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NON-NEGATIVE FORMS, VOLUMES OF SUBLEVEL SETS,
COMPLETE MONOTONICITY AND MOMENT MATRICES

KHAZHGALI KOZHASOV AND JEAN B. LASSERRE

ABSTRACT. Let Cq4, be the convex cone consisting of real n-variate degree d
forms that are strictly positive on R™\{0}. We prove that the Lebesgue volume
of the sublevel set {g < 1} of g € Cq ,, is a completely monotone function on
Cq,n and investigate the related properties. Furthermore, we provide (partial)
characterization of forms, whose sublevel sets have finite Lebesgue volume.
Finally, we discover an interesting property of a centered Gaussian distribution,
establishing a connection between the matrix of its degree d moments and the
quadratic form given by the inverse of its covariance matrix.

1. INTRODUCTION AND MAIN RESULTS

We bring together various constructions and studies associated with real homoge-
neous polynomials, see [1, 7, 8, 11, 12, 14, 15, 16, 22]. Our discoveries in Subsection
1.1 enrich the existing connection [8, 14, 22] between real algebraic geometry and
the theory of completely monotone functions. Theorem 1.5 establishes a property of
a centered Gaussian distribution that we also interpret in the context of polynomial
optimization [16]. In Subsection 1.3 we solve a problem that contributes to a general
study of extremal properties of homogeneous polynomials (see [1, 7, 9, 12]). Finally,
the results stated in Subsection 1.4 naturally complement investigations from [7, 12]
about volumes of sublevel sets of non-negative homogeneous polynomials.

Let Hq,,, denote the space of real n-variate forms (homogeneous polynomials) of
degree d. The space Hgq,p, is endowed with the Bombieri inner product

W) e = (1) ahe it () = ).

lee|=d

where g(x) = 3, /2q 9ax® and h(x) = 3, _g hax® are two forms written in the
basis of monomials of degree d. For a form g € H, ,, we consider its sublevel set

G={xeR":g(x) <1}

We are interested in the volume function f that to a given g € Hq,,, associates the
Lebesgue volume f(g) = vol (G) of its sublevel set. The volume of G is infinite if
g takes negative values. Thus, it is natural to apply f only to polynomials that
are non-negative on R™. We call a form g positive definite (PD for short), if it is
positive on R™\ {0}. The sublevel set G C R™ of a PD form is compact and hence
it has a finite Lebesgue volume. In this regard, we are concerned with the open
convex cone Cqpn C Hqg,n of PD forms. We implicitly assume that the degree d is
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even, as only in this case Cq 5 is non-empty. The closure Cq 5, of Cq,, With respect
to the norm topology on (Hg,n, (-, -)) consists of forms that are non-negative on R™.

1.1. Complete monotonicity of the volume function. The cone C4,, is a nat-
ural domain of definition of the volume function

f : Cd,n — R,

g — vol(G) = /dx,
G

which is strictly convex and admits the following integral representation
1

1.3 - vl(G) = —— _ d

(1.3) flg) = vol(G) F(Hn/d)/wexp( 9(x)) dx,

see [12, Thm. 2.2]. In our first result we show that (1.2) is completely monotone,
that is, it is the Laplace transform of some Borel measure on the closed dual cone
Cin=1{L €M, Llg) 20VYg € Cin} to Cay. To state it, let us recall (from,
e.g., [5, Thm. 19]) that C;,, is the conic hull of the image of the Veronese map
edﬂl R — Cd*,n C ’H;n,

£ = g g(0)]

(1.2)

(1.4)

By [21, Thm. 17.10], C;,,, also known as the moment cone, consists of (truncated)
moment functionals, that is, such L € H} , with L(g) = Jon-1 9(2) dv(2), g € Han,
for some measure v supported on the unit sphere S*~' = {z € R" : z'z = 1}.
Then, an element @, (¢), £ € S"~1, corresponds to the Dirac measure at £. An
alternative perspective on Cj,, comes with the identification of Hj , and Ha,, via

the inner product (1.1). Under this identification, one has g(£) = <(£T . )d, g) (see,
e.g., [21, (19.6)]) and, in particular, (1.4) sends a vector £ € R™ to the dth power

of a linear form, 6, = (ZT . )d €Cin, CHy = Han.

