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Abstract
We develop value iteration-based algorithms to solve in a unified manner different classes of combina-
torial zero-sum games with mean-payoff type rewards. These algorithms rely on an oracle, evaluating
the dynamic programming operator up to a given precision. We show that the number of calls to
the oracle needed to determine exact optimal (positional) strategies is, up to a factor polynomial
in the dimension, of order R/ sep, where the “separation” sep is defined as the minimal difference
between distinct values arising from strategies, and R is a metric estimate, involving the norm of
approximate sub and super-eigenvectors of the dynamic programming operator. We illustrate this
method by two applications. The first one is a new proof, leading to improved complexity estimates,
of a theorem of Boros, Elbassioni, Gurvich and Makino, showing that turn-based mean-payoff games
with a fixed number of random positions can be solved in pseudo-polynomial time. The second
one concerns entropy games, a model introduced by Asarin, Cervelle, Degorre, Dima, Horn and
Kozyakin. The rank of an entropy game is defined as the maximal rank among all the ambiguity
matrices determined by strategies of the two players. We show that entropy games with a fixed rank,
in their original formulation, can be solved in polynomial time, and that an extension of entropy
games incorporating weights can be solved in pseudo-polynomial time under the same fixed rank
condition.
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1 Introduction

1.1 Motivation
Deterministic and turn-based stochastic Mean-Payoff games are fundamental classes of games
with an unsettled complexity. They belong to the complexity class NP ∩ coNP [23, 57] but
they are not known to be polynomial-time solvable. Various algorithms have been developed
and analyzed. The pumping algorithm is a pseudo-polynomial iterative scheme introduced
by Gurvich, Karzanov and Khachyan [30] to solve the optimality equation of deterministic
mean-payoff games. Zwick and Paterson [57] derived peudo-polynomial bounds for the
same games by analyzing value iteration. Friedmann showed that policy iteration, originally
introduced by Hoffman and Karp in the setting of zero-sum games [31], and albeit being
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experimentally fast on typical instances, is generally exponential [25]. We refer to the survey
of [10] for more information and additional references.

Entropy games have been introduced by Asarin et al. [11]. They are combinatorial games,
in which one player, called Tribune, wants to maximize a topological entropy, whereas its
opponent, called Despot, wishes to minimize it. This topological entropy quantifies the
freedom of a half-player, called People. Although the formalization of entropy game is recent,
specific classes or variants of entropy games appeared earlier in several fields, including the
control of branching processes, population dynamics and growth maximization [52, 47, 46, 56],
risk sensitive control [32, 9], mathematical finance [6], or matrix multiplication games [11].
Asarin et al. showed that entropy games also belong to the class NP ∩ coNP. Akian et al.
showed in [1] that entropy games reduce to ordinary stochastic mean-payoff games with
infinite action spaces (actions consist of probability measures and the payments are given by
relative entropies), and deduced that the subclass of entropy games in which Despot has a
fixed number of significant positions (positions with a non-trivial choice) can be solved in
polynomial time. The complexity of entropy games without restrictions on the number of
(significant) Despot positions is an open problem.

1.2 Main Results
We develop value iteration-based algorithms to solve in a unified manner different classes
of combinatorial zero-sum games with mean-payoff type rewards. These algorithms rely
on an oracle, evaluating approximately the dynamic programming operator of the game.
Our main results include universal estimates, providing explicit bounds for the error of
approximation of the value, as a function of two characteristic quantities, of a metric nature.
The first one is the separation sep, defined as the minimal difference between distinct values
induced by (positional) strategies. The second one, R, is defined in terms the norm of
approximate sub and super-optimality certificates. These certificates are vectors, defined as
sub or super-solutions of non-linear eigenproblems. For games such that the mean payoff
is independent of the initial state, we show that (exact) optimal strategies can be found
in a number of calls to the oracle bounded by the ratio R/ sep, up to a factor polynomial
in the number of states, see Theorems 10 and 30. We also obtain a similar complexity
bound for games in which the mean payoff does depend on the initial state, under additional
assumptions.

We provide two applications of this method.
The first application is a new proof of an essential part of the theorem of Boros, Elbassioni,

Gurvich and Makino [18], showing that turn-based stochastic mean-payoff games with a fixed
number of random positions can be solved in pseudo-polynomial time. The original proof
relies on a deep analysis of a generalization to the stochastic case of the “pumping algorithm”
of [30]. Our analysis of value iteration leads to improved complexity estimates. Indeed, we
bound the characteristic numbers R and sep in a tight way, by exploiting bit-complexity
estimates for the solutions of Fokker–Planck and Poisson-type equations of discrete Markov
chains.

The second application concerns entropy games. Let us recall that in such a game, the
value of a pair of (positional) strategies of the two players is given by the Perron root of a
certain principal submatrix of a nonnegative matrix, which we call the ambiguity matrix,
as it measures the number of nondeterministic choices of People. We show that entropy
games with a fixed rank, and in particular, entropy games with a fixed number of People’s
states, can be solved in pseudo-polynomial time; see Theorem 61. These results concern
the extended model of entropy games introduced in [1], taking into account weights. Then,
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entropy games in the sense of [11] (implying a unary encoding of weights) that have a fixed
rank can be solved in polynomial time. These results rely on separation bounds for algebraic
numbers arising as the eigenvalues of integer matrices with a fixed rank.

1.3 Related Work
The idea of applying value iteration to analyze the complexity of deterministic mean-payoff
games goes back to the classical work of Zwick and Paterson [57]. In some sense, the present
approach extends this idea to more general classes of games. When specialized to stochastic
mean-payoff games with perfect information, our bounds should be compared with the ones of
Boros, Elbassioni, Gurvich, and Makino [18, 17]. The authors of [18] generalize the “pumping”
algorithm, developed for deterministic games by Gurvich, Karzanov, and Khachiyan [30], to
the case of stochastic games. The resulting algorithm is also pseudopolynomial if the number
of random positions is fixed, see Remark 47 for a detailed comparison. The algorithm of
Ibsen-Jensen and Miltersen [33] yields a stronger bound in the case of simple stochastic
games, still assuming that the number of random positions is fixed. A different approach,
based on an analysis of strategy iteration, was developed by Gimbert and Horn [28] and more
recently by Auger, Badin de Montjoye and Strozecki [12]. The value iteration algorithm for
concurrent mean-payoff games, under an ergodicity condition, has been studied by Chatterjee
and Ibsen-Jensen [21]. Theorem 18 there gives a O(| log ε|/ε) bound for the number of
iterations needed to get an ε-approximation of the mean payoff. When specialized to this
case, Theorem 16 below improves this bound by a factor of | log ε|. Another possible general
approach to compute the mean payoff would be based on relative value iteration combined
with Krasnoselskii-Mann damping [13], see [27]. Under some ergodicity condition, this
method allows one to get an ε-approximation of the mean payoff as well as an approximate
optimality certificate in O(1/ε2) iterations, to be compared with the O(1/ε) iterations of the
present algorithm, see Remark 17.

We build on the operator approach for zero-sum games, see [15, 42, 45]. Our study of
entropy games is inspired by the works of Asarin et al. [11] and Akian et al. [1]. We rely
on the existence of optimal positional strategies for entropy games, established in [1] by
an o-minimal geometry approach [16], and also on results of non-linear Perron–Frobenius
theory, especially the Collatz–Wielandt variational formulation of the escape rate of an order
preserving and additively homogeneous mapping [43, 26, 2, 5].

The present work, providing complexity bounds based on value iteration, grew out from
an effort to understand the surprising speed of value iteration on random stochastic games
examples arising from tropical geometry [8], by investigating suitable notions of condition
numbers [7]. An initial version of some of the present results (concerning turn based stochastic
games) appeared in the PhD thesis of one of the authors [50].

1.4 Organization of the Paper
In Section 2 we recall the definitions and basic properties of turn-based stochastic mean-payoff
games and entropy games, and also key notions in the “operator approach” of zero-sum
games, including the Collatz–Wielandt optimality certificates.

The universal complexity bounds based on value iteration are presented in Section 3.
First, we deal with games whose value is independent of the initial state, and then, we extend
these results to determine the set of initial states with a maximal value.

The applications to turn-based stochastic mean-payoff games and to entropy games are
provided in Section 4 and Section 5.



4 Universal Complexity Bounds for Value Iteration

2 Preliminaries on Dynamic Programming Operators and Games

2.1 Introducing Shapley Operators: The Example of Stochastic
Turn-Based Zero-Sum Games

Shapley operators are the two-player version of the Bellman operators (a.k.a. dynamic
programming or one-day operators) which are classically used to study Markov decision
processes. In this section we introduce the simplest example of Shapley operator, arising
from stochastic turn-based zero-sum games.

A stochastic turn-based zero-sum game is a game played on a digraph (V ,E ) in which the
set of vertices V has a non-trivial partition: V = VMin ]VMax ]VNat. There are two players,
called Min and Max, and a half-player, Nature. The sets VMin, VMax and VNat represent the
sets of states in which Min, Max, and Nature respectively play. The set of edges E represents
the allowed moves. We assume E ⊂ VMin × VMax ∪ VMax × VNat ∪ VNat × VMin, meaning
that Min, Max, and Nature alternate their moves. More precisely, a turn consists of three
successive moves: when the current state is j ∈ VMin, Min selects and edge (j, i) in E and the
next state is i ∈ VMax. Then, Max selects an edge (i, k) in E and the next state is k ∈ VNat.
Next, Nature chooses an edge (k, j′) ∈ E and the next state is j′ ∈ VMin. This process can
be repeated, alternating moves of Min, Max, and Nature.

We make the following assumption.

I Assumption 1. Each player has at least one available action in each state in which he has to
play, i.e., for all j ∈ VMin, i ∈ VMax, and k ∈ VNat, the sets {i′ : (j, i′) ∈ E }, {k′ : (i, k′) ∈ E }
and {j′ : (k, j′) ∈ E } are non-empty.

Furthermore, every state k ∈ VNat controlled by Nature is equipped with a probability
distribution on its outgoing edges, i.e., we are given a vector (Pkj)j∈VMin with rational entries
such that Pkj > 0 for all j and

∑
(k,j)∈E Pkj = 1. We suppose that Nature makes its decisions

according to this probability distribution, i.e., it chooses an edge (k, j) with probability Pkj .
Moreover, an integer Aij is associated with each edge (j, i) in E ∩ (VMin × VMax), and an
integer Bik is associated with each edge (i, k) in E ∩ (VMax × VNat). These integers encode
the payoffs of the game in the following way: if the current state of the game is j ∈ VMin and
Min selects the edge (j, i), then Min pays to Max the amount −Aij . Similarly, if the current
state of the game is i ∈ VMax and Max selects the edge (i, k), then Max receives from Min
the payment Bik.

