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NON-NEGATIVE FORMS, VOLUMES OF SUBLEVEL SETS,

COMPLETE MONOTONICITY AND MOMENT MATRICES

KHAZHGALI KOZHASOV AND JEAN B. LASSERRE

Abstract. Let Cd,n be the convex cone consisting of real n-variate degree d

forms that are strictly positive on Rn\{0}. We prove that the Lebesgue volume
of the sublevel set {g ≤ 1} of g ∈ Cd,n is a completely monotone function on
Cd,n and investigate the related properties. Furthermore, we provide (partial)
characterization of forms, whose sublevel sets have finite Lebesgue volume.
Finally, we discover an interesting property of a centered Gaussian distribution,
establishing a connection between the matrix of its degree d moments and the
quadratic form given by the inverse of its covariance matrix.

1. Introduction and main results

We bring together various constructions and studies associated with real homoge-
neous polynomials, see [1, 7, 8, 11, 12, 14, 15, 16, 22]. Our discoveries in Subsection
1.1 enrich the existing connection [8, 14, 22] between real algebraic geometry and
the theory of completely monotone functions. Theorem 1.5 establishes a property of
a centered Gaussian distribution that we also interpret in the context of polynomial
optimization [16]. In Subsection 1.3 we solve a problem that contributes to a general
study of extremal properties of homogeneous polynomials (see [1, 7, 9, 12]). Finally,
the results stated in Subsection 1.4 naturally complement investigations from [7, 12]
about volumes of sublevel sets of non-negative homogeneous polynomials.

Let Hd,n denote the space of real n-variate forms (homogeneous polynomials) of
degree d. The space Hd,n is endowed with the Bombieri inner product

〈g, h〉 =
∑

|α|=d

(

d

α

)−1

gαhα, (with
(

d
α

)

= d!
α1!···αn!

) ,(1.1)

where g(x) =
∑

|α|=d gαx
α and h(x) =

∑

|α|=d hαx
α are two forms written in the

basis of monomials of degree d. For a form g ∈ Hd,n we consider its sublevel set

G = {x ∈ R
n : g(x) ≤ 1}.

We are interested in the volume function f that to a given g ∈ Hd,n associates the
Lebesgue volume f(g) = vol (G) of its sublevel set. The volume of G is infinite if
g takes negative values. Thus, it is natural to apply f only to polynomials that
are non-negative on Rn. We call a form g positive definite (PD for short), if it is
positive on Rn \ {0}. The sublevel set G ⊂ Rn of a PD form is compact and hence
it has a finite Lebesgue volume. In this regard, we are concerned with the open
convex cone Cd,n ⊂ Hd,n of PD forms. We implicitly assume that the degree d is
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even, as only in this case Cd,n is non-empty. The closure Cd,n of Cd,n with respect
to the norm topology on (Hd,n, 〈·, ·〉) consists of forms that are non-negative on Rn.

1.1. Complete monotonicity of the volume function. The cone Cd,n is a nat-
ural domain of definition of the volume function

(1.2)

f : Cd,n → R,

g 7→ vol (G) =

∫

G

dx,

which is strictly convex and admits the following integral representation

f(g) = vol (G) =
1

Γ (1 + n/d)

∫

Rn

exp(−g(x)) dx,(1.3)

see [12, Thm. 2.2]. In our first result we show that (1.2) is completely monotone,
that is, it is the Laplace transform of some Borel measure on the closed dual cone
C ∗
d,n = {L ∈ H∗

d,n : L(g) ≥ 0 ∀g ∈ Cd,n} to Cd,n. To state it, let us recall (from,

e.g., [5, Thm. 19]) that C ∗
d,n is the conic hull of the image of the Veronese map

(1.4)
Θd,n : Rn → C ∗

d,n ⊂ H∗
d,n,

ℓ 7→ [g 7→ g(ℓ)].

By [21, Thm. 17.10], C ∗
d,n, also known as the moment cone, consists of (truncated)

moment functionals, that is, such L ∈ H∗
d,n with L(g) =

∫

Sn−1 g(z) dν(z), g ∈ Hd,n,

for some measure ν supported on the unit sphere Sn−1 = {z ∈ Rn : zTz = 1}.
Then, an element Θd,n(ℓ), ℓ ∈ S

n−1, corresponds to the Dirac measure at ℓ. An
alternative perspective on C ∗

d,n comes with the identification of H∗
d,n and Hd,n via

the inner product (1.1). Under this identification, one has g(ℓ) =
〈(

ℓ
T ·
)d
, g
〉

(see,
e.g., [21, (19.6)]) and, in particular, (1.4) sends a vector ℓ ∈ Rn to the dth power

of a linear form, θℓ =
(

ℓ
T ·
)d ∈ C ∗

d,n ⊂ H∗
d,n ≃ Hd,n.

Theorem 1.1. For n ≥ 2 and any even d ≥ 2 the volume function (1.2) admits
an integral representation

f(g) =

∫

C ∗

d,n

exp(−〈θ, g〉) dµ(θ)

Γ (1 + n/d)
,(1.5)

where µ is the push-forward measure of the Lebesgue measure on Rn under the
Veronese map (1.4). In particular, f : Cd,n → R is completely monotone and for
all k ∈ N and v1, . . . , vk ∈ Cd,n we have that

(−1)kDv1 . . . Dvkf(g) ≥ 0, g ∈ Cd,n,(1.6)

where Dv denotes the directional derivative along v ∈ Cd,n.
Remark 1.2. Complete monotonicity of a differentiable function f : C → R on an
open cone C ⊂ RN is normally defined in terms of conditions on k-fold directional
derivatives of f as in (1.6). Thanks to Bernstein-Hausdorff-Widder-Choquet theo-
rem, recalled in Section 2, this is equivalent to the possibility of representing f as
the Laplace transform of some Borel measure on the dual cone C∗.

Scott and Sokal [22] investigated complete monotonicity of negative powers of
some combinatorially defined polynomials . In [22, Theorem 1.3] they characterized
values of s for which the function G 7→ (det(G))−s, defined on the cone of positive
definite matrices, is completely monotone. The volume function f(g) associated to a
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quadratic form g(x) = xTGx is proportional to (det(G))−1/2, see Proposition 2.10.
Thus, in the case d = 2 complete monotonicity of the volume function (1.2) also
follows from the mentioned characterization from [22]. The results from [22] along
with exponential families in algebraic statistics [13] motivated Micha lek, Sturmfels
and the first author of the present work to investigate [8] complete monotonicity
of negative powers g−s of hyperbolic polynomials. A particular focus in their study
was given to elementary symmetric polynomials and to products of linear forms.

In physics one often considers exponential probability density functions of the
form 1

Zg
exp(−g(x)), where Zg =

∫

Rn exp(−g(x)) dx is the normalization constant,

also known as the partition function. It is in general difficult to find closed-form
expressions for Zg (respectively, for (1.3)). As we see in Proposition 2.10, it is
possible to write f(g) in terms of the discriminant of a quadratic form g ∈ C2,n,
which is also equal to the determinant of the real symmetric matrix associated to
g. In [15] Morozov and Shakirov develop this line further, calling integrals in (1.3)
integral discriminants and writing down their expressions in terms of SL(n,R)-
invariants of g ∈ Hd,n. Indeed, the standard action of the special linear group
on the space Hd,n preserves the integral (1.3) and as a consequence the integral
discriminant depends on g only through the invariants of the action. For example,
for n = 2 and d = 4 an expression for (1.3) in terms of the SL(2,R)-invariants is
given in [15, Section 5.1].

One can also generalize the above setting as explained in the following remark.

Remark 1.3. For a non-negative form h ∈ Ce,n of degree e ≥ 0 consider a function

(1.7)

fh : Cd,n → R,

g 7→
∫

G

h(x) dx,

from which we retrieve the volume function (1.2) by setting h = 1. In Section 2 we
prove a generalization of Theorem 1.1, showing that (1.7) is completely monotone.

Along with proving complete monotonicity of the volume function (1.2) (and its
generalization defined in the above remark), in Section 2 we also discuss related
properties as well as prove a version of Theorem 1.1 for sum of squares forms.

