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HATP/EHDA: A Robot Task Planner Anticipating and
Eliciting Human Decisions and Actions

Guilhem Buisan1, Anthony Favier1,2, Amandine Mayima1 and Rachid Alami1,2*

Abstract— The variety and complexity of tasks autonomous
robots can tackle is constantly increasing, yet we seldom see
robots collaborating with humans. Indeed, humans are either
requested for punctual help or are given the lead on the
whole task. We propose a human-aware task planning approach
allowing the robot to plan for a task while also considering and
emulating the human decision, action, and reaction processes.
Our approach, named Human-Aware Task Planner with Emu-
lation of Human Decisions and Actions (HATP/EHDA), is based
on the exploration of multiple hierarchical tasks networks albeit
differently whether the agent is considered to be controllable
(the robot) or uncontrollable (the human). We present the
rationale of our approach along with a formalization and show
its potential on an illustrative example.

I. MOTIVATION
Imagine that you are working in a factory and order your

robotic assistant to assemble a small piece of furniture (rep-
resented by a stack, Fig. 1(a)) including several components
(represented by cubes, Fig. 1(b)). Some components are only
accessible by one, others are reachable by both of you and
still others are reachable by a another human, carrying her
own task. Many ways of realizing this task are available for
the robot: depending on how you formulated your request,
it can assume that you will help it or not; it can try to
perform it on its own, if you are busy doing something else,
even if it takes longer; it can request punctual help from the
other human, to more efficiently perform the task if verbal
communications are feasible; finally, it can also share the
entire task with this third agent, fully involving her in the
assembly. All these solutions may or may not be feasible,
and can be more or less efficient, depending on the world
state, the goal, and more importantly the estimated decision
and action processes of the surrounding humans.

To tackle these issues, we present a novel task planning
approach dedicated to HRI which, by planning for both the
human and the robot, tries to satisfy multiple objectives:

1) Plan with or without assuming a prior shared goal.
The robot and the human are not always sharing a goal.
Our planner can balance between integrating the sharing of
a goal with a human (assumed to be collaborative) in the
plan and making the robot do the task alone, or integrate the
possibility to ask for punctual human help.

2) Model the human decision processes. When taking
part in a task, a human (assumed willing to collaborate) will
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Fig. 1. (a) A robot and a human assembling a (b) cube stack. The robot
environment estimation is depicted on top. For the best efficiency, the robot
must plan for and adapt to the human possible decision and action processes.

also plan to reach their (potentially shared) goal. Our robot
must be able to account for this to provide plans that are
expected by the human partner and explainable to them.

3) Help the human decision, but not compel it. By
modeling the human decision processes and their potential
effects, the planner will need to consider various courses
of action, leaving more latitude to the human and avoiding
replanning

4) Act and decide on the different agents’ beliefs. It is
important to be able to represent actions as having different
effects on the beliefs of the robot or the human. Indeed,
some robot actions are partially or not observable by the
human. Therefore, when performing them, the human has no
way of knowing the complete new world state. Moreover,
these effects and their observability often depend on the
current world state, which representation must be supported
by the planner. Finally, decisions made while planning may
require to reason on both the robot and the human beliefs
(e.g. knowledge alignment communication actions, robot
asking questions).

To do so, we took inspiration from previous work on
human task modelling and human-aware task planning to
build a task planner focusing on human-robot collaboration.
Our planner is able to explore in a distinct manner the
deliberation and plan elaboration processes of the robot and
the human, in order to build robot plans and anticipate the
decisions, actions and reactions of the human. Moreover, it
maintains one belief base per agent (human or robot).Actions
preconditions and effects can be expressed in any of these be-
lief bases. It allows to represent situational or inherently non
observable actions from agents, knowledge transfer actions,
and to detect beliefs divergences and plan accordingly. Our
scheme is designed to provide a suitable framework enabling
the anticipation of the beliefs, potential decisions, reactions
and contributions to a shared goal or to an interaction



situation of both agents. This overall anticipation process
takes place within the robot decisional activity.