We first consider the game in horizon N , in which each of the two players Min and Max
makes N moves, starting from a known initial state, which by convention we require to be
controlled by Min. In this setting, a history of the game consists of the sequence of states
visited up to a given stage. A strategy of a player is a function which assigns to a history of
the game a decision of this player. A pair of strategies (σ, τ) of players Min and Max induces
a probability measure on the set of finite sequences of states. Then, the expected reward of
Max, starting from the initial position j0 ∈ VMin, is defined by

Rj0(σ, τ) := Eστ
(N−1∑
p=0

(−Aipjp +Bipkp)
)
,

in which the expectation Eσ,τ refers to the probability measure induced by (σ, τ), and
j0, i0, k0, j1, i1, k1, . . . is the random sequence of states visited when applying this pair of
strategies. The objective of Max is to maximize this reward, while Min wants to minimize
it. The game in horizon N starting from state j ∈ VMin is known to have a value vNj and
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optimal strategies σ∗ and τ∗, meaning that

Rj(σ∗, τ) 6 vNj := Rj(σ∗, τ∗) 6 Rj(σ, τ∗) ,

for all strategies σ of Min and τ of Max. The value vector vN := (vNj )j∈VMin keeps track
of the values of all initial states. A classical dynamic programming argument, see e.g. [41,
Th. IV.3.2], shows that

v0 = 0, vN = F (vN−1) ,

where 0 denotes the vector that has all entries equal to 0 and the Shapley operator F is the
map from RVMin to RVMin defined by

Fj(x) := min
(j,i)∈E

(
−Aij + max

(i,k)∈E

(
Bik +

∑
(k,l)∈E

Pklxl
))
, for all j ∈ VMin . (1)

Assumption 1 guarantees that F is well defined.
One can also consider the stochastic mean-payoff game, in which the payment gj0(σ, τ)

received by Max becomes the limiting average of the sum of instantaneous payments, i.e.,

gj0(σ, τ) := lim inf
N→+∞

Eστ
( 1
N

N−1∑
p=0

(−Aipjp +Bipkp)
)
. (2)

We say that a strategy is positional if the decision of the player depends only of the current
state. A result of Liggett and Lippman [38] entails that a mean-payoff game has a value χj
and that there exists a pair of optimal positional strategies (σ∗, τ∗), meaning that

gj(σ∗, τ) 6 χj := gj(σ∗, τ∗) 6 gj(σ, τ∗) ,

for every initial state j ∈ VMin and pair of non-necessarily positional strategies (σ, τ) of
players Min and Max. A result of Mertens and Neyman [40] entails in particular that the
value of the mean-payoff game coincides with the limit of the normalized value of the games
in horizon N , i.e.,

χ = lim
N→∞

vN

N
= lim
N→∞

FN (0)
N

,

where FN = F ◦ · · · ◦ F denotes the Nth iterate of F .
I Remark 1. In our model, players Min, Max, and Nature play successively, so that a turn
decomposes in three stages, resulting in a Shapley operator of the form (1). Alternative
models, like the one of [18], in which a turn consists of a single move, reduce to our model
by adding linearly many dummy states, and rescaling the mean payoff by a factor 3.

2.2 The Operator Approach to Zero-Sum Games
We shall develop a general approach, which applies to various classes of zero-sum games with
a mean-payoff type payment. To do so, it is convenient to introduce an abstract version of
Shapley operators, following the “operator approach” of stochastic games [45, 42]. This will
allow us to apply notions from nonlinear Perron–Frobenius theory, especially sub and super
eigenvectors, and Collatz-Wielandt numbers, which play a key role in our analysis.

We set [n] := {1, . . . , n}. We shall use the sup-norm ‖x‖∞ := maxi∈[n] |xi|, and also the
Hilbert’s seminorm [26], which is defined by ‖x‖H := t(x)− b(x), where t(x) := maxi∈[n] xi
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(read “top”) and b(x) := mini∈[n] xi (read “bottom”). We endow R with the standard order
6, which is extended to vectors entrywise.

A self-map F of Rn is said to be order-preserving when

x 6 y =⇒ F (x) 6 F (y) for all x, y ∈ Rn , (3)

and additively homogeneous when

F (λ+ x) = λ+ F (x) for all λ ∈ R and x ∈ Rn , (4)

where, for any z ∈ Rn, λ+ z stands for the vector with entries λ+ zi.

I Definition 2. A self-map F of Rn is an (abstract) Shapley operator if it is order-preserving
and additively homogeneous.

A basic example is provided by the Shapley operator of a turn-based stochastic mean-payoff
game (1). Here, the additive homogeneity axiom captures the absence of discount. We shall
see in the next section a different example, arising from entropy games.

We point out that any order-preserving and additively homogeneous self-map F of Rn is
nonexpansive in the sup-norm, meaning that

‖F (x)− F (y)‖∞ 6 ‖x− y‖∞ for all x, y ∈ Rn .

Using the nonexpansiveness property, we get that the existence and the value of the limit
limN→∞(FN (x)/N) are independent of the choice of x ∈ Rn. We call this limit the escape
rate of F , and denote it by χ(F ). When F is the Shapley operator of a turn-based stochastic
mean-payoff game, fixing x = 0, we see that FN (x) coincides with the value vector in horizon
N , and so χj(F ) yields the mean payoff when the initial state is j, consistently with our
notation χj in Section 2.1.

The escape rate is known to exist under some “rigidity” assumptions. The case of
semialgebraic maps is treated in [42], whereas the generalization to o-minimal structures
(see [53] for background), which is needed in the application to entropy games, is established
in [16].

I Theorem 3 ([42] and [16]). Suppose that the function F : Rn → Rn is nonexpansive in
any norm and that it is semialgebraic, or, more generally, defined in an o-minimal structure.
Then, the escape rate χ(F ) does exist.

This applies in particular to Shapley operators of turn-based mean-payoff games, since in
this case the operator F , given by (1), is piecewise affine (meaning that its domain can be
covered by finitely many polyhedra such that F restricted to any of them is affine), and a
fortiori semialgebraic. In the case of entropy games, we shall see in the next section that the
relevant Shapley operator is defined by a finite expression involving the maps log, exp, as
well as the arithmetic operations, and so that it is definable in a richer structure, which is
still o-minimal. We emphasize that no knowledge of o-minimal techniques is needed to follow
the present paper, it suffices to admit that the escape rate does exist for all the classes of
maps considered here, and this follows from Theorem 3.

When the map F is piecewise affine, a result finer than Theorem 3 holds:

I Theorem 4 ([36]). A piecewise affine self-map F of Rn that is nonexpansive in any norm
admits an invariant half-line, meaning that there exist z, w ∈ Rn such that

F (z + βw) = z + (β + 1)w

for any β ∈ R large enough. In particular, the escape rate χ(F ) exists, and is given by the
vector w.



X. Allamigeon, S. Gaubert, R. D. Katz, M. Skomra 7

This entails that FN (z + βw) = z + (β + N)w, and so, by nonexpansiveness of F , for all
x ∈ Rn, FN (x) = Nχ(F )+O(1) as N →∞. This expansion is more precise than Theorem 3,
which only states that FN (x) = Nχ(F ) + o(N).

For a general order-preserving and additively homogeneous self-map of Rn, and in
particular, for the Shapley operators of the entropy games considered below, an invariant
half-line may not exist. However, we can still recover information about the sequences
(FN (x)/N)N through non-linear spectral theory methods. Assuming that F is an order-
preserving and additively homogeneous self-map of Rn, the upper Collatz–Wielandt number
of F is defined by:

cw(F ) := inf{µ ∈ R : ∃z ∈ Rn, F (z) 6 µ+ z} , (5)

and the lower Collatz–Wielandt number of F by:

cw(F ) := sup{µ ∈ R : ∃z ∈ Rn, F (z) > µ+ z} . (6)

It follows from Fekete’s subadditive lemma that the two limits limN→∞ t(FN (0)/N) and
limN→∞ b(FN (0)/N), which may be thought of as upper and lower regularizations of the
escape rate, always exist, see [26]. In the examples of interest to us, the escape rate χ(F )
does exist, it represents the mean-payoff vector, and then limN→∞ t(FN (0)/N) = t(χ(F )) =
maxj χj(F ) is the maximum of the mean payoff among all the initial states. Similarly,
limN→∞ b(FN (0)/N) = b(χ(F )) is the minimum of these mean payoffs.

The interest of the vectors z arising in the definition of Collatz-Wielandt numbers is to
provide approximate optimality certificates, allowing us to bound mean payoffs from above
and from below. Indeed, if F (z) 6 µ+ z, using the order-preserving property and additively
homogeneity of F , we get that FN (z) 6 Nµ+ z for all N ∈ N, and, by nonexpansiveness of
F , limN→∞ t(FN (0)/N) = limN→∞ t(FN (z)/N) 6 µ. Similarly, if F (z) > µ+ z, we deduce
that limN→∞ b(FN (0)/N) > µ. The following result of [26], which can also be obtained as a
corollary of a minimax result of Nussbaum [43], see [2], shows that these bounds are optimal.

I Theorem 5 ([26, Prop. 2.1], [2, Lemma 2.8 and Rk. 2.10]). Let F be an order-preserving
and additively homogeneous self-map of Rn. Then, limN→∞ t(FN (x)/N) = cw(F ) and
limN→∞ b(FN (x)/N) = cw(F ) for any x ∈ Rn.

Thus, when F is the Shapley operator of a game, the quantities cw(F ) and cw(F ) respectively
correspond to the greatest and smallest mean payoff among all the initial states.

A simpler situation arises when there is a vector v ∈ Rn and a scalar λ ∈ R such that

F (v) = λ+ v . (7)

The scalar λ, which is unique, is known as the ergodic constant, and (7) is referred to as the
ergodic equation. Then, cw(F ) = cw(F ) = λ. The vector v is known as a bias or potential. It
will be convenient to have a specific notation for the ergodic constant λ when the ergodic
equation is solvable, then, we set erg(F ) := λ.