1.2. Moment matrices of central Gaussian vectors and sums of squares.

A form g ∈ Hd,n is called a sum of squares (or SOS), if g(x) =
∑r

j=1 hj(x) for

some forms h1, . . . , hr ∈ Hd/2,n of degree d/2. Equivalently, one can write g as

g(x) = md/2(x)T Gmd/2(x), x ∈ R
n,(1.8)

where md/2(x) = (xα)|α|=d/2 is the column-vector of monomials1 of degree d/2

and G ∈ PDM is a positive semi-definite matrix of size M × M , M =
(

d/2+n−1
n−1

)

(called a Gram matrix of g). Below by PDM and PSDM we denote the convex
cone of positive definite, respectively positive semi-definite, M ×M real symmetric
matrices. By definition, sums of squares are non-negative, and, if g is given by (1.8)
with a positive definite matrix G, then the form g ∈ Cd,n is also positive definite.

Remark 1.4. It is well-known that not every non-negative form is a sum of squares,
see [19]. However, by a celebrated result of Artin [2], after multiplying a non-
negative form by a suitable sum of squares form, one obtains a sum of squares.

1From now on we fix an order on the set of monomials of a given degree.
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Moreover, by a result [18, Thm. 3.12] of Reznick, if a form g ∈ Cd,n is posi-
tive definite, there exists s ∈ N so that ‖x‖2sg ∈ Cd+2s,n is a sum of squares,
where ‖x‖2 = xTx =

∑n
i=1 x

2
i is the Euclidean norm of x ∈ Rn. In fact, by the

same result, ‖x‖2sg is even a sum of (d + 2s)-th powers of linear forms and hence
‖x‖2sg ∈ Θd+2s,n(Rn) is identified with a point of the moment cone C ∗

d+2s,n. Thus,
sums of squares constitute an important subclass of the class of non-negative forms.
Furthermore, with the representation (1.8) for sums of squares, one can approach
polynomial optimization problems via semi-definite programming, see [10].

A centered multivariate normal distribution is defined by its covariance matrix
Q−1, with the probability density function given by

pQ(y) =

√

det(Q)
√

(2π)n
exp

(

−yTQy

2

)

, y ∈ R
n.(1.9)

The covariance matrix equals the Hankel matrix of moments of pQ of degree 2, i.e.,

Q−1 = M2[Q] =

∫

Rn

yyTpQ(y) dy =

(∫

Rn

yiyjpQ(y) dy

)

.(1.10)

Motivated by this property of Gaussian distributions, in [11, 2.5] the second author
of the present work considers the Gaussian-like density

PG(y) =
exp

(

−kmd/2(y)TGmd/2(y)
)

∫

Rn exp
(

−kmd/2(z)TGmd/2(z)
)

dz
, y ∈ R

n,(1.11)

associated to a positive definite SOS form g(x) = md/2(x)Gmd/2(x), G ∈ PDM ,
and the Hankel-like matrix

Md[G] =

∫

Rn

md/2(y)md/2(y)TPG(y) dy

of degree d moments of (1.11), where (2k)−1 =
(

d/2+n−1
n

)

. When d = 2, one has
k = 1/2 and (1.11) is the Gaussian density (1.9), whose matrix M2[G] = M2[Q]
of degree 2 moments is the inverse of G = Q ∈ PDn, see (1.10). When d > 2 is
higher, Lasserre shows in [11, Lemma 4] that Md[G] = G−1 (for G ∈ PDM ) if and
only if G is a critical point of the function

G ∈ PDM 7→ (det(G))k
∫

Rn

exp
(

−kmd/2(x)TGmd/2(x)
)

dx.(1.12)

Theorem 1.5 below implies that forms g(x) = (xTQx)d/2, Q ∈ PDn, fulfil this
condition. Before we state it, for Q ∈ PDn and d ≥ 2 consider the density

p
(d)
Q (y) =

√

det(Q)

σn
d

√

(2π)n
exp

(

−yTQy

2σ2
d

)

, σd =

(
(

d/2+n−1
n−1

)

√
2
d∏d/2−1

i=0

(

n
2 + i

)

)1/d

,

of a centered Gaussian distribution with covariance matrix σ2
dQ

−1, and let

Md[Q] =

∫

Rn

md/2(y)md/2(y)Tp
(d)
Q (y) dy =

(∫

Rn

yα+βp
(d)
Q (y) dy

)

(1.13)

be the Hankel-like matrix of moments of p
(d)
Q of degree d. For d = 2 one has σ2 = 1

and hence we recover pQ = p
(2)
Q given by (1.9).
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Theorem 1.5. Let Q ∈ PDn be any positive definite matrix and let d ≥ 2 be even.
Then Md[Q]−1 is a Gram matrix of the SOS form (xTQx)d/2, that is,

md/2(x)TMd[Q]−1md/2(x) =
(

xTQx
)d/2

.(1.14)

Furthermore, we have Md[Q] = Md[G], where Md[G] is the matrix of degree d
moments of the Gaussian-like density (1.11) associated to g(x) = (xTQx)d/2.

Remark 1.6. By [11, Lemma 4], for any Q ∈ PDn the matrix Md[Q]−1 ∈ PDM

is a critical point of the function (1.12). It is an interesting open question whether
there exist other SOS forms with this property.

Sums of squares of degree d form a closed convex subcone (called the SOS cone)
Σd,n ⊆ Cd,n of the cone of non-negative homogeneous polynomials. Its dual cone
Σ∗

d,n = {L ∈ H∗
d,n : L(g) ≥ 0 ∀ g ∈ Σd,n} contains C ∗

d,n and is known as the

pseudo-moment cone. For any (truncated) pseudo-moment functional L ∈ Σ∗
d,n let

Md(L) = L
(

md/2(y)md/2(y)T
)

=
(

L(yα+β)
)

|α|=|β|=d/2
(1.15)

be the M ×M Hankel-like matrix of pseudo-moments of degree d associated to L.
One has Md(L) ∈ PSDM , as hTMd(L)h = L(hTmd/2(y)md/2(y)Th) = L(h2) ≥ 0
holds for any form h ∈ Hd/2,n whose coefficients in the basis of monomials form a
column vector h = (hα)|α|=d/2. Conversely, any matrix Md ∈ PSDM that satisfies
(Md)αβ = (Md)α′β′ whenever α + β = α′ + β′, |α| = |β| = |α′| = |β′| = d/2, is
of the form (1.15) for L ∈ H∗

d,n defined by L(yα+β) = (Md)αβ , |α| = |β| = d/2.
Furthermore, for a linear functional L ∈ Σ∗

d,n that lies in the interior of the pseudo-

moment cone, the associated pseudo-moment matrix Md(L) ∈ PDM is positive
definite and hence invertible. If L ∈ C ∗

d,n is even a moment functional, that is,

L(g) =

∫

Sn−1

g(z) dν(z), g ∈ Hd,n,(1.16)

for some measure ν supported on S
n−1, then the entries of the matrix Md(L) are

moments of ν of degree d.
By a result of Nesterov (see [16, Thm. 2]), a SOS form g ∈ Σd,n belongs to the

interior of the cone Σd,n if and only if there is some linear functional L ∈ Σ∗
d,n in the

interior of the pseudo-moment cone such that g(x) = md/2(x)T Md(L)−1md/2(x).
Moreover, L ∈ Σ∗

d,n satisfying this condition is unique.

Remark 1.7. Theorem 1.5 delivers Nesterov’s characterization for a power of a
quadratic form g(x) = (xTQx)d/2, associated to a positive definite matrix Q ∈ PDn.
It implies that the unique Md(L) ∈ PDM is the matrix of degree d moments of the
centered Gaussian vector in R

n, whose covariance matrix is proportional to Q−1.

By integrating out the radial part of the Gaussian measure from Theorem 1.5,
one also obtains a measure on Sn−1, whose degree d moments comprise Md(L).

Corollary 1.8. Let Q ∈ PDn be a positive definite matrix and let L be the moment
functional (1.16), whose associated measure ν on Sn−1 is defined by

dν(z) =

(

d/2 + n− 1

n− 1

)

√

det(Q)
√

zTQz
d+n

dSn−1(z)

vol (Sn−1)
, z ∈ S

n−1,
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where dSn−1 is the standard Riemannian measure on the Euclidean sphere with
vol (Sn−1) = 2

√
π
n
/Γ (n/2) being its total volume. Then, Md(L)−1 is a Gram

matrix of the SOS form (xTQx)d/2, that is,

md/2(x)TMd(L)−1md/2(x) =
(

xTQx
)d/2

.

Theorem 1.5 together with Corollary 1.8 are proven in Section 3.

