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Challenging Human-Aware Robot Navigation
with an Intelligent Human Simulation System

Anthony Favier!2, Phani Teja Singamaneni' and Rachid Alami':?*

Abstract— Human-aware and so-called social navigation abil-
ities of a robot need to be tested and evaluated in real-life
experiments with real humans. Such tests are mandatory to
validate a mature system. But they are heavy to set up and
can become tiresome when debugging the early stages of a
system. Simulation could help solve this issue, but the lack of
available intelligent human avatars that can exhibit a rational
behavior restricts this to simple scenarios. To address this issue,
we propose a system providing first an autonomous intelligent
human agent specifically designed to act and interact with a
robot navigating in a simulated environment. Then, the system
provides a GUI to visualize the paths taken by the agents as
well as the produced metrics in order to help evaluate the
interaction. Moreover, the system also provides a high-level
interface to control the agents and run repeatable scenarios.
We show through a set of experiments how the proposed system
can help answer the lack of intelligent avatars for tuning and
debugging social navigation systems before their final evaluation
with real humans.

I. INTRODUCTION

Significant efforts are being dedicated today towards the
development of robots that interact, assist or work side-by-
side with humans. However, people working in the field
of human-robot interactions (HRI) face constraining issues
while testing and evaluating their systems. Apart from being
mandatory to validate mature systems, experimenting using
real humans and robots is burdensome for many reasons:
they are slow, hardly repeatable, expensive, etc. However, the
system needs to be run extensively for debugging, tuning, and
testing various options before it reaches maturity. Doing so
with real-life experiments is generally a long and tiresome
process where colleagues in the lab and volunteers spend
unproductive hours, if not days, interacting with a robot
running a system under debugging. Simulation would be
well suited for such tasks but simulating realistic human
behaviors and interactions is tough, which could make simu-
lations unreliable. Consequently, HRI researchers face some
difficulties such as: “How to test repeatedly and intensively
their systems even when they are not sufficiently robust?”
and “How to challenge their systems in a sufficiently large
variety of environments and situations?”. Therefore, there is
a need for an “intelligent artificial human” that would help
challenge the robot’s interactive and decisional abilities.

The field of human-aware or social robot navigation is also
subject to the same issues and lacks intelligent avatars to
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challenge their systems. Researchers mostly rely on systems
using reactive models like social force [1] or optimal recip-
rocal collision avoidance (ORCA) [2] to test and evaluate
their planners. These systems have the benefit of often
being scalable and thus can provide groups or even crowds
composed of a large number of agents. However, despite
their number, the generated agents usually fail in intricate or
narrow scenarios. Some recent works like VirtualHome [3]
and SEAN [4] discuss simulating human agents to challenge
robot systems, but the navigation of the agents in these
systems is still based on reactive-only models. Another recent
work presented in [5], proposes to generate more realistic
pedestrian navigation using a learning-based method. This
ongoing work shows an interesting navigation behavior like
waiting and letting the other agent pass embedded in iGib-
son [6] simulator. However, this work is more focused on
motion generation than decision-making to solve conflicts.
Also, as of today, it is not publicly available.

We propose the InHuS System to contribute to the lack
of intelligent human agents and help challenge the human-
aware robot navigation systems. Our contribution includes
1) an intelligent human agent controller, 2) a high-level
interface to control the simulated agents, and 3) a GUI to
plot execution data and metrics for evaluating the interaction.
Our system can create repeatable and challenging situations
to evaluate the human awareness of a given robot controller.
Thus, we believe that our contribution could be used as an
efficient tool to debug, test, or tune robot social navigation
systems before being deployed on real robots.

In this paper, we use the term ‘rational’ in a meaning close
to Goal Reasoning [7], [8], i.e., the ability of autonomous
agents which can dynamically reason about and adjust their
goals. It enables the agents to adapt intelligently to changing
conditions and unexpected events, allowing them to address
a wide variety of complex situations.