Theorem 1.1. For n > 2 and any even d > 2 the volume function (1.2) admits
an integral representation

(15) f(g) = /C

where p is the push-forward measure of the Lebesque measure on R™ under the
Veronese map (1.4). In particular, f : Can — R is completely monotone and for
all k € N and vy,...,v; € Cq,, we have that

(1.6) (—=1)* Dy, ... Dy, f(g) > 0, g€ Can,

where D,, denotes the directional derivative along v € Cq,.

exp(=6.9))

*
d,n

Remark 1.2. Complete monotonicity of a differentiable function f:C — R on an
open cone C' C RN is normally defined in terms of conditions on k-fold directional
derivatives of f as in (1.6). Thanks to Bernstein-Hausdorff-Widder-Chogquet theo-
rem, recalled in Section 2, this is equivalent to the possibility of representing f as
the Laplace transform of some Borel measure on the dual cone C*.

Scott and Sokal [22] investigated complete monotonicity of negative powers of
some combinatorially defined polynomials . In [22, Theorem 1.3] they characterized
values of s for which the function G +— (det(G))~*, defined on the cone of positive
definite matrices, is completely monotone. The volume function f(g) associated to a



quadratic form g(x) = x" Gx is proportional to (det(G))~'/2, see Proposition 2.10.

Thus, in the case d = 2 complete monotonicity of the volume function (1.2) also
follows from the mentioned characterization from [22]. The results from [22] along
with exponential families in algebraic statistics [13] motivated Michalek, Sturmfels
and the first author of the present work to investigate [8] complete monotonicity
of negative powers ¢g~*° of hyperbolic polynomials. A particular focus in their study
was given to elementary symmetric polynomials and to products of linear forms.

In physics one often considers exponential probability density functions of the
form Z% exp(—g(x)), where Z; = [, exp(—g(x)) dx is the normalization constant,
also known as the partition function. It is in general difficult to find closed-form
expressions for Z, (respectively, for (1.3)). As we see in Proposition 2.10, it is
possible to write f(g) in terms of the discriminant of a quadratic form g € Ca,,
which is also equal to the determinant of the real symmetric matrix associated to
g. In [15] Morozov and Shakirov develop this line further, calling integrals in (1.3)
integral discriminants and writing down their expressions in terms of SL(n,R)-
invariants of ¢ € Hg,,. Indeed, the standard action of the special linear group
on the space My, preserves the integral (1.3) and as a consequence the integral
discriminant depends on g only through the invariants of the action. For example,
for n = 2 and d = 4 an expression for (1.3) in terms of the SL(2, R)-invariants is
given in [15, Section 5.1].

One can also generalize the above setting as explained in the following remark.

Remark 1.3. For a non-negative form h € C. , of degree e > 0 consider a function

fh : Cd,n — R,

g [ o ix.

from which we retrieve the volume function (1.2) by setting h = 1. In Section 2 we
prove a generalization of Theorem 1.1, showing that (1.7) is completely monotone.

(1.7)

Along with proving complete monotonicity of the volume function (1.2) (and its
generalization defined in the above remark), in Section 2 we also discuss related
properties as well as prove a version of Theorem 1.1 for sum of squares forms.

1.2. Moment matrices of central Gaussian vectors and sums of squares.
A form g € Mg,y is called a sum of squares (or SOS), if g(x) = >27_, h;(x) for
some forms hy, ..., h. € Hq/an of degree d/2. Equivalently, one can write g as

(1.8) g(x) = md/Q(X)TGmd/Q(X)7 x € R,

where mg/5(x) = (X%)|q|=a/2 is the column-vector of monomials' of degree d/2
and G € PDj; is a positive semi-definite matrix of size M x M, M = (d/?_’ifl)
(called a Gram matriz of g). Below by PDys and PSDj; we denote the convex
cone of positive definite, respectively positive semi-definite, M x M real symmetric
matrices. By definition, sums of squares are non-negative, and, if ¢ is given by (1.8)

with a positive definite matrix G, then the form g € Cq4 , is also positive definite.

Remark 1.4. It is well-known that not every non-negative form is a sum of squares,
see [19]. However, by a celebrated result of Artin [2], after multiplying a non-
negative form by a suitable sum of squares form, one obtains a sum of squares.