The existence of a solution (λ, v) of (7) is guaranteed by certain “ergodicity” assump-
tions [4]. When the Shapley operator F is piecewise affine, it follows form Kohlberg’s theorem
(Theorem 4) that the ergodic equation (7) is solvable if and only if the mean payoff is
independent of the initial state.

Denote R̄ := R ∪ {−∞}. Properties (3) and (4) also make sense for self-maps of R̄n, by
requiring them to hold for all x, y ∈ R̄n and λ ∈ R̄. Any order-preserving and additively
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homogeneous self-map F of Rn admits a unique continuous extension F̄ to R̄n, obtained by
setting, for x ∈ R̄n,

F̄ (x) := inf{F (y) : y ∈ Rn, y > x} . (8)

Moreover, F̄ is still order-preserving and additively homogeneous, see [20] for details. Hence,
in the sequel, we assume that any order-preserving and additively homogeneous self-map F
of Rn is canonically extended to R̄n, and we will not distinguish between F and F̄ .

2.3 Entropy Games
Entropy games were introduced in [11]. We follow the presentation of [1] since it extends the
original model, see Remark 9 for a comparison.

Similarly to stochastic turn-based zero-sum games, an entropy game is played on a digraph
(V ,E ) in which the set of vertices V has a non-trivial partition: V = VMin ] VMax ] VNat.
As in the case of stochastic turn-based games, players Min, Max, and Nature control
the states in VMin, VMax and VNat respectively, and they alternate their moves, i.e., E ⊂
VMin × VMax ∪ VMax × VNat ∪ VNat × VMin. We also suppose that the underlying graph
satisfies Assumption 1. In the context of entropy games, player Min is called Despot, player
Max is called Tribune, and Nature is called People. For this reason, we denote VD := VMin,
VT := VMin, and VP := VNat. The name “Tribune” coined in [11], refers to the magistrates
interceding on behalf of the plebeians in ancient Rome.

The first difference between stochastic turn-based games and entropy games lies in the
behavior of Nature: while in stochastic games Nature makes its decisions according to some
fixed probability distribution, in entropy games People is a nondeterministic player, i.e.,
nothing is assumed about the behavior of People. The second difference lies in the definition
of the payoffs received by Tribune. We suppose that every edge (p, d) ∈ E with p ∈ VP and
d ∈ VD is equipped with a multiplicity mpd which is a (positive) natural number. The weight
of a path is defined as the product of the multiplicities of the arcs arising on this path. For
instance, the path (d0, t0, p0, d1, t1, p1, d2, t2) where di ∈ VD, ti ∈ VT and pi ∈ VP , makes 2
and 1/3 turn, and its weight is mp0d1mp1d2 . A game in horizon N is then defined as follows:
if (σ, τ) is a pair of strategies of Despot and Tribune, then we denote by RNd (σ, τ) the sum of
the weights of paths with initial state d that make N turns and that are consistent with the
choice of (σ, τ). Tribune wants to maximize this quantity, while Despot wants to minimize it.
As for stochastic turn-based games, a dynamic programming argument given in [1] shows
that the value V N ∈ RVD

>0 of this game does exist, and that it satisfies the recurrence

V 0 = 1, V N = T (V N−1) , (9)

where 1 is the vector whose entries are identically one and the operator T : RVD
>0 → RVD

>0 is
defined by

Td(x) := min
(d,t)∈E

max
(t,p)∈E

∑
(p,l)∈E

mplxl, for all d ∈ VD . (10)

To define a game that lasts for an infinite number of turns, we consider the limit

V∞d (σ, τ) := lim sup
N→+∞

(RNd (σ, τ))1/N ,

which may be thought of as a measure of the freedom of People. The logarithm of this limit
is known as a topological entropy in symbolic dynamics [35]. The following result shows that
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the value of the entropy game V∞d does exist and that it coincides with the limit of the
renormalized value (V Nd )1/N = [TN (1)]1/Nd of the finite horizon entropy game, so that the
situation is similar to the case of stochastic turn-based games, albeit the renormalization
now involves a Nth geometric mean owing to the multiplicative nature of the payment.

I Theorem 6 ([1]). The entropy game with initial state d has a value V∞d . Moreover, there
are (positional) strategies σ∗ and τ∗ of Despot and Tribune, such that, for all d ∈ VD,

V∞d (σ∗, τ) 6 V∞d = V∞d (σ∗, τ∗) 6 V∞d (σ, τ∗),

for all strategies σ and τ of the two players. In addition, the value vector V∞ := (V∞d )d∈VD

coincides with the vector

lim
N→∞

(
TN (1)

)1/N ∈ RVD
>0 ,

in which the operation ·1/N is understood entrywise.

Entropy games can be cast in the general operator setting of Section 2.2, by introducing the
conjugate operator F : RVD → RVD ,

F := log ◦T ◦ exp (11)

in which exp: RVD 7→ RVD
>0 is the map which applies the exponential entrywise, and log :=

exp−1. Since the maps log and exp are order-preserving, and since the weights mpl appearing
in the expression of T (x) in (10) are nonnegative, the operator F is order-preserving. Moreover,
using the morphism property of the maps log and exp with respect to multiplication and
addition, we see that F is also additively homogeneous, hence, it is an abstract Shapley
operator in the sense of Definition 2. Moreover, it is definable in the real exponential field,
which was shown to be an o-minimal structure by Wilkie [55], and this is precisely how
Theorem 6 is derived in [1] from Theorem 3. Actually, entropy games are studied in [1] in
a more general setting, allowing history dependent strategies and showing that positional
strategies are optimal. It is also shown there that the game has a uniform value in the sense
of Mertens and Neyman [40].

When the (positional) strategies σ, τ are fixed, the value can be characterized by a classical
result of Perron–Frobenius theory.

I Definition 7. Given a pair of strategies (σ, τ) of Despot and Tribune, we define the
ambiguity matrix Mσ,τ ∈ RVD×VD

>0 , with entries (Mσ,τ )k,l = mτ(σ(k)),l if
(
τ(σ(k)), l

)
∈ E

and (Mσ,τ )k,l = 0 otherwise, i.e., this is the weighted transition matrix of the subgraph G σ,τ

obtained by keeping only the arcs VD → VT and VT → VP determined by the two strategies.

The digraph G σ,τ can generally be decomposed in strongly connected components C1, . . . ,Cs,
and each of these components, Ci, determines a principal submatrix of Mσ,τ , denoted by
Mσ,τ [Ci], obtained by keeping only the rows and columns in Ci ∩ VD. We denote by ρ(·)
the spectral radius of a matrix, which is also known as the Perron root when the matrix is
nonnegative and irreducible, see [14] for background.

I Proposition 8 ([47], [56, Th. 5.1]). The value of the subgame with initial state d, induced
by a pair of strategies σ, τ , coincides with

max{ρ(Mσ,τ [Ci]) : there is a dipath d→ Ci in G σ,τ} .
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1: procedure ValueIteration(F )
2: . F a Shapley operator from Rn to Rn

3: u := 0 ∈ Rn

4: repeat u := F (u) . At iteration `, u = F `(0) is the value vector of the game in finite horizon `
5: until t(u) 6 0 or b(u) > 0
6: if t(u) 6 0 then return “cw(F ) 6 0” . Player Min wins for all initial states
7: else return “cw(F ) > 0” . Player Max wins for all initial states
8: end
9: end

Figure 1 Basic value iteration algorithm.

I Remark 9. In the original model of Asarin et al. [11], an entropy game is specified by
finite sets of states of Depot and Tribune, D and T , respectively, by a finite alphabet Σ
representing actions, and by a transition relation ∆ ⊂ T ×Σ×D∪D×Σ×T . A turn consists
of four successive moves by Despot, People, Tribune, and People: in state d ∈ D, Despot
selects an action a ∈ Σ, then, People moves to a state t ∈ P such that (d, a, t) ∈ ∆. Then,
Tribune selects an action b ∈ Σ, and People moves to a state d′ ∈ D such that (t, b, d′) ∈ ∆.
This reduces to the model of [1] by introducing dummy states, identifying a turn in the
game of [11] to a succession of two turns in the game of [1]. Another difference is that
the payment, in [11], corresponds to maxd∈D lim supN→∞(RNd )1/N , and this is equivalent
to letting Tribune choose the initial state before playing the game. Then, the value of the
game in [11] coincides with the maximum of the values of the initial states, maxd V∞d , see [1,
Prop. 11]. Finally in [11], the arcs have multiplicity one, whereas we allow integer multiplicies
(coded in binary), as in [1].

3 Bounding the Complexity of Value Iteration

In this section, F is an (abstract) Shapley operator, i.e., an order-preserving and additively
homogeneous self-map of Rn.

3.1 A Universal Complexity Bound for Value Iteration
The most straightforward idea to solve a mean-payoff game is probably value iteration: we
infer whether or not the mean-payoff game is winning by solving the finite horizon game, for
a large enough horizon. This is formalized in Figure 1.

When the non-linear eigenproblem F (w) = erg(F ) + w is solvable, we shall use the
following metric estimate, which represents the minimal Hilbert’s seminorm of a bias vector

R(F ) := inf {‖w‖H : w ∈ Rn, F (w) = erg(F ) + w} .

In general, however, this non-linear eigenproblem may not be solvable. Then, we consider,
for λ ∈ R, the sets

Sλ(F ) := {v ∈ Rn : λ+ v 6 F (v)} and Sλ(F ) := {v ∈ Rn : λ+ v > F (v)} .

I Theorem 10. Procedure ValueIteration (Figure 1) is correct as soon as cw(F ) > 0 or
cw(F ) < 0, and it terminates in a number of iterations Nvi bounded by

inf
{
‖v‖H
λ

: λ > 0 , v ∈ Sλ(F ) ∪ S−λ(F )
}
. (12)

In particular, if F has a bias vector and erg(F ) 6= 0, we have Nvi 6
R(F )
| erg(F )| .



X. Allamigeon, S. Gaubert, R. D. Katz, M. Skomra 11

1: procedure FPValueIteration(F̃ )
2: u := 0 ∈ Rn, ` := 0 ∈ N, ε ∈ R>0
3: repeat u := F̃ (u); ` := ` + 1 . We suppose that the operator F is evaluated in approximate

arithmetics, so that F̃ (u) is at most at distance ε in the sup-norm from its true value F (u).
4: until `ε+ t(u) 6 0 or −`ε+ b(u) > 0
5: if `ε+ t(u) 6 0 then return “cw(F ) 6 0” . Player Min wins for all initial states
6: end
7: if −`ε+ b(u) > 0 then return “cw(F ) > 0” . Player Max wins for all initial states
8: end
9: end

Figure 2 Value iteration in finite precision arithmetics.