1.3. Comparison of L1- and L2-norms associated to a PD form. Given a
positive definite form g ∈ Cd,n, let us denote by µg the Lebesgue measure restricted
to the sublevel set G ⊂ Rn of g. Integrating µg against any form h ∈ He,n of degree
e, one obtains by [12, (2.1)] that

µg(h) =

∫

G

h(x) dx =
1

Γ (1 + (n + e)/d)

∫

Rn

h(x) exp(−g(x)) dx.

In this perspective, µg can be identified with a measure with exponential density
exp(−g(x)) with respect to the Lebesgue measure on Rn. We consider L1- and
L2-norms associated to the measure µg,

‖h‖L1(µg) =

∫

G

|h(x)| dx, ‖h‖L2(µg) =

(∫

G

|h(x)|2 dx

)1/2

,(1.17)

where h is any Lebesgue measurable function on G. We show that g minimizes the
ratio of L2- and L1-norms over all non-zero h ∈ Hd,n.

Theorem 1.9. Let g ∈ Cd,n. Then

g = arg min
h∈Hd,n

{

‖h‖L2(µg) : ‖h‖L1(µg) = ‖g‖L1(µg)

}

or, equivalently,

‖g‖L2(µg)

‖g‖L1(µg)
= min

{‖h‖L2(µg)

‖h‖L1(µg)
: h ∈ Hd,n \ {0}

}

.

Moreover, up to a factor, g is the unique minimizer of these optimization problems.

In particular, the positive definite form g ∈ Cd,n has the smallest L2(µg)-norm
among all degree d forms h ∈ Hd,n that have the same L1(µg)-norm as g.

Remark 1.10. The above result also holds when g and h are positively homogeneous
functions of degree d with g(x) being positive for x 6= 0, see [11, Lemma 3] and our
proof of Theorem 1.9 in Section 4.

1.4. Non-negative forms with sublevel sets of finite volume. It turns out
that, for some non-negative forms g ∈ ∂Cd,n = Cd,n \ Cd,n in the boundary of Cd,n,
the sublevel set G has finite Lebesgue volume f(g) = vol (G), while it is not the case
for all g ∈ ∂Cd,n for general d and n. Motivated by this observation, we consider the

set Vd,n of forms g ∈ Hd,n with f(g) < ∞. One naturally has Cd,n ⊆ Vd,n ⊆ Cd,n
and Vd,n ⊂ Hd,n is a convex cone by [12, Thm. 2.1]. It is straightforward to

see that V2,n = C2,n, that is, only positive definite quadratic forms g ∈ C2,n have
finite f(g). We give a complete characterization of binary forms in Vd,2 in terms of
multiplicities of their real zeros.

Theorem 1.11. A non-negative binary form g ∈ Cd,2 is in Vd,2 if and only if g
has zeros of order at most d/2 − 1. In particular, V4,2 = C4,2.
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We also provide some sufficient conditions for membership in Vd,n for n > 2. For

this let us call a non-negative form g ∈ Cd,n generic, if it is round at every its real

zero x ∈ Rn \{0} (see [6, p. 47]), that is, the Hessian matrix Hessxg =
(

∂2g
∂xi∂xj

(x)
)

is positive definite when restricted to the orthogonal complement of x (equivalently,
Hessxg is of corank one). Thus, a non-negative quadratic form g(x) = xTGx is
generic if and only if the associated positive semi-definite matrix G is of corank
one. Also, for a non-negative binary form g ∈ Cd,2 the condition of being generic
means that all real zeros of g are of order two.

Theorem 1.12. For d ≥ 4, n ≥ 3 a generic non-negative form g ∈ Cd,n is in Vd,n.

Theorems 1.11 and 1.12 are proven in Section 5. Now, we consider some examples
of generic non-negative forms that lie on the boundary of Cd,n.

Example 1. The Motzkin form

g(x) = x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3, x = (x1, x2, x3),(1.18)

was historically the first explicit example of a non-negative form that is not a sum of
squares, see [19]. A point x ∈ R3\{0} is a zero of g if and only if |x1| = |x2| = |x3|.
Setting x3 = 1 in g gives the Motzkin polynomial g̃(y) = y41y

2
2 + y21y

4
2 + 1 − 3y21y

2
2,

whose real zeros are (1, 1), (1,−1), (−1, 1), (−1,−1). At any real zero x ∈ R3 \{0}
(say, x = (1, 1, 1)) of g the Hessian Hessxg is positive semi-definite and has rank 2
and hence the Motzkin form g ∈ ∂C6,3 is generic in the above sense.

As the following example shows, it is not difficult to find generic forms in Cd,n
also for higher n ≥ 3 and even d ≥ 4.

Example 2. Consider a sum of squares form

g(x) = xd−2
n

n−1
∑

i=1

x2
i +

2

d

n−1
∑

i=1

xd
i , x = (x1, . . . , xn−1, xn).

Then a real zero x ∈ Rn of g must satisfy x1 = · · · = xn−1 = 0. At x = (0, . . . , 0, 1)
the Hessian of g has rank n− 1 and hence g ∈ ∂Cd,n is generic.

By Theorem 1.12, the sublevel sets of the Motzkin form (1.18) and of forms
constructed in Example 2 are of finite Lebegue volume.

One might wonder, whether the term “generic” is in place in the above context.
The following remark motivates our choice for the terminology.

Remark 1.13. The boundary ∂Cd,n ⊂ Hd,n of the cone of non-negative forms is a
semialgebraic subset of codimension one. In Proposition 5.4 we show that the set of
non-generic forms is a semialgebraic subset of Hd,n of codimension at least 2 and
that it is nowhere dense in the boundary ∂Cd,n ⊂ Hd,n of Cd,n, endowed with the
topology induced from (Hd,n, 〈·, ·〉).

Structure of the paper

There are 4 sections, each corresponding to a subsection of the above introduc-
tory section. Thus, in the next section we prove complete monotonicity of the
volume function (1.2) and discuss a generalization of this result as well as treat
the case of sums of squares. In Section 3 we discuss moment matrices of centered
Gaussian vectors and prove Theorem 1.5 and Corollary 1.8. In Section 4 a proof of
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the extremal property from Theorem 1.9 is presented. And in the last section we
characterize non-negative forms, whose sublevel sets have finite Lebesgue volume.

Acknowledgements: we are thankful to Boulos El Hilany for helpful discussions.

2. Complete monotonicity of the volume function

Let C ⊂ RN be an open convex cone and denote by C∗ the dual cone to C,

C∗ =
{

L ∈
(

R
N
)∗

: L(g) ≥ 0 ∀ g ∈ C
}

.

Definition 2.1. A function f : C → R is completely monotone, if it is C∞-
differentiable and for all k ∈ N and all vectors v1, . . . ,vk ∈ C

(−1)kDv1
· · ·Dvk

f(g) ≥ 0, g ∈ C,(2.1)

where Dv denotes the directional derivative along the vector v.

The Bernstein-Hausdorff-Widder theorem [25, Thm. 12a] gives a characteriza-
tion of completely monotone functions in one variable, these are exactly Laplace
transforms of Borel measures on the positive reals. Choquet [4, Thm. 10] found a
generalization of this result to convex cones in higher dimensional spaces.

Theorem 2.2 (Bernstein-Hausdorff-Widder-Choquet theorem). A smooth function
f : C → R on an open convex cone C ⊂ R

N is completely monotone if and only if
it is the Laplace transform of a unique Borel measure µ supported on C∗, that is,

f(g) =

∫

C∗

exp(−L(g)) dµ(g).(2.2)

For a non-negative form h ∈ Ce,n of degree e ≥ 0 the function fh defined in (1.7)
admits an integral representation (see [11, Thm. 1])

fh(g) =

∫

G

h(x) dx =
1

Γ(1 + (n + e)/d)

∫

Rn

h(x) exp(−g) dx, g ∈ Cd,n.(2.3)

In particular, the Lebesgue volume of the sublevel set G = {x ∈ Rn : g(x) ≤ 1} of
g is obtained with h = 1 as

f(g) =

∫

G

dx =
1

Γ(1 + n/d)

∫

Rn

exp(−g(x)) dx, g ∈ Cd,n.(2.4)

Moreover, fh is C∞-differentiable and its derivatives are expressed as follows.

Proposition 2.3. Let h ∈ Ce,n. Then for any k ∈ N and any v1, . . . , vk ∈ Hd,n we
have for g ∈ Cd,n
(2.5)

(−1)kDv1 . . . Dvkfh(g) =
Γ
(

1 + k + n+e
d

)

Γ
(

1 + n+e
d

)

∫

G

h(x)v1(x) · · · vk(x) dx

=
1

Γ
(

1 + n+e
d

)

∫

Rn

h(x)v1(x) · · · vk(x) exp(−g(x)) dx.