1From now on we fix an order on the set of monomials of a given degree.
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Moreover, by a result [18, Thm. 3.12] of Reznick, if a form g € Cqn is posi-
tive definite, there exists s € N so that ||x||*9 € Cai2sn is a sum of squares,
where ||x||? = x"x = Y 2? is the Euclidean norm of x € R™. In fact, by the
same result, ||x||**g is even a sum of (d + 2s)-th powers of linear forms and hence
[x]1**9 € @dras,n(R") is identified with a point of the moment cone Cj\,, .. Thus,
sums of squares constitute an important subclass of the class of non-negative forms.
Furthermore, with the representation (1.8) for sums of squares, one can approach
polynomial optimization problems wia semi-definite programming, see [10].

A centered multivariate normal distribution is defined by its covariance matrix
Q~', with the probability density function given by

det(@) o (_ y'Qy

(1.9) poly) = oy 5

), y € R".

The covariance matrix equals the Hankel matriz of moments of Po of degree 2, i.e.,

110) Q@ =Ml = [ wTreay = ([ wmingay).

Motivated by this property of Gaussian distributions, in [11, 2.5] the second author
of the present work considers the Gaussian-like density

_ _ exp (—kmgo(y) T Gmays(y))
Jgn €xp (—kmy)2(2)TGmy 5(z)) dz’

associated to a positive definite SOS form g(x) = mg/,(x)Gmg/3(x), G € PDyy,
and the Hankel-like matrix

MalG] = [ maja(y)masa(y)' Paly) dy
of degree d moments of (1.11), where (2k)~! = (d/QTl"_l). When d = 2, one has
k =1/2 and (1.11) is the Gaussian density (1.9), whose matrix Ms[G] = M2[Q]
of degree 2 moments is the inverse of G = @Q € PD,,, see (1.10). When d > 2 is
higher, Lasserre shows in [11, Lemma 4] that My[G] = G™! (for G € PDyy) if and
only if GG is a critical point of the function

(1.11) Pa(y) y €R",

n

(1.12) G ePDy — (det(G))k/ exp (—kmd/z(X)TGmd/g(X)) dx.

Theorem 1.5 below implies that forms g(x) = (x'Qx)¥?, Q € PD,, fulfil this
condition. Before we state it, for @ € PD,, and d > 2 consider the density

P(y) = YIMD ) (_yTQy) ) < (@/2n-1y )w
Q ogy/(2m)" 202 )’ Vox T2 (1) ,

of a centered Gaussian distribution with covariance matrix c2Q !, and let

113) M) = [ myaymase) ey = ([ vl ay)

be the Hankel-like matrix of moments of p(g) of degree d. For d = 2 one has 09 =1

and hence we recover p, = pg) given by (1.9).
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Theorem 1.5. Let Q € PD,, be any positive definite matriz and let d > 2 be even.
Then Mg4[Q]~" is a Gram matriz of the SOS form (x'Qx)¥/?, that is,

(1.14) mg s (x) T Ma[Q] 'my s (x) = (x'Qx)

Furthermore, we have My4[Q] = My|G], where My[G] is the matriz of degree d
moments of the Gaussian-like density (1.11) associated to g(x) = (x' Qx)%/2.

/2

Remark 1.6. By [11, Lemma 4], for any Q € PD,, the matriz M4[Q]~! € PDy,
is a critical point of the function (1.12). It is an interesting open question whether
there exist other SOS forms with this property.

Sums of squares of degree d form a closed convex subcone (called the SOS cone)
Yan C % of the cone of non-negative homogeneous polynomials. Its dual cone
Y, =1{L € Hj, : L(g) > 0 Vg € Xy,} contains Cj,, and is known as the
pseudo-moment cone. For any (truncated) pseudo-moment functional L € 37, let

(1.15) My(L) = L (mgp(y)mgp(y)’) = (L(ya+5))|a\:|m:d/2

be the M x M Hankel-like matriz of pseudo-moments of degree d associated to L.
One has My(L) € PSDyy, as hTMy(L)h = L(h"mg2(y)mgy/2(y) "h) = L(h?) > 0
holds for any form h € Hg/2, whose coefficients in the basis of monomials form a
column vector h = (hq)|q|=a/2- Conversely, any matrix My € PSDy; that satisfies
(Mg)ag = (Mg)arpr whenever a+ 5 =o' + 3, |a| = 8] = /| = |8/| = d/2, is
of the form (1.15) for L € H}j, defined by L(y®™?) = (Ma)ag, || = 8] = d/2.
Furthermore, for a linear functional L € X3 that lies in the interior of the pseudo-
moment cone, the associated pseudo-moment matrix My(L) € PDy, is positive
definite and hence invertible. If L € Cd*7 » is even a moment functional, that is,

(1.16) o) = [ at)dvia). g€ Ha

for some measure v supported on S"7!, then the entries of the matrix My (L) are
moments of v of degree d.