To prove Theorem 10 and some other results, we need the following lemma.

I Lemma 11 ([26, Theorem 8]). Let F be an order-preserving and additively homogeneous
self-map of Rn. Then, b(F `(0)) 6 `cw(F ) 6 `cw(F ) 6 t(F `(0)) for any ` ∈ N.

Proof of Theorem 10. Since v + b(w− v) 6 w 6 v + t(w− v) for any v, w ∈ Rn, and F ` is
order-preserving and additively homogeneous for any ` ∈ N, note that

F `(v)− t(v) = F `(v) + b(−v) 6 F `(0) 6 F `(v) + t(−v) = F `(v)− b(v) ,

for all v ∈ Rn and ` ∈ N.
To prove the theorem, in the first place suppose that cw(F ) > 0. Then, by the definition (6)

of cw(F ) we know that there exist λ > 0 and v ∈ Rn such that v ∈ Sλ(F ). Moreover, observe
that in this case for any λ > 0 and v ∈ Sλ(F ) ∪ S−λ(F ) we necessarily have v ∈ Sλ(F ),
because otherwise we would have v ∈ S−λ(F ), which implies that cw(F ) < 0 and so that
cw(F ) < 0, contradicting our assumption. Therefore, for any λ > 0 and v ∈ Rn such that
v ∈ Sλ(F ) ∪ S−λ(F ), we have λ+ v 6 F (v) and so

`λ− ‖v‖H = `λ+ b(v)− t(v) = b(`λ+ v − t(v)) 6 b(F `(v)− t(v)) 6 b(F `(0))

for all ` ∈ N. Thus, we conclude that 0 6 b(F `(0)) if ` ∈ N is greater than (12). This shows
that Procedure ValueIteration terminates in a number of iterations Nvi bounded by (12)
when cw(F ) > 0. The proof in the case cw(F ) < 0 is analogous.

Finally, observe that the correctness of Procedure ValueIteration readily follows from
Lemma 11. J

A special case of Theorem 10 in which the existence of a bias vector is assumed appeared
(without proof) in [7].
I Remark 12. The infimum in (12) is generally not attained. Consider for instance F :
R2 → R2 given by F (x) = (log(exp(x1) + exp(x2)), x2) − α, where α > 0. Then, since
F2(x) = x2 − α < x2, we have Sλ(F ) = ∅ for λ > 0. Besides, since x− λ > F (x) if and only
if x1 − λ > log(exp(x1) + exp(x2)) − α and x2 − λ > x2 − α, it follows that S−λ(F ) 6= ∅
if and only if λ < α. Now let v ∈ S−λ(F ) for some λ < α. Without loss of generality, we
may assume b(v) = 0. Then, we have v1 − λ > log(exp(v1) + exp(v2))− α > log 2− α and
so ‖v‖H

λ > 1 + log 2−α
λ . We conclude that the infimum in (12) is equal to log 2

α but it is not
attained.

3.2 Value Iteration in Finite Precision Arithmetics
The algorithm in Figure 1 can be adapted to work in finite precision arithmetic. Consider
the variant of the main body of this algorithm, given in Figure 2. Now we assume that each
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evaluation of the Shapley operator F is performed with an error of at most ε > 0 in the
sup-norm. In what follows, we denote by F̃ : Rn → Rn the operator which approximates F ,
as in Procedure FPValueIteration, so it satisfies:

‖F̃ (x)− F (x)‖∞ 6 ε for all x ∈ Rn. (13)

The following result is established by exploiting nonexpansiveness properties of Shapley
operators.

I Theorem 13. Procedure FPValueIteration (Figure 2) is correct as soon as cw(F ) > 2ε
or cw(F ) < −2ε, and it terminates in a number of iterations N ε

vi bounded by

inf
{
‖v‖H
λ− 2ε : λ > 2ε , v ∈ Sλ(F ) ∪ S−λ(F )

}
. (14)

In particular, if F has a bias vector and | erg(F )| > 2ε, we have N ε
vi 6

R(F )
| erg(F )|−2ε .

The proof relies on the next lemma.

I Lemma 14. Denote u` := F `(0) and ũ` := F̃ `(0) for ` ∈ N. Then, we have ‖ũ`−u`‖∞ 6 `ε,
|t(ũ`)− t(u`)| 6 `ε, and |b(ũ`)− b(u`)| 6 `ε for any ` ∈ N.

Proof. We prove the first claim by induction on `. We have ‖ũ1 − u1‖∞ 6 ε by (13).
Furthermore, since F is nonexpansive we get

‖ũ` − u`‖∞ = ‖F̃ (ũ`−1)− F (u`−1)‖∞
6 ‖F̃ (ũ`−1)− F (ũ`−1)‖∞ + ‖F (ũ`−1)− F (u`−1)‖∞
6 ε+ ‖ũ`−1 − u`−1‖∞ 6 `ε .

To prove the other claims, fix ` ∈ N and let k ∈ [n] be such that t(u`) = u`k. Then, we
have t(u`) = u`k 6 ũ`k + `ε 6 t(ũ`) + `ε. Similarly, if k′ ∈ [n] is such that t(ũ`) = ũ`k′ , then
t(ũ`) = ũ`k′ 6 u`k′ + `ε 6 t(u`) + `ε. Thus, we get |t(ũ`)− t(u`)| 6 `ε. The proof of the fact
that |b(ũ`)− b(u`)| 6 `ε is analogous. J

Proof of Theorem 13. To prove that procedure FPValueIteration returns the correct
answer, suppose that it stops at the `th iteration and, in the first place, that the condition
−`ε+ b(u) = −`ε+ b(F̃ `(0)) > 0 is satisfied. Then, we have b(F `(0)) > 0 by Lemma 14,
and so we conclude that cw(F ) > 0 by Lemma 11. Therefore, player Max wins for all initial
states if the condition −`ε+ b(F̃ `(0)) > 0 is satisfied. If this condition is not satisfied, we
necessarily have `ε+ t(F̃ `(0)) 6 0 due to the stopping condition. Then, we can prove that
cw(F ) 6 0 using symmetric arguments to the ones applied in the case in which the condition
−`ε+ b(F̃ `(0)) > 0 is satisfied, and so player Min wins for all initial states.

In order to bound the number of iterations required by FPValueIteration, suppose
that cw(F ) > 2ε. Then, by definition there exist λ > 2ε and v ∈ Sλ(F ). Moreover, if λ and
v are such that λ > 2ε and v ∈ Sλ(F ) ∪ S−λ(F ), then we have v ∈ Sλ(F ), as v ∈ S−λ(F )
would imply that cw(F ) < −2ε. Therefore λ+ v 6 F (v) and, by Lemma 14,

`λ− ‖v‖H = b(`λ+ v − t(v)) 6 b(F `(v)− t(v)) 6 b(F `(0)) 6 b(F̃ `(0)) + `ε .

Hence, if ` > ‖v‖H
λ−2ε , we have −`ε+ b(F̃ `(0)) > 0. Therefore, FPValueIteration terminates

in a number of iterations bounded by (14). The proof in the case where cw(F ) < −2ε is
analogous. J
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1: procedure ApproximateConstantMeanPayoff(F )
2: u, x, y := 0 ∈ Rn, ` := 0 ∈ N, δ ∈ R>0 . The number δ is the desired precision of approximation.
3: repeat u := F̃ (u); ` := `+ 1 . The operator F is evaluated in approximate arithmetic, so that
F̃ (u) is at most at distance ε := δ/8 in the sup-norm from its true value F (u).

4: until t(u)− b(u) 6 (3/4)δ`
5: κ := b(u)/`; λ := t(u)/`
6: u := 0
7: for i = 1, 2, . . . , `− 1 do u := F̃ (u); x := max{x,−iκ+ u}; y := min{y,−iλ+ u}
8: done
9: return “[cw(F ), cw(F )] is included in the interval [κ − δ/8, λ + δ/8], which is of width at most δ.

Furthermore, we have κ− δ/8 + x 6 F (x) and λ+ δ/8 + y > F (y).” . All initial states have a value
in [κ− δ/8, λ+ δ/8].

10: end

Figure 3 Approximating the value of a mean-payoff game when it is independent of the initial
state, and computing approximate optimality certificates, working in finite precision arithmetic.

When the value of a mean-payoff game is independent of the initial state, Procedure Ap-
proximateConstantMeanPayoff of Figure 3 returns sub and super-eigenvectors x and
y satisfying κ − δ/8 + x 6 F (x) and λ + δ/8 + y > F (y), for some κ, λ ∈ R such that the
interval [κ−δ/8, λ+δ/8] is of width at most some desired precision δ. As discussed above, by
Theorem 5 this entails that [cw(F ), cw(F )] is included in the interval [κ− δ/8, λ+ δ/8]. The
construction of these sub and sup-eigenvectors, by taking infima and suprema of normalized
orbits of F , is inspired by [26, Proof of Lemma 2].

I Lemma 15 (cf. [26, Lemma 2]). Suppose that b(F̃ `(0)) > λ` for some λ ∈ R and ` ∈ N.
If we define

û := 0 ∨
(
−λ+ F̃ (0)

)
∨ · · · ∨

(
−(`− 1)λ+ F̃ `−1(0)

)
,

then λ− ε+ û 6 F (û). Analogously, if t(F̃ `(0)) 6 λ` and we define

u := 0 ∧
(
−λ+ F̃ (0)

)
∧ · · · ∧

(
−(`− 1)λ+ F̃ `−1(0)

)
,

then λ+ ε+ u > F (u).

Proof. Since F is order-preserving, we have F (x ∨ y) > F (x) ∨ F (y) for every x, y ∈ Rn.
Therefore, we get

F (û) > F (0) ∨
(
−λ+ F

(
F̃ (0)

))
∨ · · · ∨

(
−(`− 1)λ+ F

(
F̃ `−1(0)

))
> −ε+ F̃ (0) ∨

(
−λ− ε+ F̃ 2(0)

)
∨ · · · ∨

(
−(`− 1)λ− ε+ F̃ `(0)

)
> −ε+ F̃ (0) ∨

(
−λ− ε+ F̃ 2(0)

)
∨ · · · ∨

(
−(`− 2)λ− ε+ F̃ `−1(0)

)
∨ (λ− ε)

= λ− ε+ û .