In the sequel, we first discuss related work before pre-
senting our approach, its intents and rationale. Then, we
provide a formalization of our planner scheme. Finally, some
examples are presented before concluding.

II. BACKGROUND

To plan for the human decisions and actions, we need
to model the humans decision and action processes. Thus,
we first present common ways of modelling human activity
excerpted from human-computer interaction literature. Then,
we review several contributions to elaborate shared human-
robot plans.

A. Human Task Modeling

Multiple approaches try to model the human activity. They
are mainly used to design a system that integrates gracefully
in human tasks, in order to improve their performance.
These tasks can be seen as hierarchical, where abstract ones
decompose into smaller, more concrete ones.

A common way of representing human activity and in-
teraction with computer at high abstraction level is by using
task models. The hierarchical structure of human activity was
first exploited by Annett and Duncan [1]. They state that
tasks can be described at several levels of abstraction until
a certain criterion is met. Each task can thus be refined into
subtasks detailing the procedure followed by the human to
achieve the higher level task.

Task modeling has then evolved to introduce interaction
with systems, produced and needed information, potential
errors and a wide variety of operators specifying how tasks
interacts with each other during their execution. Task models
are now commonly used in user-centered and user interface
designing processes. Most advanced notations include Con-
curTaskTrees [2] and HAMSTERS [3].

These models are used to design or to evaluate interactive
systems. They allow the designer to better understand the
user task or to study the user workflow using their system.
However, these models contain too little information for a
system to be able to reason and take decision on them (either
in planning or acting).

We drew inspiration from these models, sharing common-
alities with Hierarchical Task Networks (HTNs), to represent
human decision processes in HATP/EHDA.

B. Planning a Task for Both the Human and The Robot

While human activity modeling and autonomous planning
have been studied separately for decades, there are still only
few systems proposing to incorporate human activity into
planning for intricate interactive tasks, leading to shared
plans [4]. Planning for both a robotic agent and a human
differs largely from multi-robot planning. Indeed, while the
robotic agents are planning for itself and will surely execute
the plan, the human is not directly controllable (making them
follow the plan may require the robot to at least communicate

and perhaps negotiate) and can also have their own plan they
are trying to execute.

Most approaches to the so-called human-aware task plan-
ning problem assume a fully controllable human, willing to
participate in the accomplishment of a common goal [5],
[6]. Then, information and plan sharing are done in a post-
processing step or at execution time [7], [8].

The Hierarchical Agent-based Task Planner (HATP) pro-
poses a hierarchical approach to multi agents task planning
[9], [10]. This HTN-based planner is able to elaborate a
multi-agents plan based on a single HTN tree. Moreover, it
maintains one beliefs base per agent allowing to write task
decomposition rules and actions preconditions and effects in
any agent beliefs base. Finally, HATP also computes costs for
the plans found based on action costs and predefined social
rules. However, HATP assumes that a shared goal has been
established between the human and the robot prior to the
planning process and that the generated plan will be shared
with the human before the execution [11]. Indeed, HATP
does not represent the human as an agent having a separate
decision process that may lead to diverging plans without
robot communication.

Other approaches are explicitly considering an external
human model, which can be used to predict future human
actions, and plan accordingly. Hoffman and Breazeal present
an approach where the robot anticipates human actions to
provide efficient support [12]. The environment is repre-
sented as a first-order Markov process (implying that the
human can be represented as an hidden Markov model
acting upon the, observable, environment). Buckingham et al.
propose a planning scheme questioning humans mental mod-
els returning the effects of expected future humans actions
[13]. The planner is then able to determine a robot policy
influencing the humans actions. In this work, they show how
this framework is able to cope with interactive tasks even
without assuming that the human is collaborating. Similarly,
Unhelkar et al. proposed a POMDP-based approach called
CommPlan [14]. The POMDP is built using a user defined
MDP (Markov Decision Process) representing the collabora-
tive task and an AMM (Agent Markov Model) representing
the human decision-making process. This POMDP is then
solved to produce a robot policy which, inter alia, decides
when the robot has to communicate about its beliefs, to
question the human about theirs and to ask the human to
perform an action. Besides, the human AMM is not only
specified by the programmer but also refined during the
interaction via learning. However, these approaches consider
the human model as an oracle on which reasoning is hardly
possible during the planning process. Moreover communica-
tion models and human decision processes are coarse and do
not offer any insight for helping the robot planning process.