The rest of the paper is structured as follows. Section II
outlines the motivations behind this project by exposing the
constraints of real-life tests and the limitations of simulated
humans in social navigation. Section III presents the InHuS
System and presents explanations on its several features.
Next, section IV presents a variety of results through a set
of experiments that show how our system can help tune,
test, and debug social navigation systems. Then, section
V provides discussions about some specific features of the
system and its current limitations, followed by section VI
which presents conclusions and possible future work.



II. WHY HUMAN SIMULATION ?

Testing and evaluating the performance of robot software
for HRI is challenging [9]. Due to the nature of the HRI
field itself, a human is essential for experiments. This is
true even in the case of social navigation. Experiments can
be classified into three categories according to the type of
human used: Real-life human, Operator-controlled simulated
human, Autonomous avatar. Each category has its limitations
which we discuss below with related works.

A. Real-life human

Tests in the real world are burdensome to conduct. They
are slow to set up, and neither can be run faster than real-time
nor can be parallelized. They are also hardly controllable and
reproducible and are limited by human fatigue. Thus, we can
hardly run tests in high numbers or for a long period. Lastly,
more than requiring real humans, such a method requires
exclusive physical access to the robot and a place to run
the tests. It can be constraining, expensive and also prevent
others from using the resources meanwhile. Because of all
these reasons, debugging with real humans is tiresome and
extends the development duration. However, real-life tests
are mandatory for the final validation of a system.

B. Operator-controlled simulated human

One of the main benefits of simulations [10] is the fact
that there is no need to access the real robot. Hence, multiple
tests can be run simultaneously by running several instances
of the simulation environment and even faster than in real
life. Moreover, the environment for the tests can be changed
very easily in contrast to real-life tests. Thus, simulations are
quicker and easier to perform which makes them ideal for
testing and debugging during development.

However, despite the benefits of simulating the robot and
the environment, it is very challenging to simulate humans
and their behavior. This is the main drawback of simulation
in the HRI context. A solution to this issue is to manually
control the human avatar [11]. This can be done by using
a game controller, motion capture, or online interactive
tools [12]. Augmented or Virtual Reality can also be used
to improve immersion and thus have even more realistic
reactions from the human avatar [13]. However, both Virtual
Reality and motion capture benefits mostly the manipulation
scenarios because the human will be able to control the avatar
with high fidelity. However, navigation scenarios require a
game controller or a keyboard to move the avatar. Creating
realistic and accurate movements with such devices is not
very easy. Moreover, having a controlled avatar requires a
real human only focused on controlling it. It brings us back
to some limitations discussed in the previous section like the
running speed or the limitations due to human fatigue.

C. Autonomous avatar

Using an autonomous simulated human is the ideal solu-
tion to test HRI systems, but intelligent autonomous avatars
do not exist yet. Autonomous avatars can also be classified
into three categories of intelligence.

Firstly, the avatar can be scripted. It only executes a
series of predefined actions without being reactive to its
environment. It is easy to set up, but interactions will be
very limited. Nevertheless, scripting is a decent solution to
quickly debug or tune a system in its very early stages.

Secondly, the avatar can be purely reactive. Many
works [14], [15] focus on crowd navigation, and such
contexts can now be simulated efficiently with reactive
models. Works like MengeROS [16] or PedSim_ROS' use
the social force model and offer a scalable and efficient
way to simulate crowds of human agents. Other crowd
simulators using the ORCA method can be found like the
work in [17]. Reactive-only methods are clearly useful for
crowds but provide very limited possibilities when trying to
simulate individual agents, particularly in intricate scenarios
and narrow environments.

D. Our contribution

Given the limitations mentioned previously, this work aims
to help people working in the field of Human-Aware or
Social Robot Navigation to test and debug their systems.
To do so, we provide a system designed to run, analyze and
evaluate repeatable and long navigation scenarios involving
a robot and an autonomous reactive and rational avatar. Our
work is focused on intricate and narrow scenarios where, in
addition to being reactive, rational decisions should be taken
in order to solve the conflicts occurring. Additionally, please
note that our system is using an existing motion planner.
Thus our contribution is focused on navigation decision-
making and not the motion generation itself.