The proof of the fact that λ+ ε+ u > F (u) if t(F̃ `(0)) 6 λ` is analogous. J

I Theorem 16. Suppose that cw(F ) = cw(F ), and let ρ denote this common value. Then,
Procedure ApproximateConstantMeanPayoff (Figure 3) halts and is correct for any
given desired precision of approximation δ ∈ R>0. Furthermore, if R := max{‖v‖H, ‖w‖H},
where v, w ∈ Rn are any two vectors that satisfy ρ− δ/8 + v 6 F (v) and ρ+ δ/8 +w > F (w),
then this procedure stops after at most d8R/δe iterations of the first loop.
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Proof. Assume cw(F ) = cw(F ). Let ε := δ/8 as in Figure 3, ρ := cw(F ) and R :=
max{‖v‖H, ‖w‖H}, where v, w ∈ Rn are any two vectors that satisfy ρ− ε+ v 6 F (v) and
ρ+ ε+w > F (w) (note that such vectors exist due to the fact that cw(F ) = cw(F ) = ρ and
ε > 0). Since v 6 t(v) + 0, for every ` ∈ N we get `ρ− `ε+ v 6 F `(v) 6 t(v) + F `(0). Thus,
F `(0) > `ρ− `ε+ v − t(v) > `ρ− `ε− ‖v‖H. Analogously, we get F `(0) 6 `ρ+ `ε+ ‖w‖H.
Therefore, if we denote ũ` := F̃ `(0), Lemma 14 shows that t(ũ`) 6 `ρ + `ε + R + `ε =
`ρ+ `δ/4 +R, and analogously that b(ũ`) > `ρ− `δ/4−R. Hence t(ũ`)−b(ũ`) 6 `δ/2 + 2R.
In particular, for every ` > 8R/δ we have t(ũ`) − b(ũ`) 6 (3/4)δ` and so the stopping
condition of the first loop is achieved within the first d8R/δe iterations. Moreover, combining
Lemmas 11 and 14 we get

b(ũ`)− `ε 6 b
(
F `(0)

)
6 `ρ 6 t

(
F `(0)

)
6 t(ũ`) + `ε

for every ` ∈ N. Therefore, ρ belongs to the interval [b(ũ`)/`− δ/8, t(ũ`)/`+ δ/8] and this
interval has length at most δ whenever t(ũ`)− b(ũ`) 6 (3/4)δ`. Furthermore, Lemma 15
implies that κ− δ/8 + x = κ− ε+ x 6 F (x) and λ+ δ/8 + y > F (y). J

I Remark 17. An alternative approach to compute the ergodic constant ρ of the game with
Shapley operator F is to apply relative value iteration with Krasnoselskii-Mann damping,
see [27], which consists in computing the sequences yk = F (xk−1) − t(F (xk−1))1, and
xk = αyk + (1− α)xk−1, for any 0 < α < 1. We have b(F (xk)− xk) 6 ρ 6 t(F (xk)− xk),
and it is shown there, as a consequence of a general result on Krasnoselskii-Mann iteration
in Banach spaces [13], that as soon as F admits a bias vector, ‖xk − F (xk)‖H 6 O(1/

√
k),

see [27, Coro. 13]. In this way, we obtain an approximation of ρ with a precision ε in
O(1/ε2) iterations. In contrast, Theorem 16 provides an approximation of the same quality in
only O(1/ε) iterations. However, note that relative value iteration with Krasnoselskii-Mann
damping produces a vector x := xk such that ρ+ x−O(1/

√
k) 6 F (x) 6 ρ+ x+O(1/

√
k)

when it stops after k iterations, whereas Procedure ApproximateConstantMeanPayoff
returns two vectors x and y such that ρ+ x−O(1/k) 6 F (x) and F (y) 6 ρ+ y+O(1/k). In
particular, this procedure returns a pair (x, y) of approximate optimality certificates. Hence,
by “relaxing” the constraint that “x = y” in the optimality certificates, we passed from
an iteration complexity of O(1/ε2) to O(1/ε) to get an ε-approximation. Note also that
Procedure ApproximateConstantMeanPayoff differs from Krasnoselskii-Mann damping
in the fact that it replaces a linear averaging of xk−1 and yk by a non-linear “averaging”
operation, taking a supremum or infimum of a normalized orbit, as in Lemma 15.

3.3 Deciding Whether the Value Is Independent of the Initial State
In this section, we will show how the value iteration algorithm can be adapted to decide
whether or not a given game has constant value. Our analysis is based on an abstract notion
of dominion.

As previously, we suppose that F : Rn → Rn is an order-preserving and additively
homogeneous operator. Recall that thanks to (8), F is canonically extended to define
a self-map of R̄n. Furthermore, given a nonempty set S ⊂ [n], we define the operator
FS : R̄S → R̄S as FS := pS ◦ F ◦ iS , where pS : R̄n → R̄S is the projection on the
coordinates in S which is defined as usual by pS

j (x) = xj for j ∈ S , and iS : R̄S → R̄n is
defined by iSj (x) = xj if j ∈ S and iSj (x) = −∞ otherwise. The next two lemmas provide
elementary properties of the operators FS .

I Lemma 18. If S ⊂ [n] is any set, then the operator FS is continuous, order-preserving,
and additively homogeneous.
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Proof. By definition, FS is a composition of continuous, order-preserving, and additively
homogeneous maps. J

I Lemma 19. If S1 and S2 are two nonempty subsets of [n] such that S1 ⊂ S2, then(
FS1

)`
j
(0) 6

(
FS2

)`
j
(0) for all ` ∈ N and j ∈ S1. In particular, we have cw(FS1) 6

cw(FS2).

Proof. Observe that if x ∈ R̄S1 and y ∈ R̄S2 are such that xj 6 yj for all j ∈ S1, then
FS1
j (x) 6 FS2

j (y) for all j ∈ S1. Indeed, the facts that xj 6 yj for all j ∈ S1 and that
S1 ⊂ S2 imply iS1(x) 6 iS2(y), and so for any j ∈ S1 we have FS1

j (x) = Fj(iS1(x)) 6

Fj(iS2(y)) = FS2
j (y) because F is order-preserving. Hence, by setting (x, y) := (0,0) we get

the first claim for ` = 1. Then, this claim follows by induction setting x := (FS1)`−1(0) and
y := (FS2)`−1(0).

The second claim follows from the first claim and Theorem 5. J

I Definition 20. A dominion (of Player Max) is a nonempty set D ⊂ [n] such that FD

preserves RD , i.e., such that FD(x) ∈ RD for all x ∈ RD .

As discussed in [8, 4], for stochastic mean-payoff games (with finite action spaces), a dominion
of a player can be interpreted as a set of states such that the player can force the game to
stay in this set if the initial state belongs to it. This terminology differs from the one of [34],
in which a dominion is required in addition to consist only of initial states that are winning
for this player.

I Lemma 21. A set D ⊂ [n] is a dominion if and only if FD(0) ∈ RD .

Proof. If D ⊂ [n] is a dominion, then FD(0) ∈ RD . Conversely, given any x ∈ RD , we have
FD(x) > b(x) + FD(0) because x > b(x) + 0 and FD is order-preserving and additively
homogeneous. Thus, if FD(0) ∈ RD , we conclude that FD(x) ∈ RD for all x ∈ RD . J

The procedures that we discuss in this section require an additional assumption on the
structure of the Shapley operator F .

I Assumption 2. We assume that the limit χD := lim`→∞
(FD)`(0)

` ∈ RD exists for every
dominion D ⊂ [n]. Furthermore, we assume that the set Dmax := {j ∈ [n] : χ[n]

j = cw(F )} is
a dominion and that it satisfies cw(FDmax) = cw(FDmax) = cw(F ).

I Remark 22. We note that the first part of Assumption 2 holds automatically when the
Shapley operator F : Rn → Rn is definable in an o-minimal structure. Indeed, in this case
the relation (8) implies that FD is definable in the same structure for every dominion D , so
χD exists by Theorem 3. We will see that the second part of the assumption applies to the
games considered in this paper.
I Remark 23. Assumption 2 will allow us to make an induction on the number states, by a
reduction to a simpler game with a reduced state space D . In particular, the assumption that
the limit χD = lim`→∞

(FD)`(0)
` exists will allow us to apply value iteration to the Shapley

operator of the reduced game, FD .

I Lemma 24. If D1 and D2 are two dominions such that D1 ⊂ D2, then χD1
j 6 χD2

j for all
j ∈ D1.

Proof. Since χD1 = lim`→∞
(FD1 )`(0)

` and χD2 = lim`→∞
(FD2 )`(0)

` , the lemma readily
follows from Lemma 19. J
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1: procedure DecideConstantValue(F, δ,R)
2: u := 0 ∈ Rn, ` := 0 ∈ N.
3: F̃ := any map such that F̃ (u) is at most at distance ε := δ/8 in the sup-norm from F (u).
4: repeat u := F̃ (u); ` := `+ 1
5: until t(u)− b(u) 6 (3/4)δ` or ` = 1 + d8R/δe
6: if ` = 1 + d8R/δe then
7: S := {i : ui = b(u)}
8: return S . The value of the game depends on the initial state. We have χi < cw(F ) for all
i ∈ S .

9: else
10: return ∅ . The value of the game is independent of the initial state.
11: end
12: end

Figure 4 Algorithm that decides if the value is constant.

I Lemma 25. Suppose that D ⊂ [n] is a dominion that contains the set of states of maximal
value, i.e., {j ∈ [n] : χj = cw(F )} ⊂ D. Then, cw(F ) = cw(FD) and {j ∈ [n] : χj =
cw(F )} = {j ∈ D : χD

j = cw(FD)}.

Proof. We have χD
j 6 χj for all j ∈ D by Lemma 24. Let Dmax := {j ∈ [n] : χj = cw(F )} ⊂

D . Then, Dmax is a dominion of the operator F by Assumption 2. Moreover, since Dmax ⊂ D ,
we have χDmax

j 6 χD
j 6 χj = cw(F ) for all j ∈ Dmax by Lemma 24. As χDmax

j = cw(F ) for
all j ∈ Dmax by Assumption 2, it follows that χD

j = cw(F ) for all j ∈ Dmax. Furthermore, if
j /∈ Dmax, then χD

j 6 χj < cw(F ), which finishes the proof. J

From now on, we denote χ := χ[n] and Dmax := {j ∈ [n] : χj = cw(F )}. The following
theorem applies to Shapley operators for which an a priori separation bound is known: if
cw(F ) > cw(F ), it requires an apriori bound δ > 0 such that cw(F ) − cw(F ) > δ. We
note that the existence of the approximate sub and super-eigenvectors v and w used in this
theorem follows from Assumption 2.