Additionally, to cope with the uncertainty of the human
knowledge, Petrick and Foster propose to use conditional
planning allowing to plan for incomplete information [15].
By doing so, the planner elaborates a plan for the robot
accounting for multiple possible human choices, and depend-
ing on the knowledge received the execution component can



execute the right branch of the plan.
Likewise, Sanelli et al. ([16]) present an approach not

only elaborating conditional plans for the robot depending
on the possible human choices (e.g. the choice of activity
the human wants to perform), but they are able to transform
this conditional plan into a Petri net plan to handle its
execution. This contribution is inspired by a previous work
of Nardi and Iocchi ([17]) in which they present a method for
transforming (linear) joint plan into a Petri net plan managing
its execution. Interestingly, the human actions from the plan
are changed into a part of the Petri net where the robot
elicits the action (e.g. via a verbal communication) if the
human does not perform it by themselves. However, these
approaches only request the human to make single actions,
instead of sharing a high level goal, which can become
unpleasant if done repeatedly.

Finally, Chakraborti et al. use both the robot model and
the estimation of the model the human has of the robot to
improve plan explicability [18]. Indeed, they propose a novel
approach called model reconciliation which they present as
a classical planning problem. In this problem, the goal is to
make identical both the optimal plans generated via the robot
model and the human estimation of the robot model. To do
so, they define a list of operators on the models in order
to modify them until the plans match. However, it only has
been applied to robot plans and not to joint plans. Indeed,
the generated plans contain only robot actions, and the robot
and the human do not directly collaborate in the presented
tasks.

III. DESCRIPTION

A. Rationale

We separate the agents who may take part in a given task
into two categories: the controllable agent (i.e. the robot) for
which the planner needs to select the best course of actions to
generate a plan; and the uncontrollable agent (i.e. the human)
on whom the planner has no direct control but, still, has a
representation of their decision, action and reaction models.

The two agent types are fundamentally different:
1) the robot is controllable since the process is run by the

robot itself,
2) the human agent is not controllable since the process

can only “speculate” on their decisions and actions, but can
model that the robot actions can still influence them and that
some of them are observable by the robot,

3) the two agents are not equivalent, the robot agent role
is to help, assist and facilitate human and to synthesize
pertinent, legible and acceptable behavior.

We want to devise a planner allowing the controllable
agent to plan for its actions while anticipating the decisions,
actions and reactions of the uncontrollable agent. Moreover,
we want the planner to be able to generate plans where the
robot actions elicit situations calling for human decision, ac-
tion and reaction, thus creating and anticipating collaboration
and interaction.

This problem may be seen as a classical non deterministic
planning problem, but enriched with the ability of the robot

to model the actions, beliefs and decision process of the
human. Thus, we have to consider distinct action models,
beliefs and execution streams for each of the agents involved.
HTN approaches have already been shown to be suitable
for HRI as they allow to communicate about the plan
more easily [10]. Therefore, we chose to use HTN planning
for both the controllable and uncontrollable agents. HTN
planning aims at decomposing abstract tasks into atomic,
primitive tasks by choosing from a list of available context-
dependent refinements for each abstract task, ensuring that
preconditions and effects of refined primitives tasks are
satisfied throughout the created plan. Similarly to HATP [6],
our planner elaborates a plan with several streams of actions
each assigned to an agent involved in the task. But while in
HATP, all the streams are built starting from an initial root
node corresponding to a shared goal between all agents, our
planner starts from multiple initial root nodes corresponding
to the first task of the initial agenda of each different agents.