Proof. Since g(x) is positive for x 6= 0, its minimum gmin = min‖x‖=1 g(x) > 0

over the unit sphere in Rn is positive. By homogeneity, g(x) ≥ gmin‖x‖d, x ∈ Rn.
Therefore, derivatives of the integrand in (2.3) read

(−1)kDv1 . . . Dvk (h(x) exp(−g(x))) = h(x)v1(x) · · · vk(x) exp(−g(x)), x ∈ R
n.
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Since this is majorized by the function h(x)|v1(x) · · · vk(x)| exp(−gmin‖x‖d), which
is clearly integrable, dominated converge theorem implies that

(2.6)

(−1)kDv1 . . . Dvkfh(g) =
1

Γ
(

1 + n+e
d

)

∫

Rn

h(x)v1(x) · · · vk(x) exp(−g(x)) dx.

For any multiindex α ∈ Nn formula [11, (20)] yields
∫

Rn

h(x)xα exp(−g(x)) dx = Γ(1 + (n + e + |α|)/d)

∫

G

h(x)xα dx.

From multilinearity of (2.6) in v1, . . . , vk the remaining equality in (2.5) follows. �

Remark 2.4. Proposition 2.3 implies that fh : Cd,n → R and hence the volume
function (1.2) are completely monotone. Indeed, for any k ∈ N and positive definite
forms v1, . . . , vk ∈ Cd,n the derivative (−1)kDv1 . . . Dvkfh(g) is non-negative for all
g ∈ Cd,n by (2.5). In fact, it is even strictly positive as one can see directly.

Next, we give an alternative proof of complete monotonicity of the volume func-
tion, that also delivers an integral representation predicted by Theorem 2.2.

Proof of Theorem 1.1. As already mentioned, complete monotonicity of the volume
function (1.2) is guaranteed by Proposition 2.3.

Denote by µ the push-forward measure of the Lebesgue measure λ on Rn under
the Veronese map (1.4), that is, µ(B) = λ(Θ−1

d,n(B)) for any Borel measurable

subset B ⊆ Rn. Then the definition (1.4) of Θd,n and [3, Thm. 3.6.1] give
∫

Rn

exp(−g(ℓ)) dℓ =

∫

Rn

exp(−〈θℓ, g〉) dλ(ℓ) =

∫

C ∗

d,n

exp(−〈θ, g〉) dµ(θ),

which combined with (1.3) yields (1.5). �

Remark 2.5. Analogously, when h ∈ Cd,n has degree d, one can show that

fh(g) =

∫

C ∗

d,n

exp (−〈θ, g〉) 〈θ, h〉dµ(θ)

Γ(1 + (n + d)/d)
,

where µ is the push-forward measure of the Lebesgue measure on Rn under the
Veronese map (1.4). Thus, the unique Borel measure from Theorem 2.2, that is
associated to the completely monotone function fh is proportional to 〈·, h〉µ.

By the Leibniz rule for derivatives, the product of two completely monotone
functions is completely monotone. In particular, for any integer s ∈ N the s-th
power f s of the volume function (1.2) is completely monotone. Interestingly, in the
setting of quadratic forms (d = 2), f s is completely monotone for all sufficiently
large (not necessarily integer) powers s >> 1.

Proposition 2.6. The function g 7→ f(g)s on C2,n is completely monotone if and
only if s = 0, 1, 2, . . . , n− 2 or s ≥ n− 1.

Proof. By Proposition 2.10 below, we have that

f(g)s =

( √
π
n

Γ(1 + n/2)

)s

det(G)−s/2, g(x) = xTGx,

where G is the positive definite matrix representing the quadratic form g ∈ C2,n.
The claim now directly follows from [22, Theorem 1.3]. �
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By its construction, the representing measure µ from Theorem 1.1 is supported
on the set Θd,n(Rn) ⊂ Hd,n of d-th powers of linear forms, which is also known as
(the real part of) the Veronese cone. By [8, Prop. 5.7], the representing measure
of the power f s of (1.2) is proportional to the s-th convolution power µ∗s of µ,

f s =

s
∏

j=1

∫

C ∗

d,n

exp(−〈θ, g〉) dµ(θ)

Γ (1 + n/d)
=

∫

C ∗

d,n

exp(−〈θ, g〉) dµ∗s(θ)

Γ (1 + n/d)
s .

The support of the measure µ∗s is the s-th Minkowski power of Θd,n(Rn),

supp (µ∗s) = {θℓ1 + · · · + θℓs : ℓ
1, . . . , ℓs ∈ R

n}.(2.7)

By Richter’s theorem, for s =
(

n−1+d
d

)

the support (2.7) of µ∗s fills the cone C ∗
d,n,

see [20, Satz 4] and [5, Thm. 19]. Actually, by [5, Thm. 57], this already happens

for some s ≤
(

n−1+d
d

)

− n + 1.

2.1. Volume function of sums of squares. Recall from (1.8) that a non-negative
form g ∈ Cd,n is SOS if and only if it can be written as g(x) = md/2(x)TGmd/2(x),
x ∈ Rn, for some positive semi-definite (Gram) matrix G. Moreover, if g ∈ Cd,n
is positive definite, it has a positive definite Gram matrix G ∈ PDM . Given a
non-negative form h ∈ Ce,n, we consider a composed map

(2.8)
f sos
h : PDM → (0,∞),

G 7→ fh(md/2(x)T Gmd/2(x)),

where fh is defined in (1.7). When h = 1, we call

(2.9) f sos(G) = f sos
1 (G) = f(md/2(x)T Gmd/2(x)), G ∈ PDM ,

the SOS volume function. The map (1.8) is linear in G and therefore, by Proposition
2.3, (2.8) (and hence also (2.9)) must be completely monotone on its domain PDM .

Proposition 2.7. The function f sos
h : PDM → (0,∞) is completely monotone.

Proof. The claim follows directly from Proposition 2.3. Let V1, . . . , Vk ∈ PDM be
any positive definite matrices. Then by the definition of a directional derivative,

(−1)kDV1
. . .DVk

f sos
h (G) = (−1)kDv1 . . . Dvkfh(g) ≥ 0,(2.10)

where g is given by (1.8) and vj(x) = md/2(x)T Vj md/2(x) ∈ Cd,n is the positive
definite form with Gram matrix Vj , j = 1, . . . , k. �

Next, we describe an integral representation of (2.9), suggested by Theorem 2.2.
For this we consider the evaluation of a sum of squares (1.8) at ℓ ∈ Rn,

g(ℓ) = md/2(ℓ)T Gmd/2(ℓ) = Tr
(

md/2(ℓ)md/2(ℓ)T G
)

,(2.11)

where Θℓ = md/2(ℓ)md/2(ℓ)T is a M ×M rank-one positive semi-definite matrix.
This motivates us to study “the matrix analogue” of the Veronese map (1.4),

(2.12)
Θ sos

d,n : Rn → PD ∗
M ,

ℓ 7→ md/2(ℓ)md/2(ℓ)T,

where PSDM = PD ∗
M = {Θ ∈ Mat(M,R) : Tr(ΘG) ≥ 0 ∀ G ∈ PDM} is the dual

cone to PDM , which coincides with the closure of PDM ⊂ Mat(M,R) and consists
of positive semi-definite matrices. Here we identify the dual space Mat(M,R)∗ and
Mat(M,R) with the help of the trace inner product Θ, G ∈ Mat(M,R) 7→ Tr(ΘG).
The main result of this subsection is an analogue of (1.5) for SOS forms.
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Theorem 2.8. The SOS volume function (2.9) admits an integral representation

f sos(G) =

∫

PSDM

exp(−Tr(ΘG))
dµsos(Θ)

Γ (1 + n/d)
,(2.13)

where µsos is the push-forward measure of the Lebesgue measure on Rn under (2.12).