I Theorem 26. Suppose that F is such that either cw(F ) = cw(F ) or cw(F )− cw(F ) > δ

for some δ > 0. Let Dmax be the set of states of maximal value and R := max{‖v‖H, ‖w‖H},
where v, w ∈ RDmax are any two vectors that satisfy cw(F ) − δ/8 + v 6 FDmax(v) and
cw(F ) + δ/8 + w > FDmax(w). Then, Procedure DecideConstantValue (Figure 4) is
correct.

The proof relies on the following lemma.

I Lemma 27. Let F̃ : Rn → Rn be such that ‖F̃ (x)− F (x)‖∞ 6 ε for all x ∈ Rn. Suppose
that S ⊂ [n], v ∈ RS and γ > 0 are such that cw(F )− γ + v 6 FS (v). Then, for all ` ∈ N
and j ∈ S , we have F̃ `j (0) > `(cw(F )− γ − ε)− ‖v‖H.

Proof. In the first place, note that cw(F ) − γ + iS (v) 6 F (iS (v)). Indeed, if j ∈ S we
have cw(F ) − γ + iSj (v) 6 Fj(iS (v)) because iSj (v) = vj and Fj(iS (v)) = FS

j (v), and if
j /∈ S we also have cw(F )− γ + iSj (v) 6 Fj(iS (v)) because iSj (v) = −∞.

Now, since 0 > −t(v) + iS (v) (note that t(v) 6= −∞ because v ∈ RS ), we get F `(0) >
−t(v) + F `(iS (v)) > −t(v) + `(cw(F ) − γ) + iS (v). Hence, for every j ∈ S we have
F `j (0) > −t(v) + `(cw(F )− γ) + iSj (v) = −t(v) + `(cw(F )− γ) + vj > `(cw(F )− γ)− ‖v‖H.
Therefore, by Lemma 14, we conclude that F̃ `j (0) > `(cw(F )− γ − ε)− ‖v‖H. J

Proof of Theorem 26. In the first place, note that vectors v, w ∈ RDmax satisfying the
condition of the theorem exist owing to Assumption 2.
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1: procedure Extend(D ,S )
2: . S ⊂ D is a nonempty set
3: while True do
4: S ′ := ∅
5: define x ∈ R̄D as xj := −∞ for j ∈ S and xj = 0 otherwise
6: for j ∈ D do
7: if FD

j (x) = −∞ then
8: S ′ := S ′ ∪ {j}
9: end
10: done
11: if S ∪S ′ 6= S then
12: S := S ∪S ′

13: else
14: return S
15: end
16: done
17: end

Figure 5 Procedure that extends the set laying outside some dominion.

Denote ũ` := F̃ `(0) for ` ∈ N. As in the proof of Theorem 16, we note that Lemmas 11
and 14 imply that we have the inequality

b(ũ`)− `(δ/8) 6 `cw(F ) 6 `cw(F ) 6 t(ũ`) + `(δ/8) . (15)

Hence, if the condition t(ũ`)−b(ũ`) 6 (3/4)δ` is satisfied for some `, then cw(F )−cw(F ) 6 δ

and so cw(F ) = cw(F ) by our assumption on δ. Conversely, if cw(F ) = cw(F ), then
Dmax = [n] and Theorem 16 shows that the condition t(ũ`)− b(ũ`) 6 (3/4)δ` is satisfied for
some ` 6 d8R/δe. Hence, the algorithm correctly decides if the value of the game is constant.

To finish the proof, suppose the value of the game is not constant, so cw(F )−cw(F ) > δ by
our assumption on δ, and let ` := d8R/δe+ 1. Then, by Lemma 27 for any j ∈ Dmax we have
ũ`j > `(cw(F )−δ/8−ε)−‖v‖H > `(cw(F )−δ/8−ε)−R > `cw(F )−3`(δ/8) since R < `(δ/8)
and ε = δ/8 in Procedure DecideConstantValue. On the other hand, (15) implies
b(ũ`)− `(δ/8) 6 `cw(F ) < `(cw(F )− δ). Hence, we have b(ũ`) < `cw(F )− 7`(δ/8) < ũ`j .
We conclude that, if we take any k ∈ [n] such that ũk = b(ũ`), then k /∈ Dmax. J

3.4 Finding the States of Maximal Value
We now refine Theorem 26, showing in Theorem 30 below that we can in fact extract all the
initial states with maximal value. To this end, we introduce and analyze two procedures,
Extend and TopClass, which are used to obtain Theorem 30.

I Lemma 28. Procedure Extend (Figure 5) has the following properties. Let D ⊂ [n] be
a dominion and S ⊂ D be a non-empty set. If D ′ is a dominion such that D ′ ⊂ D and
S ∩D ′ = ∅, then Extend(D ,S ) ∩D ′ = ∅. Besides, D \Extend(D ,S ) is a dominion.

Proof. At each execution of the while loop, the procedure either stops or strictly increases
the cardinality of S ⊂ D . Therefore, the procedure stops after at most |D | − 1 executions
of the while loop.

To prove the first property of the procedure, let D ′ ⊂ D be a dominion such that
S ∩D ′ = ∅. Since S ∩D ′ = ∅ and D ′ ⊂ D , we have iD′(0) 6 iD(x), where x is the vector
defined in the while loop of the procedure (i.e., x := iD\S (0)). Hence, F

(
iD′(0)

)
6 F

(
iD(x)

)
because F is order-preserving. Since D ′ is a dominion, we get −∞ < FD′

j (0) = Fj(iD
′(0)) 6

Fj
(
iD(x)

)
= FD

j (x) for all j ∈ D ′. Therefore, S ′ ∩D ′ = ∅ and so (S ∪S ′) ∩D ′ = ∅. In
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1: procedure TopClass(F, δ,R)
2: D := [n]
3: while True do
4: S := DecideConstantValue(FD , δ, R)
5: if S = ∅ then
6: return D . D is the set of states that have the maximal value
7: end
8: D := D \ Extend(D ,S )
9: done
10: end

Figure 6 Procedure that finds the set of states with maximal value.

other words, the set S ∪S ′ obtained by a single execution of the while loop in the procedure
is disjoint from D ′. Therefore, we have Extend(D ,S ) ∩D ′ = ∅.

To prove the second property, let D ′ := D \Extend(D ,S ), and let x ∈ R̄n be the vector
defined as xj = −∞ for j ∈ Extend(D ,S ) and xj = 0 otherwise (i.e., let x := iD′(0)).
The stopping criterion of the procedure implies that {j ∈ D : FD

j

(
pD(x)

)
= −∞} ⊂

Extend(D ,S ). Since x = iD
(
pD(x)

)
, we have FD

j

(
pD(x)

)
= Fj(x) for every j ∈ D .

Therefore, {j ∈ D : Fj(x) = −∞} ⊂ Extend(D ,S ) and so Fj(x) > −∞ for all j ∈ D ′. In
particular, we have FD′

j (0) = Fj(iD
′(0)) = Fj(x) > −∞ for all j ∈ D ′. Hence, FD′(0) ∈ RD′

and D ′ is a dominion by Lemma 21. J

Let

sep(F ) := inf
D

(
cw(FD)− cw(FD)

)
where the infimum is taken over all the dominions D of F which contain all the states of
maximal value and satisfy cw(FD)− cw(FD) > 0.

I Theorem 29. Let δ > 0 be such that δ < sep(F ), Dmax be the set of states of maximal value
and R := max{‖v‖H, ‖w‖H}, where v, w ∈ RDmax are any two vectors that satisfy cw(F )−
δ/8 + v 6 FDmax(v) and cw(F ) + δ/8 +w > FDmax(w). Then, Procedure TopClass(F, δ,R)
(Figure 6) halts after at most n iterations of the while loop, and correctly computes the set of
initial states with maximal value.

Proof. Fix any dominion D ⊂ [n] such that Dmax ⊂ D and consider two cases. If
D = Dmax, then we have cw(F ) = cw(FD) = cw(FD) by Assumption 2. By applying
Theorem 26 to FD , Procedure DecideConstantValue(FD , δ, R) outputs ∅. If D 6= Dmax,
then we have cw(F ) = cw(FD) 6= cw(FD) by Lemma 25. Thus, cw(FD) − cw(FD) >
sep(F ) > δ by the definition of sep(F ). Hence, by applying Theorem 26 to FD , Proce-
dure DecideConstantValue(FD , δ, R) outputs some nonempty set S ⊂ D such that
χD
i < cw(F ) for all i ∈ S . In particular, S ∩ Dmax = ∅ by Lemma 25. Therefore, by

Lemma 28, the set D \ Extend(D ,S ) is a dominion that contains Dmax and is strictly
smaller than D . By induction, if D` denotes the set D at the `th iteration of the while loop
in TopClass(F, δ,R), then we have [n] = D1 ) D2 ) · · · ⊃ Dmax and all of the sets D` are
dominions. Furthermore, Procedure TopClass(F, δ,R) stops only when it finds a set Dp

such that Dp = Dmax and outputs Dp as the set of states with maximal value. J

To state the final result of this section, we will suppose that we have access to an oracle
that approximates (the canonical extension (8) of) F to a given precision ε > 0. More
precisely, given a point x ∈ R̄n, the oracle is supposed to output a point y ∈ R̄n that satisfies
yj = −∞ ⇐⇒ Fj(x) = −∞ and |Fj(x)− yj | 6 ε for all j such that Fj(x) 6= −∞.
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I Theorem 30. Let δ > 0 be such that δ < sep(F ), Dmax be the set of states of maximal
value and R := max{‖v‖H, ‖w‖H}, where v, w ∈ RDmax are any two vectors that satisfy
cw(F ) − δ/8 + v 6 FDmax(v) and cw(F ) + δ/8 + w > FDmax(w). Then, the set of initial
states of maximal value can be found by making at most n2 + nd8R/δe calls to an oracle that
approximates F to precision ε := δ/8.

Proof. Denote the oracle by F̃ : R̄n → R̄n and let D1, . . . ,Dp be as in the proof of Theorem 29.
If D := D` for some ` ∈ [p], then |FD

j (x) − F̃j
(
iD(x)

)
| 6 δ/8 for every x ∈ RD and j ∈ D .