B. Definitions

The main structure manipulated by our planner is the
agent, more precisely two will be represented, the human and
the robot. Each agent has their own beliefs, action model,
agenda, plan and triggers. The planner has to use their
action models and beliefs to decompose the tasks in their
agenda into primitive tasks (actions) that are inserted in their
plan. By doing so, it also has to update the beliefs of each
agent and to model their reaction by executing the triggers.

a) Agents: First, we define an agent state as a tuple
σα = 〈dα, πα, sα〉, with dα the agenda, πα the partial
plan and sα the beliefs of the agent α (more details are
presented in what follows). Then, we define an agent as
being α = 〈nameα, σα,Λα, T rα〉, with nameα the agent
name, σα the agent state, Λα the action model and Trα
the triggers of the agent α (detailed in what follows). Then
we define two agents: the controllable one — the robot —
; and the uncontrollable one — the human —. We have
σ = 〈σrobot, σhuman〉 representing an agents state, being
the state of all the agents at a certain plan step. Let Σ be the
set of all the possible agents states.

b) Beliefs: Let S be the set of all possible world states,
we call beliefs of an agent α the state sα ∈ S in which this
agent thinks the world is in. It is important to note that the
state of the controllable agent (robot) is assumed to be the
real world state estimation for the planner, as we consider
the planner as being part of the controllable agent.

c) Action models: We represent the action model of
an agent α as Λα = 〈Opα, Abα,Meα〉 where Opα are the
primitive tasks (i.e. operators, actions) that the agent α can
perform, Abα the set of abstract tasks and Meα are the
methods (i.e. decompositions) describing how an agent α
can perform an abstract task through a refinement process.
It is important to note that while this representation makes
a clear distinction between the robot and the human tasks, it
does not prevent representing joint abstract tasks or tasks that
can be either done by one or the other agent. Indeed, as we
show later, complementary abstract tasks can be represented



and some tasks can have the same operational model even
if they are not in the same agent action model.

More precisely, the primitive tasks (operators) are defined
as functions: Op 3 o : Σ→ Σ∪⊥ which produce new agents
state, being the effect of the application of the primitive task,
or false if the task is not applicable. We represent operators
as being instantaneous (or all having the same duration) in
their realization. With this definition of operators, we are able
to represent action effecting the beliefs of any agents (e.g.
depending on the observability of a robot action, the operator
will or will not update the beliefs of the human). Moreover,
we can represent actions whose only effects are knowledge
sharing (e.g. verbal communication for belief alignment).

Then, methods are defined as tuple, containing an abstract
task and a decomposition function: Me 3 m = 〈τ, δ〉 with
τ ∈ Ab and δ : Σ → (Op ∪ Ab)n ∪ () ∪ ⊥ with n ∈ N∗,
which, depending on agents state, decompose the abstract
task returning a sequence of tasks (primitive or abstract),
an empty sequence if the abstract task does not need to be
decomposed, or false if the task cannot be decomposed in the
current state. Multiple methods can address the same abstract
task, the goal of the HTN planner is then to choose the right
one to create a plan.

d) Agents agendas and plans: An agenda dα and a
plan πα (this agent only stream of actions) are defined for
each agent α. The agenda dα is a sequence of tasks (abstract
or primitive) having to be performed by the agent. The plan
πα is a sequence of primitive tasks, built from the agenda,
which the agent has to perform. The links of actions order
between the two streams of actions (plans) are kept in each
plan, allowing for coordination.

e) Agent triggers: Finally, we define for each agent
α a set of so-called trigger functions Trα. These trigger
functions aim at representing reactions of agents to certain
situations (subsets of world states). They are useful to model
event-driven behavior, as in PRS [19], when a specific world
state triggers a reaction from an agent. Besides, these triggers
can be used to represent social norms as defined in [20],
where the user can specify literals which, if true in the world
state during the planning process, add some specific robot
actions to the plan.