Proof. Denote by µsos the push-forward measure of the Lebesgue measure λ on Rn

under the map (2.12). Then formula (2.11) and [3, Thm. 3.6.1] give

(2.14)

∫

Rn

exp(−md/2(ℓ)T Gmd/2(ℓ)) dℓ =

∫

Rn

exp(−Tr (ΘℓG)) dλ(ℓ)

=

∫

PSDM

exp(−Tr (ΘG)) dµsos(Θ),

which combined with (1.3) and (2.9) yields (2.13). �

Remark 2.9. Analogously, when h(x) = md/2(x)THmd/2(x) ∈ Σd,n is a sum of
squares of degree d, one can show that

f sos
h (g) =

∫

PSDM

exp (−Tr (ΘG))
Tr (ΘH) dµsos(Θ)

Γ(1 + (n + d)/d)
,(2.15)

where µsos is the push-forward measure of the Lebesgue measure on Rn under (2.12).
Thus, the unique Borel measure from Theorem 2.2, that is associated to the com-
pletely monotone function f sos

h is proportional to Tr ( ·H)µsos.

The case of quadratic (d = 2) forms deserves a special attention. In this case
any g ∈ Cd,n can be written as g(x) = xTGx for a unique positive definite matrix
G (cf. (1.8)). By (1.3) and elementary Gaussian integration, one obtains a closed
form expression for the volume function of g (see also [15, p. 38]).

Proposition 2.10. For any n ≥ 2 we have

f sos(G) = f(g) =

√
π
n

Γ(1 + n/2)

1
√

det(G)
.

Remark 2.11. Complete monotonicity of the function G 7→ (det(G))−1/2 on the
cone of positive definite matrices is a quite known fact, see [22, pp. 355-356].

We conclude this chapter with an explicit formula for (2.8) in the case d = 2.

Theorem 2.12. For any n ≥ 2 and h(x) = xTHx, H ∈ PSDn, we have

f sos
h (G) =

√
π
n

2 Γ (1 + (n + 2)/2)

Tr(G−1H)
√

det(G)
, G ∈ PDn.(2.16)

Proof. Spectral theorem applied to real symmetric matrices G and H yields de-
compositions G =

∑n
i=1 λicic

T

i and H =
∑n

j=1 ηj djd
T

j . Here {c1, . . . , cd} ⊂ Rn

and {d1, . . . ,dn} ⊂ Rn are orthonormal bases consisting of eigenvectors of G and,
respectively, H , whose associated eigenvalues are λ1, . . . , λn > 0 and, respectively,
η1, . . . , ηn ≥ 0. Performing an orthogonal change of variables x =

∑n
k=1 ykck in
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the last integral of (2.3), we write

∫

Rn

x
THx exp(−x

TGx) dx =

∫

Rn

n
∑

j=1

ηj

(

n
∑

k=1

ykc
T

kdj

)2

exp

(

−
n
∑

i=1

λiy
2
i

)

dy

=

∫

Rn

n
∑

j=1

ηj





n
∑

k,ℓ=1

ykyℓc
T

kdjc
T

ℓdj



 exp

(

−
n
∑

i=1

λiy
2
i

)

dy

=

∫

Rn

n
∑

j=1

ηj

n
∑

k=1

y2
k

(

c
T

kdj

)2

exp

(

−
n
∑

i=1

λiy
2
i

)

dy,

where in the last step we use the fact that the integral
∫

Rn ykyℓ exp(−∑n
i=1 λiy

2
i ) dy

equals zero whenever k 6= ℓ. After one more change of variables yi = zi/
√
λi,

i = 1, . . . , n, and elementary Gaussian integration, the above integral reads

n
∑

i,j=1

ηj
λi

(

cTi dj

)2
∫

Rn

z2i exp
(

−zTz
) dz√

λ1 · · ·λn

=

√
π
n

2
√

det(G)

n
∑

i,j=1

ηj
λi

(

cTi dj

)2
.

The inverse matrix of G ∈ PDn is given by G−1 =
∑n

i=1 λ
−1
i cic

T

i . Using properties
of the trace, we can rewrite the double sum in the last expression above as

n
∑

i,j=1

ηj
λi

(

cTi dj

)2
=

n
∑

i,j=1

ηj
λi

Tr
(

(cTi dj)(d
T

j ci)
)

=

n
∑

i,j=1

λ−1
i ηjTr

(

cic
T

i djd
T

j

)

= Tr





(

n
∑

i=1

λ−1
i cic

T

i

)





n
∑

j=1

ηj djd
T

j







 = Tr
(

G−1H
)

.

By gathering all together and combining with (2.3) we obtain the claim (2.16). �

3. Moment matrices of central Gaussian vectors and sums of squares

Our goal in this section is to prove Theorem 1.5 and then derive Corollary 1.8.

Proof of Theorem 1.5. Let us consider the vector m̂d/2(x) =

(

√

(

d/2
α

)

xα

)

|α|=d/2

of normalized monomials of degree d/2. The advantage of working with the nor-
malized monomials consists in the fact that they (unlike xα, |α| = d/2) form an
orthonormal basis of Hd/2,n with respect to the Bombieri inner product (1.1). It is
a well-known fact (see, e.g., [9, p. 17]) that (1.1) is invariant under the standard
action of O(n) on Hd/2,n by changes of variables. Thus, an orthogonal change of
variables x 7→ ax, a ∈ O(n), induces a change of basis in Hd/2,n given by some

“big” orthogonal matrix A ∈ O(M), M =
(

d/2+n−1
n−1

)

, that is,

m̂d/2(ax) = Am̂d/2(x).(3.1)

The entries of the “big” matrix A ∈ O(M) are some forms of degree d/2 in the
entries of the “small” matrix a ∈ O(n). The matrix

M̂d[Q] =

∫

Rn

m̂d/2(y)m̂d/2(y)
Tp

(d)
Q (y) dy =





∫

Rn

√

√

√

√

(

d/2

α

)

√

√

√

√

(

d/2

β

)

y
α+βp

(d)
Q (y) dy




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of normalized moments of degree d of p
(d)
Q is related to Md[Q] via the formula

M̂d[Q] = SMd[Q]S,(3.2)

where

S =











. . . · · · 0
...

√

(

d/2
α

) ...

0 · · · . . .











is the diagonal matrix of square roots of multinomial coefficients. We now observe
that forms md/2(x)TMd[Q]−1md/2(x) and m̂d/2(x)TM̂d[Q]−1m̂d/2(x) coincide. In-
deed, the relation (3.2) together with m̂d/2(x) = Smd/2(x) imply

(3.3)
md/2(x)TMd[Q]−1md/2(x) = m̂d/2(x)S−1Md[Q]−1S−1m̂d/2(x)

= m̂d/2(x)M̂d[Q]−1m̂d/2(x).

Next, we show that it is enough to prove the claim (1.14) in the case when Q is
diagonal. For this, let us choose an orthogonal a ∈ O(n) so that the conjugate to
Q matrix aTQa = Λ is the diagonal matrix of its eigenvalues λ1, . . . , λn > 0. Using
formula (3.1), we derive

(3.4)

m̂d/2(x)
T
M̂

−1
d [Q]m̂d/2(x)

= m̂d/2(x)
T

(

∫

Rn

m̂d/2(y)m̂d/2(y)
T

√

det(Q)

σn
d

√

(2π)n
exp

(

−yTaΛaTy

2σ2
d

)

dy

)−1

m̂d/2(x)

= m̂d/2(x)
T

(

∫

Rn

m̂d/2(az)m̂d/2(az)
T

√

det(Λ)

σn
d

√

(2π)n
exp

(

−zTΛz

2σ2
d

)

dz

)−1

m̂d/2(x)

= m̂d/2(x)
T

(

∫

Rn

Am̂d/2(z)m̂d/2(z)
TAT

√

det(Λ)

σn
d

√

(2π)n
exp

(

−zTΛz

2σ2
d

)

dz

)−1

m̂d/2(x)

= m̂d/2(x)
TA M̂d[Λ]

−1AT
m̂d/2(x) = m̂d/2(a

T
x)TM̂d[Λ]

−1
m̂d/2(a

T
x),

where we use orthogonality of matrices a ∈ O(n), A ∈ O(N), linearity of the
integral and the fact that m̂d/2(a

Tx) = ATm̂d/2(x). Therefore, (1.14) holds for Λ

if and only if it holds for Q = aΛaT, since by the last derivation and (3.3) we have

(

xTQx
)d

=
(

xTaΛaTx
)d

=
(

(aTx)TΛ(aTx)
)d

and

md/2(x)TMd[Q]−1md/2(x) = m̂d/2(x)TM̂d[Q]−1m̂d/2(x)

= m̂d/2(a
Tx)TM̂d[Λ]−1m̂d/2(a

Tx)

= md/2(a
Tx)TMd[Λ]−1md/2(a

Tx).