Indeed, since D is a dominion, we have FD
j (x) = Fj

(
iD(x)

)
> −∞ for all j ∈ D and therefore

|FD
j (x) − F̃j

(
iD(x)

)
| 6 δ/8 by the definition of F̃ . Hence, the map that approximates

FD : RD → RD as required by Procedure DecideConstantValue(FD , δ, R) is obtained by
calling F̃ . Furthermore, Procedure DecideConstantValue(FD , δ, R) finishes after making
at most 1 + d8R/δe calls to the oracle. Moreover, for every x ∈ R̄D and j ∈ D we have
FD
j (x) = −∞ ⇐⇒ F̃j

(
iD(x)

)
= −∞ by the definition of F̃ . Therefore, we can replace every

call to FD(x) in Extend(D ,S ) by a call to F̃
(
iD(x)

)
. We also note that Extend(D ,S )

makes at most n − 1 calls to the oracle. Therefore, a single iteration of the while loop in
TopClass(F, δ,R) can be done by making at most n+ d8R/δe calls to the oracle. The claim
follows from the fact that TopClass finishes after at most n iterations of the while loop. J

4 Application to Stochastic Mean-Payoff Games

In this section, we apply our results to stochastic mean-payoff games. We follow the notation
concerning stochastic mean-payoff games as introduced in Section 2.1. In particular, we
suppose that F is of the form given in (1). Before starting, we note that the continuous
extension of F to R̄VMin is still given by the same formula (1), with the convention that
0 · (−∞) = 0. Indeed, under this convention, the operations min, max, and x → α · x for
α > 0 are continuous in R̄.

4.1 Dominions of Stochastic Mean-Payoff Games

We first describe the dominions in the special case of stochastic mean-payoff games, and
deduce that this class of games satisfies Assumption 2.

Intuitively speaking, D ⊂ VMin is a dominion if player Max can force the game to
stay in D provided that the initial state of the game belongs to D .To make this more
precise, we use the following notation. If S ⊂ VMin is any subset, then we denote by
V S

Nat ⊂ VNat the set of vertices controlled by Nature whose all outgoing edges go to S ,
i.e., V S

Nat := {k ∈ VNat :
∑
l∈S Pkl = 1}. Moreover, we denote by V S

Max ⊂ VMax the set of
vertices controlled by Max which have at least one outgoing edge that goes to V S

Nat, i.e.,
V S

Max := {i ∈ VMax : ∃k ∈ V S
Nat, (i, k) ∈ E }. Furthermore, we denote by (V S ,E S ) the

subgraph of (V ,E ) induced by S ] V S
Max ] V S

Nat.

I Lemma 31. A set D ⊂ VMin is a dominion of a stochastic mean-payoff game if and only
if all edges leaving D go to V D

Max, i.e., {i ∈ VMax : ∃j ∈ D , (j, i) ∈ E } ⊂ V D
Max. In particular,

if D is a dominion, then the sets V D
Nat and V D

Max are nonempty. Furthermore, if D is a
dominion, then we have the equality

FD
j (x) = min

(j,i)∈E S

(
−Aij + max

(i,k)∈E S

(
Bik +

∑
(k,l)∈E S

Pklxl
))

for all j ∈ D .
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Proof. Let D ⊂ VMin be any set. In the first place, note that for every x ∈ R̄D , by the
definition of V D

Nat, for every k ∈ VNat we have∑
(k,l)∈E

PkliD(x)l =
{∑

(k,l)∈E D Pklxl if k ∈ V D
Nat,

−∞ otherwise.

Thus, by the definition of V D
Max, it follows that

max
(i,k)∈E

(
Bik +

∑
(k,l)∈E

PkliD(x)l
)

=
{

max(i,k)∈E D

(
Bik +

∑
(k,l)∈E D Pklxl

)
if i ∈ V D

Max,
−∞ otherwise,

for all i ∈ VMax. We conclude that

Fj
(
iD(x)

)
= (16)

min
(j,i)∈E D

(
−Aij + max

(i,k)∈E D

(
Bik +

∑
(k,l)∈E D

Pklxl
))

if i ∈ V D
Max for all (j, i) ∈ E ,

−∞ otherwise,

for all j ∈ VMin.
If we assume that D is a dominion, we necessarily have that i ∈ V D

Max for every j ∈ D

and i ∈ VMax such that (j, i) ∈ E , because otherwise (16) would imply that FD
j (0) = −∞

for some j ∈ D , contradicting Lemma 21. Then, when D is a dominion, (16) also shows that

FD
j (x) = min

(j,i)∈E D

(
−Aij + max

(i,k)∈E D

(
Bik +

∑
(k,l)∈E D

Pklxl
))

for every x ∈ R̄D and j ∈ D .
Assume now that D has the property that for every j ∈ D and i ∈ VMax such that (j, i) ∈ E

we have i ∈ V D
Max. Then, by (16) we have FD

j (0) = min(j,i)∈E D

(
−Aij + max(i,k)∈E D (Bik)

)
for every j ∈ D . Besides, since every vertex in VMin has at least one outgoing edge by
Assumption 1, for every j ∈ D there exists i ∈ V D

Max such that (j, i) ∈ E D . It follows that
FD
j (0) > −∞ for every j ∈ D because maxk∈V D

Nat
(Bik) > −∞ for every i ∈ V D

Max by the
definition of V D

Max. Thus, by Lemma 21 we conclude that D is a dominion. J

Lemma 31 implies that if D is a dominion, then FD is the Shapley operator of a stochastic
mean-payoff game on the subgraph (V D ,E D). We refer to this game as the subgame induced
by D . We note that this subgame satisfies Assumption 1.

I Lemma 32. If D ⊂ VMin is a dominion, then the subgame induced by D satisfies Assump-
tion 1.

Proof. Lemma 31 implies that every vertex j ∈ D has an outgoing edge to a vertex i ∈ V D
Max.

The vertices in V D
Nat and V D

Max have at least one outgoing edge in E D by definition. J

The following lemma characterizes the recession operators of Shapley operators of stochas-
tic mean-payoff games. Recall that if F is a self-map of Rn, the recession operator of F is
defined by

F̂ (x) := lim
β→∞

β−1F (βx), x ∈ Rn .

It is immediate that when G and H are Lipschitz continuous self-maps of Rn that admit
recession functions, so does G ◦H, and Ĝ ◦H = Ĝ ◦ Ĥ. Moreover, if F is a self-map of Rn
that is order-preserving and additively homogeneous, so is F̂ . All the Shapley operators of
the concrete games considered in this paper admit recession functions. In particular:
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I Lemma 33. For every j ∈ VMin we have

F̂j(x) = min
(j,i)∈E

max
(i,k)∈E

∑
(k,l)∈E

Pklxl . J

I Lemma 34. The Shapley operators of stochastic mean-payoff games satisfy Assumption 2.

Proof. The fact that F satisfies the first part of Assumption 2 follows from Remark 22.
Alternatively, to prove this part it is enough to note that F has an escape rate by Theorem 4
and, by Lemma 31, the same is true for the operator FD when D is a dominion.

In order to prove the second part of Assumption 2, let τ be an optimal strategy of Max
in the stochastic mean-payoff game described by F . Consider the Shapley operator

F τj (x) := min
(j,i)∈E

(
−Aij +Biτ(i) +

∑
(τ(i),l)∈E

Pτ(i)lxl
)
,

of the game in which Max plays according to τ . Since τ is optimal, we have χ =
lim`→∞

(F τ )`(0)
` . Let F̂ τ be the recession operator of F τ . By Lemma 33 we have

F̂ τj (x) = min
(j,i)∈E

∑
(τ(i),l)∈E

Pτ(i)lxl

Furthermore, by a standard observation, F̂ τ (χ) = χ, see e.g. [45] or [3, Prop. 3.1]. Note
that

∑
(k,l)∈E Pklχl = cw(F ) for every k ∈ V Dmax

Nat and
∑

(k,l)∈E Pklχl < cw(F ) for all
k ∈ VNat \ V Dmax

Nat .Therefore, the equality F̂ τ (χ) = χ implies that for every j ∈ Dmax and
every i ∈ VMax such that (j, i) ∈ E we have τ(i) ∈ V Dmax

Nat . In particular, every such i belongs
to V Dmax

Max and Dmax is a dominion by Lemma 31.
To complete the proof, recall that for all j ∈ Dmax we have χDmax

j 6 cw(F ) by Lemma 24.
To prove that cw(F ) 6 χDmax

j for j ∈ Dmax, let σDmax : Dmax → V Dmax
Max be an optimal

strategy of Min in the subgame induced by Dmax and let σ : VMin → VMax be any strategy of
Min that agrees with σDmax on Dmax. Likewise, let τDmax : V Dmax

Max → V Dmax
Nat be any strategy

of Max in the subgame induced by Dmax that agrees with τ on the set {i ∈ V Dmax
Max : ∃j ∈

Dmax, (j, i) ∈ E }. Note that there is at least one such strategy, because we have shown above
that τ(i) ∈ V Dmax

Nat for any i that belongs to this set. Furthermore, if the initial state j of the
game belongs to Dmax and the players use the strategies (σ, τ), then the game never leaves
the set of states Dmax ] V Dmax

Max ] V Dmax
Nat by the definition of V Dmax

Nat . Even more, (σ, τ) and
(σDmax , τDmax) generate the same probability measures on the possible trajectories starting at
j. In particular, we have gj(σ, τ) = gj(σDmax , τDmax) for all j ∈ Dmax. Hence, the optimality
of σDmax and τ implies χDmax

j > gj(σDmax , τDmax) = gj(σ, τ) > χj = cw(F ). J

4.2 Bit-Complexity Estimates for Stochastic Mean-Payoff Games
We start by bounding the separation sep and the metric estimate R(F ), when F is the
Shapley operator of a stochastic turn-based zero-sum game as in (1). We recall that the
payoffs Aij and Bik are integers. This is not more special than assuming that they are
rational numbers (we may always rescale rational payments so that they become integers).We
set

W := max {|Aij −Bik| : i ∈ VMax, j ∈ VMin, k ∈ VNat} . (17)

We also assume that the probabilities Pkj are rational, and that they have a common
denominator M ∈ N>0, Pkj = nkj/M , where nkj ∈ {0, . . . ,M} for all k ∈ VNat and j ∈ VMin.
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We say that a state k ∈ VNat is a significant random state if there are at least two indices
j, j′ ∈ VMin such that Pkj > 0 and Pkj′ > 0. We denote by s(P ) (or simply s, when P is
clear from the context) the number of significant random states. The following separation
bound improves an estimate in [18].

