparing each PMU. Experimental results were obtained by
providing an RF input signal at variable power levels to the 868 MHz rectifier, and the
charge and discharge evolution could be obtained thanks to an oscilloscope, as depicted
in the experimental setup in Figure 10. To avoid the influence of the input impedance
of measuring devices (voltmeter, probes and oscilloscope), the time duration of a single
emission or the time between data emissions could be obtained by determining the time
difference between each received timestamped packet.

The voltage evolution in time is reported in Figure 11 for: Vcc, the supply voltage to
the transceiver and sensors; Vcstor, the voltage across the empty storage capacitor; VDCin,
the input voltage of the PMU from the output of the rectifier. It can be clearly observed
that the configuration with BQ25570 requires a long cold start time, while the configuration
with AEM30940 completes the cold start procedure and allows four advertising events. We
will therefore say that the AEM30940 seems to be more suitable for our application.
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A quantitative comparison has been made between the two PMUs related to the first
charge and recharge duration as a function of the input power level (in Figure 12). The
first charge duration includes the cold start time. The evolution of the first charge duration
meets the insignificant dynamic range for the two PMUs independently of the input power.
On the other hand, the recharge duration is roughly the same for input power higher than
−8.5 dBm, but the difference between the PMU increases for low RF input power. As
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a result, the AEM3090 PMU offers interesting results with reasonable charge duration,
especially for low power input levels.

4.2. Radiated Performance Evaluation

In order to be finally implemented in real wireless conditions by connecting the SN
with a compact 3D configured antenna [53], the antenna was optimized to have a maximum
gain higher than +1 dBi and a size respecting a planar dimension of 60 mm × 30 mm.
Thanks to miniaturizing techniques consisting of adding two vertical metallic arms on the
edges, the obtained antenna has a size of 56 mm × 32 mm × 10 mm. It has a maximum
measured gain of +1.54 dBi at 868 MHz and can be used in the bandwidth between 862 MHz
and 888 MHz. The full prototype is shown in Figure 13. In this characterization step, the
SN is configured only for AEM30940, knowing that it is more suitable for low RF power
levels as determined before.
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The setup represented in Figure 14 is composed of: an RF source which consists of an
RF signal generator (MG3690C) connected to a patch antenna through a coaxial cable; the
SN considered as the broadcaster under test placed at a distance of 2 m from the RF source;
and the observer which is the QN9080 Development Kit that enables the transmitted data
to be received by the SN.
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anechoic chamber.

The used patch antenna operates at 868 MHz and has a maximum gain of +9.4 dBi. Ac-
cording to the configured output power from the signal generator, the equivalent received
signal at the input port of the rectifier can be computed thanks to Formula (3). Before any
measurements, the losses induced by the cable were measured thanks to a power meter.
Thus, Figure 15 shows the first start duration and the recharge periodicity of the storage
capacitor as a function of the effective isotropic radiated power.

The measurement and data transmission periodicity can be controlled by the RF power
source through the equivalent power density level at the surface of the antenna connected
to the SN.
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5. Conclusions

Faced with the ambition of extending the lifespan of electronic systems, especially in
harsh environments for SHM applications, this paper presents a low-power, autonomous
and multifunctional sensing node dedicated to wirelessly communicating, via BLE protocol,
the data of the physical parameters (temperature, pressure and resistivity) measured by
sensors. Thanks to its low power consumption, the BLE protocol configured in broad-
caster/observer mode was chosen instead of LoRaWAN previously used in [8]. The SN
used as a broadcaster simply sends out data to the observer which periodically scans the
data without any connection.

The SN has the advantage that it can be configured according to the power density
level. A rectifier optimized for −15 dBm at an 868 MHz frequency band is used as an
RF-to-DC converter to supply the active components. The SN is designed and implemented
with both PMUs (BQ25570 and AEM30940); experimental results show a lower charge
duration of the AEM30940 for the cold start independently of the input power level. For
an input power of −6 dBm at 868 MHz at the rectifier input, the cold start duration of
the BQ25570 is 4 times longer. However, the trend is reversed after the first charging step,
where the BQ2557 recharges the storage capacitor faster. Far-field experimentation of the
SN was also completed in an anechoic chamber at 2 m from the ES at 868 MHz. With an
EIRP lower than +27 dBm of an equivalent power density, the SN can complete a full first
charge in less than 4 min and has a recharge periodicity of less than 2 min.

This paper presents the performance results of the developed battery-free sensor node
powered by a far-field RF power transmission technique. With the advantages of being
low-power and battery-free and enabling wireless BLE communication, the SN is intended
to be embedded into a concrete cavity for structural health monitoring. The next step in
this line of research will be to carry out experiments on the SN with both frequency bands
(2.45 GHz and 868 MHz). Moreover, this prototype will be optimized by reducing the size
of the SN board and by co-designing an antenna on the same printed circuit board (PCB).
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