III. INHUS SYSTEM

The InHuS System? works along with a human operator,
a chosen simulator, and the challenged robot controller as
depicted in Fig. 1. The system is majorly implemented using
ROS. Besides, note that the InHuS System is three-sided.
First, the system comes with a high-level interface called
Boss that helps manage the simulated agents. Secondly,
there is the main part which is the intelligent human avatar
controller itself, called InHuS. Finally, a GUI provides an
interactive visualization of the data and metrics computed by
InHuS during execution that can help to evaluate interactions.
We present below some details for each component.

A. Boss

For the human operator to easily control the simulated
agents and run repeatable scenarios, we provide a simple
graphical user interface component called Boss. Predefined
or manually entered goals can be sent to the human, the
robot, or both. Goals are by default considered as “Pose
goals” that only require one navigation action to be achieved.
However, the human agent can handle “Compound goals”
that need a specified sequence of navigation and waiting
for actions to be achieved. This type of compound goal

Uhttps://github.com/srl-freiburg/pedsim_ros
Zhttps://github.com/AnthonyFavier/InHuS_Social_Navigation
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Fig. 1. The InHuS System interacts with three external systems: the
simulator, the robot controller, and a human operator. Our system is
separated into three parts: the Boss high-level interface gathering inputs
from the human operator, InHuS which is the actual human controller, and
a GUI to plot the metrics and other data produced by InHuS.

is useful to emulate more complex activities. For exam-
ple, “Make coffee” could be described as a sequence of
three actions: nav_action(coffee_machine), wait_action(15s),
nav_action(my_office).

The Boss allows defining scenarios with start positions
and goals for each agent to repeatedly generate the same
situation. The starting positions of these scenarios are defined
with “Pose goals” for all the agents. Since only the human
can handle “Compound goals”, the goal for the robot must
be a “Pose goal”, whereas it can be of any of the available
types for the human agent. After initializing the scenario, i.e.,
after sending the agents to their respective starting positions,
the scenario can be started, which sends the corresponding
goals to the human and the robot. A delay can be specified
while starting the scenario to delay either the robot’s or the
human’s goal. This is very useful to adjust the timing of a
specific situation or conflict. The Boss can also put an agent
in “endless” mode. In this mode, the agent continuously gets
a new goal from a given list after completing a goal.

Each navigation action can specify a radius for the “Pose
goal”, within which a new “Pose goal” can be randomly
sampled. This mechanism adds randomness to the execution
and diversifies the situations encountered, especially in the
“endless” mode. Setting the radius to zero disables the
randomization and selects the given goal.

All the goals, scenarios, and endless goal sequences are
defined using an XML format. Hence, defining new goals or
scenarios is straightforward. There is an XML goal file asso-
ciated with each map/environment. Thus, it is easy to switch
from one environment to another, and the corresponding goal
file will be loaded automatically.

B. InHuS

The macro component InHuS is mainly in charge of
controlling the avatar and generating rational behaviors.
InHuS itself is made of several components as depicted in
Fig. 2. However, three components, namely HumanBehav-
iorModel, Supervisor, and GeometricPlanner constitute the
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Fig. 2. The human controller InHuS is itself composed of several
component and subsystems. All these sub-components interact together to
produce some reactive and rational behavior for the avatar and also to
produce logs and metrics for further analysis.

major functional part of InHuS. We discuss each of these
major components in detail.

1) HumanBehaviorModel: The HumanBehaviorModel is
responsible for most of the rational behavior of the agent.
The first role of this component is to manage the goals. Goals
can either be received from the Boss component or generated
by the HumanBehaviorModel using the same XML file as
the Boss. When a goal is selected, it is sent to the Supervisor
for execution.