Now, we reduce proving the claim (1.14) for a diagonal matrix Q = Λ to proving
it for the identity matrix Q = Id. Since the eigenvalues of Q = Λ are positive we
can write them as λi = µ2

i for some µi ∈ R, i = 1, . . . , n. Let us observe that, under
the coordinate-wise multiplication x = (x1, . . . , xn) 7→ µ ∗ x = (µ1x1, . . . , µnxn) by
real numbers µ1, . . . , µn ∈ R, the vector of monomials transforms as

md/2(µ ∗ x) = (µαxα)|α|=d = md/2(µ) ∗md/2(x) = N (µ)md/2(x),(3.5)
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where N (µ) is the diagonal matrix with numbers µα, |α| = d, on its diagonal. We
relate the forms md/2(x)TMd[Q]−1md/2(x) with Q = Λ and Q = Id by

md/2(x)
T
Md[Λ]

−1
md/2(x)

= md/2(x)
T

(

∫

Rn

md/2(y)md/2(y)
T

√

det(Λ)

σn
d

√

(2π)n
exp

(

− (µ ∗ y)T(µ ∗ y)
2σ2

d

)

dy

)−1

md/2(x)

= md/2(x)
T

(

∫

Rn

md/2(µ
−1 ∗ z)md/2(µ

−1 ∗ z)T exp

(

−zTz

2σ2
d

)

dz

σn
d

√

(2π)n

)−1

md/2(x)

= md/2(x)
T

(

∫

Rn

N (µ−1)md/2(z)md/2(z)
TN (µ−1) exp

(

−zTz

2σ2
d

)

dz

σn
d

√

(2π)n

)−1

md/2(x)

= md/2(x)
TN (µ)TMd[Id]

−1N (µ)md/2(x) = md/2(µ ∗ x)TMd[Id]
−1

md/2(µ ∗ x),

where we perform a change of variables z = µ ∗ y, use linearity of the integral and
the formula N (µ−1) = N (µ)−1 with µ−1 = (µ−1

1 , . . . , µ−1
n ). This together with the

formula (xTΛx)d = ((µ ∗x)T(µ ∗x))d imply that (1.14) holds for a diagonal matrix
Q = Λ if and only if it holds for the identity matrix Q = Id.

To prove (1.14) for Q = Id, we first note that the form md/2(x)TMd[Id]−1md/2(x)
is invariant under orthogonal changes of variables. Indeed, this property follows
from formula (3.4) with Q = Λ = Id and (3.3), since (by definition) a IdaT = Id
holds for all orthogonal matrices a ∈ O(n). As an O(n)-invariant form of degree d
is proportional to (xTx)d/2 (see, e.g., [7, Lemma 2.1]), we obtain

md/2(x)TMd[Id]−1md/2(x) = c (xTx)d/2

for some constant c ∈ Rn. We now integrate this equality against the measure

p
(d)
Id (x) dx. Using linearity of the integral and properties of the trace and performing

elementary integration, we compute
(

d/2 + n− 1

n− 1

)

= Tr
(

Md[Id]−1Md[Id]
)

=
∑

|α|=|β|=d/2

Md[Id]−1
αβMd[Id]αβ

=

∫

Rn

∑

|α|=|β|=d/2

Md[Id]−1
αβ xα+β p

(d)
Id (x) dx

=

∫

Rn

md/2(x)TMd[Id]−1md/2(x) p
(d)
Id (x) dx

= c

∫

Rn

(xTx)d/2 p
(d)
Id (x) dx

= c σd
d

1
√

(2π)n

∫

Rn

(xTx)d/2 exp

(

−xTx

2

)

dx

= c σd
d

vol (Sn−1)
√

(2π)n

∫ ∞

0

rd+n−1 exp

(

−r2

2

)

dr

= c

(

d/2+n−1
n−1

)

√
2
d∏d/2−1

i=0

(

n
2 + i

)

√
2
d Γ
(

d+n
2

)

Γ
(

n
2

) = c

(

d/2 + n− 1

n− 1

)

,

where we use the formula vol (Sn−1) = 2
√
π
n
/Γ (n/2) for the volume of the unit

sphere S
n−1. This derivation yields c = 1 and hence completes our proof of (1.14).
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It remains to prove that

Md[Q] =

∫

Rn md/2(x)md/2(x)T exp
(

−k(xTQx)d/2
)

dx
∫

Rn exp
(

−k(yTQy)d/2
)

dy
(3.6)

is the matrix of degree d moments of the Gaussian-like density (1.11), associated

to the SOS form g(x) = (xTQx)d/2. Applying a change of variables y =
√

2σd z in
the definition (1.13) of Md[Q] and then using [11, (20)], we write

Md[Q] =

√

det(Q)

σn
d

√

(2π)n

∫

Rn

md/2(y)md/2(y)
T exp

(

−yTQy

2σ2
d

)

dy

=

√
2
d
σd
d

√

det(Q)√
πn

∫

Rn

md/2(z)md/2(z)
T exp

(

−z
TQz

)

dz

=

√
2
d
σd
d

√

det(Q)√
πn

Γ

(

1 +
n+ d

2

)∫

{zTQz≤1}
md/2(z)md/2(z)

T dz

=

√
2
d
σd
d

√

det(Q)√
πn

Γ

(

1 +
n+ d

2

)∫

{(zTQz)d/2≤1}
md/2(z)md/2(z)

T dz

=

√
2
d
σd
d

√

det(Q)√
πn

Γ
(

1 + n+d
2

)

Γ
(

1 + n+d
d

)

∫

Rn

md/2(z)md/2(z)
T exp

(

−(zTQz)d/2
)

dz

=
k1+ n

d

√
2
d
σd
d

√

det(Q)√
πn

dΓ
(

n+d
2

)

2Γ
(

n+d
d

)

∫

Rn

md/2(z)md/2(z)
T exp

(

−k(yTQy)d/2
)

dy,

where in the last step we change variables z = k1/dy. Now, using the definition

of σd and formulas k−1 = 2
(

d/2+n−1
n

)

=
(

d/2+n−1
n−1

)

d/n, vol (Sn−1) = 2
√
πn/Γ(n/2),

we simplify the constant in front of the last integral and write

Md[Q] =
k

n
d n
√

det(Q)

vol (Sn−1)Γ
(

n+d
d

)

∫

Rn

md/2(z)md/2(z)T exp(−k(yTQy)d/2) dy.(3.7)

Performing a sequence of changes of variables and using basic properties of Gamma
function, one can see that the mass of the measure exp(−k(yTQy)d/2) dy equals

∫

Rn

exp
(

−k(yTQy)d/2
)

dy =
vol (Sn−1)Γ

(

n+d
d

)

k
n
d n
√

det(Q)
,

which together with (3.7) yields the claimed representation (3.6) for Md[Q]. �

We conclude this section with a proof of Corollary 1.8.

Proof of Corollary 1.8. Since the matrix Q ∈ PDn is positive definite, we have that
yTQy > 0 for non-zero y ∈ Rn \{0}. We first perform spherical change of variables
y = r z, r ∈ (0,∞), z ∈ S

n−1, in the integral (1.13) defining Md[Q] and then, after
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changing to t := zTQz

2σ2

d
r2 in the inner integral, we integrate out the t variable:

Md[Q] =

√

det(Q)

σn
d

√

(2π)n

∫

Rn

md/2(y)md/2(y)
T exp

(

−yTQy

2σ2
d

)

dy

=

√

det(Q)

σn
d

√

(2π)n

∫

Sn−1

md/2(z)md/2(z)
T

∫ ∞

0

rd+n−1 exp

(

−zTQz

2σ2
d

r2
)

dr dSn−1(z)

=
√

det(Q)

√
2
d−2

σd
d√

π
n Γ

(

d+ n

2

)
∫

Sn−1

md/2(z)md/2(z)
T

√

zTQz
d+n

dSn−1(z)

=
√

det(Q)

(

d/2 + n− 1

n− 1

)

Γ
(

n
2

)

2
√
π
n

∫

Sn−1

md/2(z)md/2(z)
T

√

zTQz
d+n

dSn−1(z).

This, together with the formula vol (Sn−1) = 2
√
π
n
/Γ (n/2) for the volume of the

sphere, implies that Md[Q] is the matrix of degree d moments of the measure ν on
Sn−1 from the statement of Corollary 1.8. The rest follows from Theorem 1.5. �

4. Comparison of L1- and L2-norms associated to a PD form

In this section we prove an extremal property of positive definite forms, that is
stated in Theorem 1.9.