Trigger functions are defined as: Tr 3 t : Σ → (Op ∪
Ab)n ∪ () with n ∈ N∗, returning a sequence of tasks to be
inserted in an agent agenda as a reaction to specific agents
state. For now, the tasks returned by a trigger function are
added on top of the agenda, thus preempting any task that
may have started to be decomposed. A considered solution is
to support the flagging of some abstract tasks in the domain
as being atomic. We can then prevent the tasks returned by
a trigger to be inserted between any tasks resulting from the
decomposition of an atomic task.

IV. THE PLANNING PROCESS

To start planning, HATP/EHDA must be given the two
action models (the robot and the human HTNs), the initial
beliefs of both agents (which can differ) and the initial
agenda of both agents. The initial agenda of the robot

Fig. 2. The HTNs exploration, as explained in IV-A, consists in iterative
loops of four steps : (1) Get possible robot actions from the robot HTN, add
them in the plan and apply their specific effects on the H & R beliefs, (2)
Check Triggers and add the reactions in the corresponding agendas, (3) Get
possible human actions based on his/her updated (estimated) beliefs, add
them in the plan and apply their effects on the H & R beliefs, (4) Check
Triggers again and add the reactions in the corresponding agendas.

represents the task to decompose, while the agenda of the
human represents any task the human is estimated to be
commited to. If a shared goal has been established prior to
planning between the robot and the human (e.g. the human
asking to perform a task with the robot), the agenda of both
agent will be filled with the same task.

The planning process is done in three parts: (1) First, both
HTNs are explored in a turn taking fashion, resulting in a
valid joint plans tree. (2) Then, based on this tree, robot
actions are selected according to action, plan-wide and social
costs, resulting in a conditional plan, where at each step
multiple human actions can be performed but only one robot
action is set. (3) Finally, causal and threat links are added
between actions of the conditional plan to ease its execution.

A. HTNs Exploration

The robot HTN exploration is a pretty standard depth-
first algorithm. The first task λ from its agenda drobot is
popped, then if it is an abstract task λ ∈ Ab, all the applicable
methods are applied, and their results are prepended to the
agenda, thus giving new agents state (with the same beliefs
as the previous ones but with the robot agenda updated) and
branching our search space. We recursively iterate with the
new task popped from the new robot agenda. Eventually, the
popped task will be a primitive one λ ∈ Op, its function
will then be applied to the currently explored agent states.
If it returns false (⊥), the action is not applicable, and
the exploration backtracks to another decomposition of an
abstract task. However, if the action is applicable (returns a
new agents state), the action is added to the robot plan and
the triggers are run for each agent, updating their agenda
if necessary. Then, the human HTN is queried to get their
possible next actions from this new agents state. The possible
actions found are added to the human plan, and, for each
possible new agents state, we apply the triggers of each
agent then we continue the robot HTN exploration. This
exploration continues until the robot agenda is empty, or all
the branches return false. The HTNs exploration process is
summarized on Fig.2.

The human HTN exploration differs from classical HTN



planner as the goal is not to produce a complete plan, but
rather to list all the actions the human is likely to perform in
a given agents state. We recursively decompose the first task
of the human agenda dhuman with every applicable method,
until we reach an applicable operator. All the operators from
all the applicable decompositions are returned to the robot
HTN exploration and applied.

Two special cases are handled during the exploration. If
the human agenda is empty whereas the robot one is not,
the exploration returns a default action IDLE for the human
(which does not modify agents beliefs nor agendas). This
action represents the non-involvement of the human in a
task. Besides, if no applicable action is found for the human
a default action WAIT is returned (which does not modify
agents nor agendas). This action represents the impossibility
of the human to act in the current situation, making them
wait for the robot to proceed. This default action can also
be used in a domain to represent the human decision to wait
for the robot to act.