This component is also responsible for detecting and han-
dling navigation conflicts. Currently, the kind of navigation
conflict handled by InHuS is path blockage (e.g. other agent
standing in a doorway). While the human agent is navigating,
a path to the goal is calculated at regular intervals using
Dijkstra’s algorithm, and its length is tracked to detect such
conflicts. If the tracked path length increases significantly or
the path ceases to exist, it could mean that another agent is
blocking either the only possible way or the shortest way.
When such situations are detected, the plan execution is
temporarily suspended, and the agent performs an approach
action to get close to the blocking location. This shows
the agent’s intention to move in a specific direction and
might induce the blocking agent to react and clear the way.
Eventually, once the avatar is at a specified distance, here
set to 1.5m, of the blocking location, the agent stops its
approach and actively waits for the path to be cleared.

To generate a lot of different and specific situations,
we created what we call Attitudes. They are the modes
affecting both goal decisions and reactions towards the other
agents. One can activate them through the Boss to generate
diversified behaviors of the agent. Some of the Attitudes
currently implemented in InHuS consist of: 1) randomly
picking a new goal, like someone suddenly changing their
mind, 2) harassing the robot by constantly going in front of it,
like a child would do [18], and 3) stopping close to the robot
and looking at it for a few seconds before resuming its goal
which emulates a curious behavior. Combined with these



Attitudes the human agent can challenge the robot planner
with a variety of situations.

The final purpose of this component is to build the
perception of the human agent based on the map and
information about the other agents from the simulator. We
build the perception by directly accessing the simulation data
rather than adding sensors to the human avatar. Using this
perception, we compute the visibility of the human agent
and then update the human’s knowledge about the robot’s
position and speed.

2) Supervisor: The Supervisor is a central component as
it coordinates different components to execute the plan and
achieve the current goal. When the Supervisor receives a goal
from the HumanBehaviorModel, it requests the TaskPlanner
component a plan to achieve the goal. For now, the plan
generation is quite simplistic. If the received goal is a
“Pose goal”, a plan filled with a single navigation action is
generated. Otherwise, for a “Compound goal”, the sequence
of navigation and waiting actions is extracted from the XML
goal file and the plan is populated. Despite the simplistic
plan generation, this architecture can handle complex goals
that require several steps to be achieved and emulate human
activities.

The execution of each action of the plan is then supervised
by the Supervisor by sending requests to other components.
When a navigation action needs to be performed, the Super-
visor starts by sampling a random position if the given action
radius is not zero. Then, it requests the GeometricalPlanner to
plan for the target position without considering other agents
initially. This way, the avatar starts following the shortest
path, and we initialize the conflict detection. After this, the
system starts to consider the other agents, and the Supervisor
periodically requests the HumanBehaviorModel component
to check for potential navigation conflicts. The Supervisor
can suspend and resume the plan execution at any time,
which can be used to resolve the detected conflicts or to
generate specific reactions like the Attitudes.

3) GeometricPlanner: The last major component is the
GeometricPlanner. This motion planner component receives
a target position to reach from the Supervisor and generates
velocity commands to make the avatar move. This compo-
nent defines how the agent moves around and adapts its
velocity to the other agents in the scene. Since the system is
implemented in ROS, we use the standard ROS navigation
stack for the GeometricPlanner.

InHuS comes with two different planners that can be se-
lected while starting the system. The first one uses the default
global planning® from the navigation stack and an openly
available local planner called teb_local_planner* which is
based on the timed elastic band [19] approach.

The second one is a publicly available human-aware
navigation planner from our lab called CoHAN [20]. It
is also built over the ROS navigation stack and uses a
local planner based on a modified version of the timed

3http://wiki.ros.org/global_planner
“4wiki.ros.org/teb_local_planner

elastic band with human-aware properties. To be used in
InHusS, slight modifications were made to CoHAN to remove
some conflicting features. More details and results on this
integration can be found in our previous work [21]. With
this planner, we benefit from the high-level decision-making
of InHuS and the enhanced local navigation of CoHAN with
trajectory predictions. Moreover, COHAN is highly tunable,
and this helps to generate different agent behaviors.

The first planner is computationally lighter and can be used
to save performance in scenarios that don’t require much
anticipation. Yet, the CoHAN planner produces more relevant
movements with some additional computation power, and we
tend to make it the default planner in the upcoming versions.
Besides, this illustrates the ability to use different motion
planners, even custom ones, in InHuS.