By a result of Nesterov (see [16, Thm. 2]), a SOS form g € 34, belongs to the
interior of the cone ¥4 ,, if and only if there is some linear functional L € E;n in the
interior of the pseudo-moment cone such that g(x) = mg/s(x)" Mg(L) ™ mg/2(x).
Moreover, L € X7, satisfying this condition is unique.

Remark 1.7. Theorem 1.5 delivers Nesterov’s characterization for a power of a
quadratic form g(x) = (x"Qx)¥?, associated to a positive definite matriz Q € PD,,.
It implies that the unique My(L) € PDyy is the matriz of degree d moments of the
centered Gaussian vector in R™, whose covariance matriz is proportional to Q~*.

By integrating out the radial part of the Gaussian measure from Theorem 1.5,
one also obtains a measure on S"~!, whose degree d moments comprise My(L).

Corollary 1.8. Let Q € PD,, be a positive definite matriz and let L be the moment
functional (1.16), whose associated measure v on S~ is defined by

dv(z) — (d/2+n—1) Vdet(Q) dS"1(z) |
B n—1 JZ 0z T Vel (8771 ’
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where dS™~! is the standard Riemannian measure on the Euclidean sphere with
vol (S"~1) = 2y/7" /T (n/2) being its total volume. Then, My(L)™' is a Gram
matriz of the SOS form (xTQx)d/Q, that is,

m,/o(x) " Mg(L) 'mg(x) = (x'Qx)

Theorem 1.5 together with Corollary 1.8 are proven in Section 3.

/2

1.3. Comparison of L'- and L?-norms associated to a PD form. Given a
positive definite form g € Cq,5, let us denote by i, the Lebesgue measure restricted
to the sublevel set G C R" of g. Integrating p4 against any form h € H, ,, of degree
e, one obtains by [12, (2.1)] that

1

In this perspective, ;14 can be identified with a measure with exponential density
exp(—g(x)) with respect to the Lebesgue measure on R". We consider L'- and
L2-norms associated to the measure y,,

1/2
W11l = [ G0l i, - ( I |h<x>|2dx) ,

where & is any Lebesgue measurable function on G. We show that g minimizes the
ratio of L?- and L'-norms over all non-zero h € Hg.,.

Theorem 1.9. Let g € Cq,,. Then
g = arg min {IAllzag) : Wallrgu) = gl }

or, equivalently,

h
7Hg”L2(H9) = min {7” ”LZ(MQ) cheHan\ {0}} .
gl L1 () 17l 21 (g

Moreover, up to a factor, g is the unique minimizer of these optimization problems.

In particular, the positive definite form g € Cq,, has the smallest L?(y,)-norm
among all degree d forms h € H,4,, that have the same L'(u,)-norm as g.

Remark 1.10. The above result also holds when g and h are positively homogeneous
functions of degree d with g(x) being positive for x # 0, see [11, Lemma 3] and our
proof of Theorem 1.9 in Section 4.

1.4. Non-negative forms with sublevel sets of finite volume. It turns out
that, for some non-negative forms g € 9Cq,, = m \ C4,n in the boundary of Cq »,
the sublevel set G has finite Lebesgue volume f(g) = vol (G), while it is not the case
for all g € 9Cq , for general d and n. Motivated by this observation, we consider the
set Vg, of forms g € Hq,, with f(g) < co. One naturally has Cqn, C Vi, C m
and Vg, C Han is a convex cone by [12, Thm. 2.1]. It is straightforward to
see that Va ,, = Cap, that is, only positive definite quadratic forms g € Ca,,, have
finite f(g). We give a complete characterization of binary forms in Vg 2 in terms of
multiplicities of their real zeros.

Theorem 1.11. A non-negative binary form g € Caz is in Va2 if and only if g
has zeros of order at most d/2 — 1. In particular, Vs o = Cyq 2.



We also provide some sufficient conditions for membership in Vg ,, for n > 2. For
this let us call a non-negative form g € Cy,,, generic, if it is round at every its real

zero x € R™\ {0} (see [6, p. 47]), that is, the Hessian matrix Hessxg = (agizagzj (x))

is positive definite when restricted to the orthogonal complement of x (equivalently,
Hessyg is of corank one). Thus, a non-negative quadratic form g(x) = x'Gx is
generic if and only if the associated positive semi-definite matrix G is of corank
one. Also, for a non-negative binary form g € Cy 2 the condition of being generic
means that all real zeros of g are of order two.