Once the robot agenda is emptied, the agents state is set
as a success, the plan is added to the valid plans tree and
the search can be continued until no decomposition is left
for any task.

B. Conditional Plan Selection

Once this exhaustive search has been done, the result is
a valid plans tree of alternating robot and human feasible
actions along with their current beliefs leading to a task
completion. The goal of this second planning step is to select
robot actions such as each human action in the plan has
only one robot action as a child. To do so, we define a cost
function cost : σ × Op 7→ R+ representing the cost of an
action in a specific state. The data structure is now similar to
a two players game tree. However, MinMax approaches are
not suitable here, as we are not in an adversarial setup but
more into a collaborative one. Indeed, trying to minimize
the maximal possible cost is assuming that the human
will always do the actions leading to the worst plan. This
defensive behavior could lead to non optimal plans. We thus
propose to explore this tree differently.

Moreover, like in HATP we allow to define social costs
functions. These functions take a complete human and robot
sequence of actions (πr and πh) and return a cost (R+) which
is added to the cost of the plan previously determined. By
doing so, we can penalize non acceptable sequence of robot
actions (e.g. serving a meal just after taking out the trash) or
non satisfactory human required contribution (e.g. the robot
requesting the human to perform small tasks multiple times
instead of giving the big picture of the real task to perform).

The approach we propose for plan selection is to minimize
the average cost. It represents the human potentially selecting
any course of actions in their stream (while still respecting
the action model defined in their HTN). The algorithm
is given the root action of the task network previously
generated and returns the cost of the conditional plan selected
while having selected the robot actions in the task network
minimizing the average cost of plans.

Fig. 3. Cube stacking scene: A different plan is selected for each scenario,
involving nearby humans in the less disturbing way possible.

(a) R and H1 build the stack
together as a shared goal re-
quested by H1.

(b) H1 requests to stack the
cubes and R acts alone.

R-PickAndPlace(red, base) R-PickAndPlace(red, base)
H1-PickAndPlace(red, base) R-moveTo(red)
R-PickAndPlace(green, bridge) R-PickAndPlace(red, base)
H1-PickAndPlace(blue, top) R-moveTo(init)
R-PickAndPlace(yellow, top) R-PickAndPlace(green, bridge)

R-PickAndPlace(blue, top)
R-PickAndPlace(yellow, top)

(c) H1 requests R to build the
stack, R decides to punctually
involve H2.

(d) H1 requests R to build the
stack, R decides to invite H2 to
a shared goal.

R-PickAndPlace(red, base) R-PickAndPlace(red, base)
H2-IDLE H2-IDLE
R-AskPunctualHelp(red) R-AskSharedGoal()
H2-PickAndPlace(red, base) H2-PickAndPlace(red, base)
R-PickAndPlace(green, bridge) R-PickAndPlace(green, bridge)
H2-IDLE H2-PickAndPlace(blue, top)
R-PickAndPlace(blue, top) R-PickAndPlace(yellow, top)
H2-IDLE
R-PickAndPlace(yellow, top)

TABLE I
EXECUTION TRACE OF A SELECTED PLAN FOR EACH SCENARIO.

Finally, causal and threats links are computed on the
conditional plan, to help the supervision in its execution.

V. EXAMPLES

To highlight the potential of our approach we present as
example a cube stacking scene. The scene is depicted in four
different scenarios on Fig. 3. The goal consists in stacking
the colored cubes on the empty marks to match the colors
of Fig. 1(a). All cubes placed in the middle of the table are
reachable from anywhere. However, when close to one side
a cube is only reachable from this specific side.

The partial robot and human actions models, as well as
their exploration are presented in Fig. 4.