C. Logs, metrics and GUI

The InHuS system logs the execution data like the posi-
tions and speeds of the agents along with some computed
metrics. All the logged data is sent to the GUI component,
which generates interactive plots. These plots can help eval-
uate the interaction and thus the performance of the given
robot controller. The snapshot of the GUI shown in Fig. 3
shows two kinds of visualizations. On the right side, there is a
colored visualization of the paths taken by each agent. These
paths are colored over time according to a corresponding
legend that helps estimate an agent’s position at a specific
moment. The left side is composed of several plots showing
some computed metrics over time. The first plot is about
conflict detection and solving. It shows the length of the path
to the goal computed when checking for conflicts. Without
any conflict, the path length should decrease linearly over
time. If it’s not the case, the avatar has been disturbed during
the navigation. This plot also shows the conflict state of the
agent: Nominal (no conflict), Approach (conflict detected),
Blocked (stopped and waiting). The subsequent plots show
over time the speeds of each agent, their relative speed, the
distance separating them, and a metric called time to collision
(TTC). This metric estimates the time remaining before the
agents collide with their current velocities. We can argue
that TTC corresponds to a “threat feeling” since a low TTC
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Plot size: Legend:

height: 100

width: 470

Animation : stopped

o

Fig. 3. Overview of the entire GUI interface. All log data and metrics
produced by InHuS are plotted here. More legible figures of the plots are
given and analyzed in the following sections. The interface is organized
as follows. On the right side are shown the paths taken by the agents and
colored over time. On the left side are shown several metrics and data plotted
over time on graphs. Additional widgets help to configure the plots.



value corresponds to a high threat of collision. Hence, social
robots should be tuned to not exceed a minimum TTC value
to make humans more comfortable.

IV. EXPERIMENTS

In this section, we show some results through a set of
experiments to highlight how our system can help challenge
human-aware robot navigation systems. First, we discuss the
limits of reactive-only systems to strengthen the need for
rational avatars. Then, we present how our system is able to
challenge a robot navigation system and how we can interpret
the produced plots of metrics. Next, we show how the InHuS
System can compare human-aware performances using two
different robot controllers. Finally, we present some addi-
tional experiments to show how InHuS can generate diverse
behaviors using the Attitudes and how long runs can benefit
the development of a robot planner.

A. Limits of reactive-only agents

Most of the current human agent simulations used by the
social navigation community rely either on the social force
model or ORCA. In order to highlight the limitations of such
approaches, we present results obtained with a PedSim_ROS
(or simply PedSim) agent. PedSim is a pedestrian simulator
that uses the social force model. It is very efficient for
generating crowds to test robot navigation. However, at the
individual level, the simulated agents are purely reactive and
have no decisional abilities like most pedestrian simulators.

Consider the doorway scene shown in the upper part of
Fig. 4. Both agents have to cross a narrow opening. Here,
the robot is blocking the way that the human agent intends
to cross. The PedSim agent approaches the robot and tries
to push itself through, but it fails due to a very high value
of social force. The agent never stops moving and tends to
go right or left along the wall before wiggling again just in
front of the robot. This type of behavior is confusing, and
the agent’s intentions might be unclear to the robot planner.
The narrow corridor scenario, shown in the lower part of
Fig. 4, also exposes some limits. In this scene, there is not
enough space for the agents to cross each other, and the
only solution is for one of them to back off. Here the path
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Fig. 4. In the doorway scenario at the top, the reactive-only (Pedsim) agent
never stops moving and trying to go through the robot even though its path
is blocked. Moreover, sometimes the agent squeezes itself between the wall
and the robot colliding with both, like with the narrow corridor scenario at

the bottom. Not having collision shapes is a big limitation for Pedsim since
it can’t realistically react to intricate conflicts.
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Fig. 5. Condensed view of the InHuS GUI after running the doorway

scenario with the CoHAN planner on the robot. Several subplots can be
seen as the time-colored paths of the agents. The robot blocks the human’s
path while crossing. The conflict is detected by InHuS which switches into
the approach state and eventually to the blocked state (orange and red line
in first subplot). The velocity of the robot decreases as it approaches the
human, and it only increases again when there is no TTC value (second and
third subplots). Accelerating only when there is no collision threat shows
some intended human-aware behavior.