Theorem 1.12. Ford > 4, n > 3 a generic non-negative form g € Cq n, is in Vq p.

Theorems 1.11 and 1.12 are proven in Section 5. Now, we consider some examples
of generic non-negative forms that lie on the boundary of Cqg .

Example 1. The Motzkin form
(1.18) g(x) = xlad + %) + 25 — 302222, x = (11,29, 23),

was historically the first explicit example of a non-negative form that is not a sum of
squares, see [19]. A point x € R3\{0} is a zero of g if and only if |x1| = |z2| = |3
Setting x3 = 1 in g gives the Motzkin polynomial §(y) = yiv3 + y3y3 + 1 — 3y3y3,
whose real zeros are (1,1), (1,-1), (=1,1), (=1, —=1). At any real zero x € R3\ {0}
(say, x = (1,1,1)) of g the Hessian Hessxg is positive semi-definite and has rank 2
and hence the Motzkin form g € 0Cg 3 is generic in the above sense.

As the following example shows, it is not difficult to find generic forms in Cq
also for higher n > 3 and even d > 4.

Example 2. Consider a sum of squares form

n—1 9 n—1
g(x) = 2472 fo + g Z d, x=(T1,..., T 1,Tn).
i=1 i=1

Then a real zero x € R™ of g must satisfy x1 =+ =x,—1 =0. Atx=(0,...,0,1)
the Hessian of g has rank n — 1 and hence g € 0Cq,y, is generic.

By Theorem 1.12; the sublevel sets of the Motzkin form (1.18) and of forms
constructed in Example 2 are of finite Lebegue volume.

One might wonder, whether the term “generic” is in place in the above context.
The following remark motivates our choice for the terminology.

Remark 1.13. The boundary 0Cq n, C Ha,n of the cone of non-negative forms is a
semialgebraic subset of codimension one. In Proposition 5.4 we show that the set of
non-generic forms is a semialgebraic subset of Hqn of codimension at least 2 and
that it is nowhere dense in the boundary 0Cq, C Han of Can, endowed with the
topology induced from (Han, (-,-))-

Structure of the paper

There are 4 sections, each corresponding to a subsection of the above introduc-
tory section. Thus, in the next section we prove complete monotonicity of the
volume function (1.2) and discuss a generalization of this result as well as treat
the case of sums of squares. In Section 3 we discuss moment matrices of centered
Gaussian vectors and prove Theorem 1.5 and Corollary 1.8. In Section 4 a proof of
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the extremal property from Theorem 1.9 is presented. And in the last section we
characterize non-negative forms, whose sublevel sets have finite Lebesgue volume.

Acknowledgements: we are thankful to Boulos El Hilany for helpful discussions.

2. COMPLETE MONOTONICITY OF THE VOLUME FUNCTION
Let C ¢ RY be an open convex cone and denote by C* the dual cone to C,
0<:{LE(R%*:L@)EOVgeC}

Definition 2.1. A function f : C — R is completely monotone, if it is C°-
differentiable and for all k € N and all vectors vi,...,vi € C

(21) (_l)val "'ka f(g) Z Oa ge Ca
where Dy, denotes the directional derivative along the vector v.

The Bernstein-Hausdorff-Widder theorem [25, Thm. 12a] gives a characteriza-
tion of completely monotone functions in one variable, these are exactly Laplace
transforms of Borel measures on the positive reals. Choquet [4, Thm. 10] found a
generalization of this result to convex cones in higher dimensional spaces.

Theorem 2.2 (Bernstein-Hausdorff-Widder-Choquet theorem). A smooth function
f:C — R on an open conver cone C C RY is completely monotone if and only if
it is the Laplace transform of a unique Borel measure p supported on C*, that is,

(2.2 f&) = [ exp(-Lig) du(e).

For a non-negative form h € C, ,, of degree e > 0 the function f, defined in (1.7)
admits an integral representation (see [11, Thm. 1])

1
2.3 = [ hx)dx = ———— | h(x)exp(—g)dx, g€ Cin.
@3) fulo) = [ hdx = g [ e gecy
In particular, the Lebesgue volume of the sublevel set G = {x € R" : g(x) < 1} of
g is obtained with h =1 as
1

2.4 = [dx = —— —g(x))dx, g€ Can.
@) 10 = [ ax = g [ enatax gec

Moreover, f;, is C*°-differentiable and its derivatives are expressed as follows.