Proof of Theorem 1.9. For a positive definite form g ∈ Cd,n and any h ∈ Hd,n one
has by formula (56) in [11, Lemma 3] that

∫

G

|h(x)|g(x) dx =
n + d

n + 2d

∫

G

|h(x)| dx =
n + d

n + 2d
‖h‖L1(µg)

and in particular with h = g one obtains ‖g‖2L2(µg)
= n+d

n+2d‖g‖L1(µg).

Let now h ∈ Hd,n be such that ‖h‖L1(µg) = ‖g‖L1(µg). Then we derive

0 ≤ ‖|h| − g‖2L2(µg)
= ‖h‖2L2(µg)

− 2

∫

G

|h(x)|g(x) dx + ‖g‖2L2(µg)

= ‖h‖2L2(µg)
− 2

n + d

n + 2d
‖h‖L1(µg) +

n + d

n + 2d
‖g‖L1(µg)

= ‖h‖2L2(µg)
− n + d

n + 2d
‖g‖L1(µg) = ‖h‖2L2(µg)

− ‖g‖2L2(µg)
,

which yields the claim. Moreover, if ‖h‖L2(µg) = ‖g‖L2(µg), we necessarily have
that ‖|h| − g‖L2(µg) = 0 and hence either h = g or h = −g. �

5. Non-negative forms with sublevel sets of finite volume

In this section we prove Theorems 1.11 and 1.12 and start with some auxiliary
discussion. Let g ∈ Cd,n be a non-negative form and consider the dehomogenized
non-negative polynomial g̃(y) = g(y, 1), where y = (y1, . . . , yn−1) ∈ Rn−1. We
consider the following change of variables on {x ∈ Rn : xn 6= 0},

x = (x1, . . . , xn−1, xn) = r(y1, . . . , yn−1, 1), (y, r) ∈ R
n−1 × (R \ {0}) ,

which allows us to write g(x) = rdg̃(y). Then the sublevel set of g is expressed as

G = {g(x) ≤ 1} =
{

(y, r) ∈ R
n−1 × (R \ {0}) : −g̃(y)−1/d ≤ r ≤ g̃(y)−1/d

}
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and, as a consequence, its Lebesgue volume equals

f(g) =

∫

G

dx =

∫

Rn−1

∫ g̃(y)−1/d

−g̃(y)−1/d

|r|n−1dr dy =
2

n

∫

Rn−1

1

g̃(y)n/d
dy.(5.1)

As we show in the following lemma, the question about finiteness of f(g) has a
“local nature”, at least for some class of non-negative forms g ∈ Cd,n.

Lemma 5.1. Let g̃ ∈ R[y1, . . . , yn−1] be a non-negative polynomial of degree d with
only isolated real zeros y(1), . . .y(m) ∈ R

n−1 and whose degree d part is positive
definite. Then for any α > n−1

d the integral
∫

Rn−1 g̃(y)−α dy is finite if and only if

integrals
∫

Ui
g̃(y)−α dy over some neighborhoods Ui of y

(i), i = 1, . . . ,m, are finite.

Proof. The only if direction is obvious, since
∫

U g̃(y)−α dy ≤
∫

Rn−1 g̃(y)−α dy for

any open subset U ⊆ Rn−1.
Let us now consider such open neighborhoods Ui of y(i), i = 1, . . . ,m, that satisfy

∫

Ui
g̃(y)−α dy < ∞ and take a ball BR =

{

y ∈ R
n−1 : |y|2 =

∑n−1
i=1 y2i < R2

}

that

contains y(1), . . . ,y(m). First, we show that the integral of g̃−α over the complement
of BR is finite for large R > 0. By our assumption, the degree d homogeneous part

g̃d of g̃ =
∑d

j=0 g̃j is a positive definite form and hence g̃d(y) ≥ εd|y|d holds for
some εd > 0. For j = 0, 1, . . . , d− 1 the degree j homogeneous part g̃j of g̃ satisfies
|g̃j(y)| ≤ εj |y|j for some εj > 0.2 We put all these inequalities together and obtain

g̃(y) = g̃d(y)+

d−1
∑

j=0

g̃j(y) ≥ g̃d(y)−
d−1
∑

j=0

|g̃j(y)| ≥ εd|y|d−
d−1
∑

j=0

εj|y|j , y ∈ R
n−1.

For sufficiently large R > 0 and all points y ∈ Rn−1 with |y| ≥ R the rightmost
expression in the last formula can be estimated as

g̃(y) ≥ εd|y|d −
d−1
∑

j=0

εj |y|j ≥ ε|y|d(5.2)

for some ε > 0. Using (5.2) and writing y = r z ∈ Rn−1 \BR, z ∈ Sn−2, r ≥ R, in
spherical coordinates, we estimate the integral,

∫

Rn−1\BR

1

g̃(y)α
dy ≤

∫

Rn−1\BR

1

εα|y|dα dy =
vol(Sn−2)

εα

∫ ∞

R

1

rdα−n+2
dr < ∞,

(5.3)

where convergence of the last integral follows from the condition α > (n − 1)/d.

Since the function g̃−α is bounded over the compact set K = BR \ (
⋃m

i=1 Ui), the
integral

∫

K g̃(y)−α dy is finite. This, together with (5.3) and finiteness of integrals
∫

Ui
g̃(y)−α dy, i = 1, . . . ,m, finally yield

∫

Rn−1

1

g̃(y)α
dy ≤

∫

K

1

g̃(y)α
dy +

∫

Rn−1\BR

1

g̃(y)α
dy +

m
∑

i=1

∫

Ui

1

g̃(y)α
dy < ∞.

�

2The constant εj , j = 0, 1, . . . , d−1, can be chosen to be the maximum value of the restriction
of |g̃j| to the sphere Sn−2 ⊂ Rn−1 and εd is a positive constant not greater than the minimum of

g̃d over Sn−2.
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Remark 5.2. For any g ∈ Cd,n the form g(y, 0) is the degree d part of the (inho-
mogeneous) polynomial g̃ ∈ R[y1, . . . , yn−1] defined by g̃(y) = g(y, 1). Therefore,
the degree d part of g̃ is positive definite if and only if a non-negative form g ∈ Cd,n
has no zeros in {(y, 0) ∈ Rn : y 6= 0}.

For a non-negative binary form g ∈ Cd,2, the non-negative univariate polynomial
g̃ ∈ R[y] has only isolated real zeros, each of which is of even order. Moreover, g̃
is of degree d if and only if g does not vanish at (1, 0). This can be achieved by
composing g with a rotation of R2. Under such an operation the sublevel set G ⊂ R2

of g gets rotated and, in particular, its Lebesgue volume remains preserved. Thus,
by (5.1) and Lemma 5.1, finiteness of f(g) = vol (G) can be decided by looking at
the integrals of g̃−n/d over small neighborhoods of real zeros of g̃.

Proof of Theorem 1.11. Let us consider a non-negative binary form g ∈ Cd,2. By
Remark 5.2 and the above discussion, without loss of generality we can assume that
g̃ ∈ R[y] satisfies assumptions of Lemma 5.1.

By (5.1) the volume of G = {g ≤ 1} ⊂ R
2 is proportional to the one-dimensional

integral
∫

R
g̃(y)−2/d dy, where g̃(y) = g(y, 1) is the dehomogenization of g. If y′ ∈ R

is a real zero of g̃ ∈ R[y] of order k, it is possible to write g̃(y) = (y−y′)kh(y), where
h ∈ R[y] is a polynomial that does not vanish at y′. Performing an affine change

of variables y = z + y′, z ∈ R, we are left with the integral
∫

R
z−2k/dh̃(z)−2/d dz,

where h̃(z) = h(z + y′). For a small δ > 0, the function h̃−2/d is bounded (from
below and from above by some positive constants) over the interval (−δ, δ). Thus,
∫ δ

−δ
z−2k/dh̃(z)−2/d dz < ∞ if and only if

∫ δ

−δ
z−2k/d dz < ∞. The latter condition

is in turn equivalent to 2k/d < 1, which means that the order k of the zero y′ ∈ R

is smaller than d/2. Since the argument applies to an arbitrary real zero of g̃, the
main claim follows from Lemma 5.1.