is blocked by the static robot. The PedSim agent slowly gets
closer and closer to the robot before squeezing itself between
the wall and the robot. For some reason here the social forces
allowed the agent to pass, unlike the previous example. It
highlights that the PedSim agent doesn’t use a defined hitbox
or footprint for the agent and relies only on the repulsive
social forces to prevent the collisions. This lack of defined
collision shapes makes the agent temporarily pass through
the walls and other agents. As a consequence, it breaks many
intricate scenarios where a rational decision should be taken
and results in unrealistic situations like the above.

Based on the above observations, we can infer that such
approaches can work well in large spaces or crowds but could
lead to confusing or even weird behaviors in narrow envi-
ronments and intricate scenarios, where conflict resolution is
required, apart from being reactive.

B. Interpretation of plots with human-aware planner

The InHuS System is able to generate challenging situa-
tions that can be analyzed further with the plots generated
from the log data and metrics. Here, we present one such
conflict and a detailed interpretation of the corresponding
plots. The plots were produced while challenging the Co-
HAN system in the already mentioned doorway scenario.

The robot starts closer to the opening and enters the
doorway first. The execution can be analyzed with the metric
plots and the time-colored paths of the agents in Fig. 5. We
notice that the robot’s speed (red line on the second graph)
goes down around 50s as it is entering the doorway and
creating a conflict. The conflict is detected by InHuS (zero
path length = no path), and the agent switches to the approach



state (green to the yellow line on the first graph). The non-
zero path length in the approach state corresponds to how the
approach is performed. In order to keep moving despite the
blocked path, the GeometricPlanner is requested at a defined
frequency to plan without considering the robot (all non-
zero path length). In between these requests, to check if
the path is still blocked, the conflict detection plans while
considering the robot (zero path length). When the avatar is
at a predefined distance to the blocking robot around 53s, it
switches to the blocked state (red line) to stop and wait for
the path to be cleared. Further, the time-colored paths show
that the GeometricPlanner made the avatar move aside while
approaching to avoid blocking the robot. As a result, the
agents were no longer moving towards each other, and thus,
there was no longer any collision threat (no TTC values).
When there is no more collision threat, around 51s, the
robot’s speed starts to increase again. Such behavior is a good
sign of human-aware properties and might increase human
comfort.

From the plots produced by our system, a lot of useful
information can be extracted for improving or evaluating the
social robot planner’s performance like a) finding ways to
decrease the blocked state time for the human, b) maintaining
a particular threshold for TTC, c) slowing down near the
human, or waiting for the human to cross the door without
blocking.

C. Quantitative comparison between two robot controllers
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Fig. 6.  MORSE simulator and RViz views of the doorway scenario being
executed with the CoHAN planner. The planned path of the avatar to the
goal can be seen.

Our system can be used to run similar scenarios repet-
itively to produce robust metric values. With these values,
we can help measure the human-aware performances of a
given robot controller. To show this, we present a comparison
between two different robot controllers. The first one is again
the CoHAN system, and the second one is the Simple Move
Base (or SMB). It uses the teb_local_planner and the ROS
navigation stack with default parameters. We just add an
additional process to consider the human agent as a static
obstacle to avoid it, and it is not human-aware. Therefore,
we should be able to notice a clear difference through the
metrics computed by our system. For this comparison, we
used three different scenarios: 1) The doorway scenario
where the agents have to cross a narrow opening, 2) the

corridor scenario where the agents cross each other with just
enough space, and 3) the open space where they cross each
other without any environmental constraints. We performed
10 repetitions of each scenario for each robot controller. For
each set of 10 repetitions, we extracted the mean values of
three different metrics and presented them in Table 1. The
metrics are respectively: the time taken by the avatar to reach
its goal (Total time), the minimum distance between the robot
and the human (HRDist), and the minimum time to collision
(TTC). Intuitively, we want the total time to be as small as
possible, the minimum HRDist to be as high as possible, and
since a low TTC value represents a collision threat, we want
the min TTC to be as high as possible.