Proposition 2.3. Let h € C.,. Then for any k € N and any v1,...,v; € Hapn we
have for g € Cqp

(2.5)
T (1+ k4 2de)
(‘UkDm oDy, fn(g) = NT%JI)/G}L(X)W(X)WW(X) dx
1

- W/" h(x)v1(x) - - - vk (x) exp(—g(x)) dx.

Proof. Since g(x) is positive for x # 0, its minimum gpin = minj,j—; g(x) > 0
over the unit sphere in R™ is positive. By homogeneity, g(x) > gmial|/%/|¢, x € R™.
Therefore, derivatives of the integrand in (2.3) read

(=1)* Dy, ... Dy, (h(x)exp(—g(x))) = h(x)v1(x) - - vg(x) exp(—g(x)), x€R™
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Since this is majorized by the function h(x)|vy(x) - - - v (%) | eXp(—gmin||%]|¢), Which
is clearly integrable, dominated converge theorem implies that

(2.6)

(~1)*Dy, ... Doy fi(g) = ———

. h e _ dx.
T (1 4 n;—e) /n (X)vl (X) Uk(X) GXp( g(X)) X
For any multiindex « € N” formula [11, (20)] yields

/ h(x)x“exp(—g(x))dx = T'(1+ (n+ e+ |a])/d) / h(x)x“ dx.
n G
From multilinearity of (2.6) in vy, ..., vj the remaining equality in (2.5) follows. O

Remark 2.4. Proposition 2.3 implies that fy, : Cqn — R and hence the volume
function (1.2) are completely monotone. Indeed, for any k € N and positive definite
forms vy, ..., v € Can the derivative (—1)¥D,, ... Dy, fn(g) is non-negative for all
g € Can by (2.5). In fact, it is even strictly positive as one can see directly.

Next, we give an alternative proof of complete monotonicity of the volume func-
tion, that also delivers an integral representation predicted by Theorem 2.2.

Proof of Theorem 1.1. As already mentioned, complete monotonicity of the volume
function (1.2) is guaranteed by Proposition 2.3.

Denote by p the push-forward measure of the Lebesgue measure A on R™ under
the Veronese map (1.4), that is, u(B) = )\(@;}1(3)) for any Borel measurable
subset B C R™. Then the definition (1.4) of @4, and [3, Thm. 3.6.1] give

[ ena@nae = [ exn=@eg)ane) = [ en0.9)au0)

which combined with (1.3) yields (1.5). O

Remark 2.5. Analogously, when h € Cq,, has degree d, one can show that

fulg) = / exp(—<9,g>)F(fif&dfg)/d),

d,n

where p is the push-forward measure of the Lebesgue measure on R™ under the
Veronese map (1.4). Thus, the unique Borel measure from Theorem 2.2, that is
associated to the completely monotone function fy, is proportional to (-, h)p.

By the Leibniz rule for derivatives, the product of two completely monotone
functions is completely monotone. In particular, for any integer s € N the s-th
power f* of the volume function (1.2) is completely monotone. Interestingly, in the
setting of quadratic forms (d = 2), f*® is completely monotone for all sufficiently
large (not necessarily integer) powers s >> 1.

Proposition 2.6. The function g — f(g)° on Ca,, is completely monotone if and
only if s=0,1,2,....n—2 ors>n—1.

Proof. By Proposition 2.10 below, we have that
Y -
S = det(G)~*/? =x'G
10 = (i) 46 g =xT6x

where G is the positive definite matrix representing the quadratic form g € Ca .
The claim now directly follows from [22, Theorem 1.3]. O
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By its construction, the representing measure p from Theorem 1.1 is supported
on the set @4 ,(R™) C Hg,p of d-th powers of linear forms, which is also known as
(the real part of) the Veronese cone. By [8, Prop. 5.7], the representing measure
of the power f* of (1.2) is proportional to the s-th convolution power p** of u,

_du(0) dp*(6)
H/* -0 st = [, 0D F

The support of the measure p** is the s-th Minkowski power of @ g ,(R™),
(2.7) supp (1**) = {0p1 + -+ 0ps : £, £° € R"}.