Each scenario is commented below with their correspond-
ing selected plan shown in TABLE I.

a) H1 and R act together: First, the human sets a
shared goal by asking the robot to stack cubes with him.



Fig. 4. Illustration of the incremental exploration of various courses of actions corresponding to scenarios depicted in Fig. 3(b), (c) and (d). Since H1
requests the robot to achieve the goal, it is not a shared goal, the robot agenda is filled with the task to achieve and the agenda of H2 starts empty.

Since it is a shared goal, Both human and robot agendas are
initialized with the “Stack” task. Thus, the robot anticipates
that the human will pick the unreachable second red cube
by querying the human action model. The selected plan to
collaboratively stack can be seen in TABLE I(a).

b) Robot acts alone: This time the human asks the
robot to stack the cubes but then leaves the scene, the
robot must act alone. Hence, the only applicable method to
make the second red cube reachable is to move to the other
side even though the movement action is expensive (we can
imagine a table way longer than shown on the figure).

c) Robot asks punctual help: The first human acts the
same way but another one is present, not involved in the
task. The robot starts exploring its HTN and, thanks to the
presence of the other human, a new method is applicable
allowing the robot to ask for help. It can either ask for
punctual help or involve completely the other human in the
task. Of course, just asking help for one cube is less costly
than asking to build the whole stack together. However,
asking help to someone not already involved in a common
task is still expensive since they have to put themselves in
the context of the task. Yet, this punctual help is actually
less costly for the robot than moving to the other side so
the robot chooses to ask for punctual help. Note that we
model the fact that after being asked to punctually help,
the human can either stack the cube herself or just make
it reachable to the robot by placing it in the middle. Only
the first branch is shown in TABLE I(c) but the selected plan
is in fact conditional with two branches as depicted in Fig. 4.

d) Robot invites Human2 to share a goal: Same initial
setup but now two cubes are out of reach. Asking for
punctual help is still less costly than moving around the table.
Nevertheless, this disturbs the human so each new punctual
request becomes more expensive than before. Thus, this time
setting a shared goal becomes less costly for the robot than
asking twice for punctual help.

Using HATP/EHDA on a real collaborative setting
HATP/EHDA has been integrated into a complete robotic

architecture dedicated to human-robot collaboration [21],

inspired by [22]. Besides HATP/EHDA, the architecture
embeds a situation assessment component [23] together with
a semantic knowledge management [24] to assess the state
of the environment and estimate human beliefs. When the
supervision decides of a task to perform and if this task
corresponds to a human-robot shared goal or an individual
robot goal, it invokes HATP/EHDA. Then, it controls the
execution of the obtained plans. Their structure allows the
controller to determine in which condition it has to simply
wait for the human to choose or to act, or if it has to ask
them to make a decision. An attached video illustrates several
situations where it is shown that the human can make a
choice or another in the case of a shared goal (Fig. 1). It
also shows the case where the robot decides how and when
to involve a human in the realization of a task.

VI. CONCLUSION

HATP/EHDA is a task planning approach allowing a robot
to plan its actions while accounting for human decision,
action and reaction, resulting in a conditional joint plan. To
do so, a robot HTN is explored and human HTN models are
queried (corresponding to human task modeling) to retrieve
the possible human decisions, and actions. In fact, both
human and robot action effects and preconditions can be
expressed in either agent beliefs, allowing to predict, main-
tain or realign any belief divergence during the task planning
process. We claim that HATP/EHDA planning framework is
well suited and can be tuned to cover most of the human-
robot planning problems and schemes previously envisaged
in the literature: planning for human-robot while assuming a
shared goal ([10], [14], [17]), planning in conditions where
the robot can help and facilitate known human activities
([12]), planning for the robot alone and deciding when and
in which conditions it can request help from human ([25]),
integration of communication acts in the plans ([26], [7],
[27]), incremental human-robot plan negotiation ([11], [18])
and determining which decision should be better postponed
to leave more latitude to the human partner ([28]).
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