At first glance, we see in Table I that almost all CoOHAN
values are better than SMB values. Due to the nature of
the doorway environment, the execution of the scenario is
quite constrained which explains why the values are not too
different between the two controllers. However, we notice
anyway that, compared to SMB, the CoHAN planner tends
to keep a greater distance between the agents and a greater
TTC (lower threat of collision). The total time of CoHAN is
slightly higher because the robot slows down when crossing
and moving in the direction of the human. Thus, it is the price
to pay in this scenario to maintain adequate TTC values.

In the corridor scenario, The SMB robot tends to wait until
the last moment to move aside, which is threatening. On the
other hand, the CoHAN robot proactively moves to one side
of the corridor. As a consequence, it leaves more space for
humans and reduces the threat of collision, which is visible
in the obtained values. Also, this pro-activity has the effect
of smoothing the trajectory of the avatar, which makes this
last one reach its goal faster.

Finally, the open space scenario is a bit similar to the
previous one. The SMB robot waits until the last moment
to avoid the human, which puts the load of the avoidance
maneuver on the human. As a result, the human has to move
aside which extends the duration to reach the goal. Also, due
to the same behavior, the SMB robot is on average closer to
the avatar and more threatening. Since the CoHAN robot
moved again aside early, its metric values are noticeably
better than SMB.

In summary, the human-aware behavior of the CoHAN
controller was captured through significant value differences
of the computed metrics compared to a non-human-aware
robot controller. This infers that our system can help evaluate
and compare human-aware robot controllers.

D. Attitudes and Long runs

In this section, some details on how InHuS can generate
different agent behaviors, with Aftitudes, are given. We also
briefly explain how conducting long runs and scenarios can
benefit the robot planner.

1) Generating different behaviors: InHuS is capable of
generating different agent behaviors to diversify situations
and conflicts to challenge the robot navigation system. One
way to do so is by tuning InHuS parameters about the
navigation conflicts or the GeometricPlanner parameters.



CoHAN SMB
Experiment | Total Time (s) | Min HRDist (m) | Min TTC (s) | Total Time (s) | Min HRDist (m) | Min TTC (s)
Doorway 18.38 2.32 1.33 18.26 2.23 1.16
Corridor 16.34 2.06 1.03 17.05 1.59 0.81
Open space 9.55 2.52 1.61 11.01 2.34 1.18
TABLE I

MEAN VALUES OF SOME INHUS METRICS OVER 10 REPETITIONS IN THREE DIFFERENT SCENARIOS AND WITH TWO DIFFERENT ROBOT

CONTROLLERS. BOLD VALUES INDICATE WHEN THE CORRESPONDING ROBOT CONTROLLER HAS BETTER PERFORMANCES THAN THE OTHER.
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Fig. 7. Behaviors obtained by activating the Harass and StopAndLook
Attitudes. With Harass (top), the human always goes in front of the robot.
By observing the colors, one can that the human is always ahead of the
robot. With StopAndLook (bottom), the human stops to look at the robot
for a few seconds when close to it. This can be seen in the plot as a sudden
change of color from green to dark blue in the human’s path.

7IN -

Fig. 8. Execution of the long run scenario using the TDP robot planner
and InHuS. We see the complete set of time-colored paths on the left. On
the right, the same path is cut, around the moment when the robot got stuck
in the wall. Long runs help to debug such unexpected issues.