By Richter’s theorem, for s = ("75“1) the support (2.7) of p** fills the cone Ci s
see [20, Satz 4] and [5, Thm. 19]. Actually, by [5, Thm. 57], this already happens
for some s < ("7;+d) —n-+1.

2.1. Volume function of sums of squares. Recall from (1.8) that a non-negative
form g € Cq,,, is SOS if and only if it can be written as g(x) = mgy/o(x)TGm)2(x),
x € R”, for some positive semi-definite (Gram) matrix G. Moreover, if g € Cq
is positive definite, it has a positive definite Gram matrix G € PDj,;. Given a
non-negative form h € C, ,,, we consider a composed map

f}fos : PD]W — (0,00),
G — fh(md/Q(x)TGmd/Q(x)),
where fj, is defined in (1.7). When h = 1, we call
(2.9) FR5G) = f(G) = f(mg(x)T Gmy(x)), G €PDy,

the SOS wvolume function. The map (1.8) is linear in G and therefore, by Proposition
2.3, (2.8) (and hence also (2.9)) must be completely monotone on its domain PD ;.

(2.8)

Proposition 2.7. The function f°° : PDy — (0,00) is completely monotone.

Proof. The claim follows directly from Proposition 2.3. Let Vi,..., Vi € PDys be
any positive definite matrices. Then by the definition of a directional derivative,

(2.10) (=1)*Dy, ... Dy, fi*(G) = (=1)"Dy, ... Dy, fu(g) >0,

where g is given by (1.8) and v;(x) = mg/2(x)" V;my/2(x) € Cq,y, is the positive
definite form with Gram matrix V;, j =1,...,k. ([

Next, we describe an integral representation of (2.9), suggested by Theorem 2.2.
For this we consider the evaluation of a sum of squares (1.8) at £ € R™,

(2.11) 9(£) = myp(0)T Gmy(8) = Tr(mg(L)my)»(0)" G),

where ©g = m/5(€)m,/5(€)" is a M x M rank-one positive semi-definite matrix.

This motivates us to study “the matrix analogue” of the Veronese map (1.4),
0.5 :R" — PDy,

(2.12) M .
{ — md/g(ﬁ)md/g(f) R

where PSDj; = PDy;, = {© € Mat(M,R) : Tr(©G) > 0V G € PDy;} is the dual
cone to PDjy, which coincides with the closure of PDj; € Mat(M,R) and consists
of positive semi-definite matrices. Here we identify the dual space Mat(M,R)* and
Mat (M, R) with the help of the trace inner product ©,G € Mat(M,R) — Tr(© G).
The main result of this subsection is an analogue of (1.5) for SOS forms.
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Theorem 2.8. The SOS wvolume function (2.9) admits an integral representation

(2.13) e = f . exp(—mecnr‘i%%,

SOs

where p*° is the push-forward measure of the Lebesgue measure on R™ under (2.12).

Proof. Denote by p°°° the push-forward measure of the Lebesgue measure A on R”
under the map (2.12). Then formula (2.11) and [3, Thm. 3.6.1] give

/ exp(—m)s(8)T Grngyn(£)) b = / exp(—Tr (0 G)) dA(L)
(2.14) 8 8

[ ew(-1(06) du (@)
PSDa
which combined with (1.3) and (2.9) yields (2.13). O

Remark 2.9. Analogously, when h(x) = md/Q(X)THmd/Q(X) € Y4 is a sum of
squares of degree d, one can show that

Tr (© H) dus5(©)
Fl+(n+d)/d)’

(2.15) 05(g) = / _ en(-TO6)

where p5°% is the push-forward measure of the Lebesgue measure on R™ under (2.12).
Thus, the unique Borel measure from Theorem 2.2, that is associated to the com-
pletely monotone function f°° is proportional to Tr (- H) ™.

The case of quadratic (d = 2) forms deserves a special attention. In this case
any g € Cq.n, can be written as g(x) = x' Gx for a unique positive definite matrix
G (cf. (1.8)). By (1.3) and elementary Gaussian integration, one obtains a closed
form expression for the volume function of g (see also [15, p. 38]).

Proposition 2.10. For any n > 2 we have
Nz 1
(1+n/2) \/det(G)

Remark 2.11. Complete monotonicity of the function G — (det(G))~/2 on the
cone of positive definite matrices is a quite known fact, see [22, pp. 355-356].

F(6) = (o) = =

We conclude this chapter with an explicit formula for (2.8) in the case d = 2.