For d = 4 the above condition on the order of real zeros reads k < 2. Since the
order of a real zero of a non-negative binary form is always an even number, only
positive definite forms g in C4,2 have finite f(g) and hence V4,2 = C4,2. �

If g ∈ Cd,n is a generic non-negative form, the polynomial g̃ ∈ R[y1, . . . , yn] can
have only isolated real zeros. In fact, a stronger result holds.

Lemma 5.3. The restriction of a generic non-negative form g ∈ Cd,n to the sphere
Sn−1 ⊂ Rn has only finitely many zeros. In particular, g̃ has finitely many zeros
in Rn−1 and, after possibly an orthogonal change of variables, g has no zeros in
{(y, 0) ∈ Rn : y 6= 0}.

Proof. If g ∈ Cd,n is a generic form and x ∈ Sn−1 is a zero of g, then for all unit
vectors v ∈ Sn−1 that are orthogonal to x, the Hessian satisfies

vTHessxg v =

n
∑

i,j=1

∂2g

∂xi∂xj
(x)vivj ≥ ε

for some ε > 0. Since a real zero x ∈ Sn−1 of a non-negative form g must also be
its singular point, that is, ∂g

∂xi
(x) = 0, i = 1, . . . , n, we have

g(x + tv + o(t)) = t2
n
∑

i,j=1

∂2g

∂xi∂xj
(x) vivj + o(t3) ≥ t2(ε + o(t))
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for points x + tv + o(t) ∈ Sn−1 in a neighborhood of x ∈ Sn−1. In particular, for a
sufficiently small t > 0 and any v ∈ Sn−1 orthogonal to x we have g(x+tv+o(t)) > 0
and hence the zero x ∈ Sn−1 is isolated. By compactness of the sphere, g can have
only finitely many isolated zeros in Sn−1.

Injectivity of the mapping

y ∈ R
n−1 7→ (y, 1)

√

|y|2 + 1
∈ S

n−1

together with the homogeneity of g implies that g̃(y) = g(y, 1) = 0 holds for only
finitely many y ∈ Rn−1. Finally, after possibly an orthogonal change of variables,
the last coordinate of any real zero x ∈ Sn−1 of g ∈ Cd,n is non-zero. �

We are now ready to prove Theorem 1.12.

Proof of Theorem 1.12. Let g ∈ Cd,n be a generic non-negative form. This means in
particular that for any real zero of g of the form x = (y, 1) the kernel of the positive

semi-definite n × n matrix Hessxg =
(

∂2g
∂xi∂xj

(x)
)

is one-dimensional and spanned

by x. Note that y ∈ Rn−1 is a zero of g̃ and the (n− 1) × (n − 1) Hessian matrix

Hessyg̃ =
(

∂2g̃
∂yi∂yj

(y)
)

is positive definite. Indeed, because g̃ ∈ R[y1, . . . , yn−1] is

non-negative, the matrix Hessyg̃ must be at least positive semi-definite. If u ∈ Rn−1

is a vector in the kernel of Hessyg̃, then w = (u, 0) ∈ Rn must be in the kernel of
Hessxg, because

wTHessxgw = uTHessyg̃ u = 0

and both Hessian matrices are positive semi-definite. But then w = (u, 0) has to
be proportional to x = (y, 1) and hence u = 0. Positive definitedness of Hessyg̃
means in particular that

vTHessyg̃ v =

n−1
∑

i,j=1

∂2g̃

∂yi∂yj
(y)vivj ≥ ε(5.4)

for some ε > 0 and all unit vectors v ∈ S
n−2 ⊂ R

n−1.
Now, by Lemma 5.3 and Remark 5.2, we can assume that the non-negative

polynomial g̃ ∈ R[y1, . . . , yn] satisfies assumptions of Lemma 5.1. Thus, it is enough
to prove that the integral

∫

U g̃(z)−n/d dz over some neighborhood of y ∈ R
n−1

converges. Take U = B(y, δ) ⊂ Rn−1 to be the open ball of radius δ > 0 centered
at y. Since the real zero y of the non-negative polynomial g̃ is also its singular
point, that is, ∂g̃

∂yi
(y) = 0, i = 1, . . . , n− 1, the Taylor expansion of g̃ at the point

of the ball y + tv, v ∈ Sn−2, t ∈ [0, δ), reads

g̃(y + tv) = t2
n−1
∑

i,j=1

∂2g̃

∂yi∂yj
(y)vivj + o(t3) ≥ t2(ε + o(t)),

where we invoke (5.4). For a sufficiently small δ > 0 there exists ε′ > 0 so that
ε + o(t) > ε′ for any y + tv ∈ B(y, δ). This leads to an estimate

∫

B(y,δ)

1

g̃(z)n/d
dz =

∫

Sn−2

∫ δ

0

tn−2

g̃(y + tv)n/d
dt dSn−2(v)

≤ vol (Sn−2)

ε′n/d

∫ δ

0

t−2n/d+n−2 dt,
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where we performed a spherical change of variables. Finally, the last integral is
finite, since −2n/d + n− 2 > −n/2 + n− 2 > −1 whenever d ≥ 4 and n ≥ 3. �

5.1. On the denseness of generic forms in the boundary of Cd,n. We con-
clude this section with a proposition, that justifies the term “generic”. Note that
our proof of this result exploits facts from classical algebraic geometry.

Proposition 5.4. Non-generic non-negative forms in ∂Cd,n form a semialgebraic
subset of Hd,n of codimension at least 2. Moreover, this set is nowhere dense in
∂Cd,n ⊂ Hd,n, endowed with the topology induced from (Hd,n, 〈·, ·〉).

Proof. Throughout this proof, HC

d,n = Hd,n ⊗R C denotes the space of complex
n-variate forms of degree d. Those forms that are singular at some point of the
complex projective (n− 1)-space CPn−1 form an irreducible algebraic hypersurface

DC

d,n =

{

g ∈ HC

d,n :
∂g

∂x1
(x) = · · · =

∂g

∂xn
(x) = 0 for some x ∈ CPn−1

}

,

that can be retrieved as the Zariski closure of the boundary ∂Cd,n ⊂ Hd,n ⊂ HC

d,n

of the cone of non-negative forms, see [17, Thm. 4.1]. Let us consider the set

(5.5) XC

d,n =











g ∈ HC

d,n :

∂g

∂x1
(x) = · · · =

∂g

∂xn
(x) = 0 and

rank (Hessx(g)) ≤ n− 2 for some x ∈ CPn−1











of forms with a singular point x ∈ CPn−1, at which the Hessian matrix Hessx(g) =
(

∂2g
∂xi∂xj

(x)
)

has corank at least 2. Note that XC

d,n is obtained by projecting to

the first coordinate the algebraic variety of pairs (g,x) ∈ HC

d,n × CPn−1 satisfying

conditions in (5.5). Thus, the set XC

d,n ⊂ HC

d,n is algebraic by [23, Thm. 1.11].

Let g(x) = xd−2
n

∑n−1
i=1 x2

i + 2
d

∑n−1
i=1 xd

i be a degree d form that we considered in
Example 2. Apart from the unique real zero (0 : · · · : 0 : 1), the form g (in general)
has other singular points in CPn−1. All these points are described by the equations

(5.6) x1(xd−2
1 + xd−2

n ) = 0, . . . , xn−1(xd−2
n−1 + xd−2

n ) = 0,

n−1
∑

i=1

x2
i = 0.

One verifies directly that the Hessian matrix Hessxg at any solution x ∈ C
n \ {0}

of (5.6) has corank one. This implies that g ∈ DC

d,n \XC

d,n. Since the variety XC

d,n

is properly (as just shown) contained in the irreducible hypersurface DC

d,n ⊂ HC

d,n,

its codimension in HC

d,n must be at least 2. In particular, the real part Xd,n :=

XC

d,n∩Hd,n is of (real) codimension at least 2 in Hd,n. By definition, a non-negative
form g ∈ ∂Cd,n is non-generic if and only if it is in Xd,n. Thus, the semialgebraic
subset Xd,n ∩ ∂Cd,n ⊂ Hd,n of non-generic forms has codimension at least 2.

To prove the second claim, let U ⊂ Hd,n be any open subset with U ∩∂Cd,n 6= ∅.
By [24, Rem. 2.4] and the proof of [24, Lemma 2.5], the open subset U ∩ ∂Cd,n
of the boundary of Cd,n has codimension 1. Since the set U ∩ (Xd,n ∩ ∂Cd,n) is
of codimension at least 2, it is not dense in U ∩ ∂Cd,n and hence Xd,n ∩ ∂Cd,n is
nowhere dense in ∂Cd,n. �
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