Changing the velocity and path planning of the agent has a
lot of influence on the produced behavior. Besides parameter
tuning, activating Attitudes produces more complex behav-
iors and reactions. We present the time-colored paths for
the execution of two Attitudes : Harass and StopAndLook in
Fig. 7 . Concerning the Harass Attitude, by paying attention
to the colors, we see that the human is always in front
of the robot that continuously tries to avoid the harassing
agent causing erratic movements. The robot should be able
to detect such non-cooperative behavior from humans and
act accordingly. At the bottom of the same figure we see the
execution of the StopAndLook Attitude. The color discontinu-
ity behind the human marker shows how this Affitude makes
the human suspend its goal to stop and briefly stare at the
robot before moving again. A robot not pro-active enough
could be disturbed by the sudden stop of the human, which
could be a situation of interest to handle.

2) Long runs and scenarios: Finally, the proposed system
can do long runs with the help of the Boss component that

autonomously sends goals to the agents. Such a feature is
interesting as it helps to test the robot planner’s stability and
robustness. Moreover, when randomness is added to the goals
of the long run, unexpected situations and conflicts might
be generated. Some of these generated situations could be
of interest, and the navigation planner under the test might
have to be modified to address these. For instance, Fig. 8
depicts a long run executed with InHuS and a human-aware
robot planner from Kollmitz et. al. [22] referred to here as
TDP. The agents were made to endlessly loop over four goal-
positions (each with a 1m radius) in reverse order to create
as many conflicts as possible. After 3 minutes, the robot got
stuck in the wall of the doorway, indefinitely blocking the
path for the human, which could be an issue of interest.
In addition to highlighting problematic situations where the
robot doesn’t act as expected, long runs can expose low-level
issues like unexpected crashes or memory leaks.

V. DISCUSSION

Although InHuS provides an autonomous human agent, if
needed, the agent can be controlled manually. We do not yet
provide a handy controller, but velocity commands generated
by any means can be sent to the Boss component to control
the human. This extends the usability of InHuS as one can
use scripted trajectories or motion capture to control the
human agent in the simulator.

The proposed system interacts with an external simulator
and robot controller. Since the system is majorly imple-
mented using ROS, switching from one simulator to another
is straightforward if it has a ROS interface. InHuS has spe-
cific components to abstract the simulation data format. Thus,
just by slightly editing these components we were already
able to run InHuS on three different simulators: MORSE?,
Stage® and Gazebo’. Furthermore, any robot controller using
the ROS Navigation Stack can be directly used with InHuS.

Like any other system, InHuS has limitations too. Firstly,
simulating intelligent human avatars is a novel field, and only
a few very recent works address this topic. The currently
existing ones neither provide any implementation details
nor code or system to run. Thus we are looking forward
to testing other similar systems and comparing them with
InHuS. Secondly, we claim to generate only reactive and
some rational behavior, which is still far from natural or
realistic human behavior. We currently handle scenarios with

Shttps://morse-simulator.github.io
Ohttps://github.com/ros-simulation/stage_ros
"http://gazebosim.org



two agents only, the human and the robot. We can run
scenarios with other human agents, but they will be treated
like robots.

VI. CONCLUSION AND FUTURE WORK

Human-aware robot navigation is rapidly growing, but the
community lacks good human agent simulations to test and
debug their systems. Reactive-only approaches exist, but we
have shown that they are limited. Through the InHuS system,
we propose a pertinent approach to address this issue. We
showed that our system could generate conflicting situations
that need resolution by making rational choices. Moreover,
all the metrics and data recorded during execution and their
visual plots allow us to evaluate the interaction and behavior
of the robot. With such evaluation, we showed that we are
able to compare the human awareness of different robot con-
trollers. InHuS can also generate various tunable behaviors
that can diversify the situations and conflicts imposed on the
robot, and thus, it helps to debug and tune the system. The
long runs provide additional potential ways to improve the
system.

We already use this system to test our human-aware
motion planners and refine them over time using the tests
conducted. In the future, it would be possible to integrate
situation detection and diagnosis in the long run to catch the
problematic situations that need to be analyzed afterward to
tune, refine or extend a given planner. We also plan to handle
scenarios with more human agents, like groups and maybe
even crowds, by using both some intelligent and reactive-
only agents. Finally, We also intend to enrich the set of
available metrics and generation of conflicting scenarios that
could help evaluate social robot navigation.
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