Theorem 2.12. For any n > 2 and h(x) = x' Hx, H € PSD,,, we have

S0S _ ﬁ" Tr(GilH)
(2.16) R (G) = 2T (14 (n+2)/2) /det(G)

, G ePD,.

Proof. Spectral theorem applied to real symmetric matrices G and H yields de-
compositions G = Y"1 | \ic;e] and H = E?Zl ur ddeT. Here {ci,...,cq} C R®
and {di,...,d,} C R™ are orthonormal bases consisting of eigenvectors of G and,
respectively, H, whose associated eigenvalues are \1,..., A, > 0 and, respectively,
M,y-..,Nn > 0. Performing an orthogonal change of variables x = > }'_, yxcy in
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the last integral of (2.3), we write
n n 2 n
/ > o (ZkaZdJ) exp <—Z>\iy¢2> dy
R™ j=1 k=1 i=1
/ an (Z yryecid;jcd ) eXP( Z%%)

k,e=1
2 n
[ 3ok () e (—Dyf) a,
"j=1 k=1 i=1

where in the last step we use the fact that the integral fRn yryeexp(— >, \iy?) dy
equals zero whenever k # (. After one more change of variables y; = 2;/v/\;,

/ x' Hx exp(—x' Gx) dx

i=1,...,n, and elementary Gaussian integration, the above integral reads
n T n
nj (.7 2/ 2 T dz VT M (T2
- (c;d; ziexp(—z 'z = - (c;d;
ijZ:1 )\7, ( ‘ J) n ¢ ( ) Al cte A'n, 2 det(G) ijZZI )\i ( ’ J)

The inverse matrix of G € PD,, is given by G~! = ZZ 1A 1cZ-cZ-T. Using properties
of the trace, we can rewrite the double sum in the last expression above as

n

Z Z—J (C;rdj)2 = Z Z—JTI‘ ((C;rdj)(d;rcz)) = Z )\i_l’I]jTI‘ (CZC;I—de;r)

ij=1"" i,j=1 ij=1

<Z )\ilcic;I—) an djd;-— = Tr (G_lH).
i=1 =1

By gathering all together and combining with (2.3) we obtain the claim (2.16). O

3. MOMENT MATRICES OF CENTRAL (FAUSSIAN VECTORS AND SUMS OF SQUARES

Our goal in this section is to prove Theorem 1.5 and then derive Corollary 1.8.

(e

Proof of Theorem 1.5. Let us consider the vector mg/;(x) = ( (d/2) xo‘>
la|=d/2

of normalized monomials of degree d/2. The advantage of working with the nor-
malized monomials consists in the fact that they (unlike x*, |a| = d/2) form an
orthonormal basis of Hq/2 , with respect to the Bombieri inner product (1.1). It is
a well-known fact (see, e.g., [9, p. 17]) that (1.1) is invariant under the standard
action of O(n) on Hg/2, by changes of variables. Thus, an orthogonal change of
variables x + ax, a € O(n), induces a change of basis in Hy/3, given by some

“big” orthogonal matrix A € O(M), M = (d/2+" 1) that is,
(3.1) mg/o(ax) = Amgjs(x).

The entries of the “big” matrix A € O( ) are some forms of degree d/2 in the
entries of the “small” matrix a € O(n). The matrix

Ma[Q] = . thg(y)the(y) P (v) dy = (/n d/2 d/2 yop®(y )



13

of normalized moments of degree d of p(g) is related to Mg4[Q)] via the formula

(3.2) M4[Q] = SMy[Q]S,

where

s= | D)

0
is the diagonal matrix of square roots of multinomial coefficients. We now observe
that forms m 2 (x)"M4[Q] " m 2 (x) and 15 (x) "My [Q] ', /5(x) coincide. In-
deed, the relation (3.2) together with mg/,(x) = Smg/p(x) imply
mo(x) TMa[Q] 'my a(x) = mige(x)S ' Mg[Q] 'S 1y s (x)
11 /2 (%) Ma[Q] i1y 2 (x).

Next, we show that it is enough to prove the claim (1.14) in the case when @ is
diagonal. For this, let us choose an orthogonal a € O(n) so that the conjugate to

(3.3)

Q matrix a"Qa = A is the diagonal matrix of its eigenvalues A1, ..., \, > 0. Using
formula (3.1), we derive
(3.4)

mg /o (%) ™! (@l g2 (x)
—1

T AT
= mhy(x 