I Theorem 35. We have sep(F ) > 1/(nMmin{s,n−1})2.

We will deduce this theorem from an optimal bit-complexity result for Markov chains,
established in [51].

I Lemma 36 ([51]). Suppose that a Markov chain with transition matrix Q and n states is
irreducible, and that the transition probabilities are rational numbers whose denominators
divide the integer M . Let s := s(Q), and let π ∈ (0, 1]n×n be the invariant measure of the
chain. Then, the least common denominator of the rational numbers πj, j ∈ [n], is not
greater than nMmin{s,n−1}.

I Lemma 37. Both cw(F ) and cw(F ) are rational numbers whose denominators are not
greater than nMmin{s,n−1}.

Proof. Let σ and τ be optimal strategies of players Min and Max respectively. Consider the
Shapley operator

Fσ,τj (x) := −Aσ(j)j +Bσ(j)τ(σ(j)) +
∑

(τ(σ(j)),l)∈E

Pτ(σ(j))lxl

of the game in which players play according to (σ, τ). Note that cw(F ) = cw(Fσ,τ ) and
cw(F ) = cw(Fσ,τ ) because the strategies σ, τ are optimal. Furthermore, let the vector
r ∈ Rn and the row-stochastic matrix Q ∈ Rn×n defined as rj := −Aσ(j)j +Bσ(j)τ(σ(j)) for
all j ∈ VMin and

Qjl =
{
Pτ(σ(j))l if (τ(σ(j)), l) ∈ E ,

0 otherwise

for all j, l ∈ VMin. In this way, we get Fσ,τ (x) = r+Qx for all x ∈ R̄n. In other words, Fσ,τ is
an operator describing a Markov chain with rewards, in which the Markov chain has transition
probabilities given by Q and rewards given by r. The ergodic theorem of finite Markov
chains [44, Appendix A.4] implies that this Markov chain has two (possibly identical) recurrent
classes U1, U2 such that cw(Fσ,τ ) =

∑
j∈U1

rjπ
(1)
j , cw(Fσ,τ ) =

∑
j∈U2

rjπ
(2)
j , where π(1), π(2)

are the invariant measures of the restrictions of the Markov chain to these classes.Hence, the
claim follows from Lemma 36. J

Proof of Theorem 35. By Lemma 37, both cw(F ) and cw(F ) are rational numbers with
denominators not greater than nMmin{s,n−1}. Therefore, they are either equal or satisfy
cw(F )− cw(F ) > 1/(nMmin{s,n−1})2. By Lemma 31, the same is true for any operator FD

where D ⊂ [n] is a dominion. J

We now provide a bit-complexity estimate for the bias vector of the Shapley operator of
a stochastic mean-payoff game.

I Theorem 38. Suppose that cw(F ) = cw(F ). Then, there exists a vector u ∈ RVMin such
that F (u) = cw(F ) + u and

R(F ) 6 ‖u‖H 6 8nWMmin{s,n−1} .
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Before detailing the proof, we sketch the main ideas. The existence of the bias vector follows
from Kohlberg’s theorem (Theorem 4). The bias is generally not unique (even up to an
additive constant) and then the main difficulty is to find a “short” bias. The one which will
be constructed in the proof of this theorem relies on the notion of Blackwell optimality. This
notion requires to consider the discounted version of the game, in which the payment (2) is
replaced by Eστ

∑∞
p=0(1− α)p(−Aipjp +Bipkp), where 0 < α < 1 and 1− α is the discount

factor. The discounted game with initial state j has a value, xj(α), and the value vector,
x(α) = (xj(α)) ∈ Rn, is the unique solution of the fixed point problem x(α) = F ((1−α)x(α)).
Then, a strategy of a player is Blackwell optimal if it is optimal in all the discounted games
with a discount factor sufficiently close to 1. It can be obtained by selecting minimizing or
maximizing actions when evaluating the expression F ((1− α)x(α)), for α > 0 close enough
to 0. Kohlberg proved that x(α) admits a Laurent series expanstion with a pole of order
at most 1. In fact, the result of Kohlberg applies more generally to piecewise-affine maps
that are nonexpansive in any norm (not just to Shapley operators of stochastic mean-payoff
games).

I Theorem 39 ([36]). Let F : Rn → Rn be a piecewise-affine function that is nonexpansive
in any norm. Then, for every j ∈ [n] there exists a Laurent series xj ∈ R((α)) of the form

xj(α) = cj,−1α
−1 + cj,0 + cj,1α+ cj,2α

2 + . . .

such that xj(α) converges for all small α > 0 and the point x(α) =
(
x1(α), . . . , xn(α)

)
∈

R((α))n satisfies f
(
(1 − α)x(α)

)
= x(α) for all small α > 0. Furthermore, if we denote

η = (c1,−1, . . . , cn,−1) ∈ Rn and u = (c1,0, . . . , cn,0) ∈ Rn, then the equality F
(
tη + u

)
=

(t+ 1)η + u is satisfied for all sufficiently large t > 0.

In fact, the vector η collecting the coefficients of α−1 in the expansions of xj(α) coincides
with the escape rate vector of F , and the vector u collecting the coefficients of the term of
order 1 yields a bias vector, in a special case.

I Proposition 40. Under the assumptions of Theorem 39, we have χ(F ) = η. Moreover, if
F is the Shapley operator of a stochastic mean-payoff game, and if cw(F ) = cw(F ), then
F (u) = η + u, i.e., u is a bias vector.

Proof. For all sufficiently large t, and for all N ∈ N, we have FN (tη + u) = (t+N)η + u,
from which we deduce that χ(F ) = limN→∞(FN (tη + u))/N = η.

Moreover, we have F (tη + u) = η + tη + u. When cw(F ) = cw(F ) and F is the Shapley
operator of a stochastic mean-payoff game, using the fact that F commutes with the addition
of a constant vector, we deduce that F (u) = η + u. J

We shall see that the bias vector u satisfies a Poisson-type equation χ(F ) + u = r +Qu,
and that this special bias vector has the remarkable property of having a zero expectation
with respect to all invariant measures of Q. Hence, the following lemma will allow us to
bound the bit-complexity of this bias vector.

I Lemma 41 ([51]). Take a (possibly reducible) Markov chain with n states and transition
probabilities given by the row-stochastic matrix Q ∈ Rn×n. Suppose that the transition
probabilities are rational numbers, and let s and M be as above. Let r ∈ Zn be an integer
vector and suppose that (η, u) ∈ R2n is a solution of the system{

Qη = η

Qu = −r + η + u .
(18)
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Furthermore, suppose that u is orthogonal to all the invariant measures of the Markov chain,
i.e., uᵀπ = 0 whenever πᵀQ = π. Then, ‖u‖∞ 6 4‖r‖∞nMmin{s,n−1}.

Proof of Theorem 38. Since F (understood as a function from Rn to Rn) is piecewise-linear
and nonexpansive in the sup-norm, Theorem 39 shows that there exists two vectors η, u ∈ Rn
such that the equality F (tη+u) = (t+ 1)η+u holds for all sufficiently large t > 0. If we take
v = t0η+u for one such t0, then we get F (v) = η+v, which (by the fact that cw(F ) = cw(F ))
implies that η = χ = cw(F )1.In particular, we have F

(
t0cw(F ) + u

)
= (t0 + 1)cw(F ) + u,

which gives F (u) = cw(F ) + u. Furthermore, we can suppose that the vector u comes from
a vector x(α) ∈ R((α))n as described in Theorem 39. In particular, for all small α > 0 we
have

F
(
(1− α)x(α)

)
= x(α) (19)

and, for every j ∈ [n], the series xj(α) satisfies xj(α) = cw(F )α−1 +uj +o(1). Define y(α) :=
(1−α)x(α) ∈ R((α))n and note that this series satisfies y(α) = cw(F )α−1 +u− cw(F ) +o(1).
For every i ∈ VMax consider the expression

max
(i,k)∈E

(
Bik +

∑
(k,l)∈E

Pkly(α)l
)
. (20)

Observe that for all sufficiently small α, the minima in (20) are achieved by the same
indices.In other words, for every i ∈ VMax there exists τ(i) ∈ VNat such that the equality
max(i,k)∈E

(
Bik +

∑
(k,l)∈E Pkly(α)l

)
= Biτ(i) +

∑
(τ(i),l)∈E Pτ(i)lyl(α) holds for all small α.

In particular, for every j ∈ VMin we have the equality

Fj
(
y(α)

)
= min

(j,i)∈E

(
−Aij +Biτ(i) +

∑
(τ(i),l)∈E

Pτ(i)lyl(α)
)
.

As before, the maxima on the right-hand side of this equality are achieved by the same indices
if α is small. Hence, for every j ∈ VMin there exists σ(j) ∈ VMax such that the equality

xj(α) = Fj
(
y(α)

)
= −Aσ(j)j +Bσ(j)τ(σ(j)) +

∑
(τ(σ(j)),l)∈E

Pτ(σ(j))lyl(α)

= cw(F )α−1 −Aσ(j)j +Bσ(j)τ(σ(j)) − cw(F ) +
∑

(τ(σ(j)),l)∈E

Pτ(σ(j))lul + o(1)
(21)

holds for all small α > 0. Therefore, we get

uj = −Aσ(j)j +Bσ(j)τ(σ(j)) − cw(F ) +
∑

(τ(σ(j)),l)∈E

Pτ(σ(j))lul

for all j ∈ VMin. Let Q ∈ Rn×n be the row-stochastic matrix defined as Qjl := Pτ(σ(j))l
if (τ(σ(j)), l) ∈ E and Qjl := 0 otherwise, and let r ∈ Rn be the vector given by rj :=
−Aσ(j)j+Bσ(j)τ(σ(j)). If π ∈ Rn satisfies πᵀQ = π, then (21) gives πᵀx(α) = πᵀr+πᵀy(α) for
all small α and therefore πᵀr = απᵀx(α) = cw(F ) +απᵀu+ o(α) for all small α, which gives
πᵀr = cw(F ) and πᵀu = 0. By defining η = cw(F )1, the pair (η, u) is a solution of the linear
system given in Theorem 38 for the pair (r,Q). Hence, we have ‖u‖∞ 6 4nWMmin{s,n−1}.
The claim follows from the fact that ‖u‖H 6 2‖u‖∞. J

Thanks to these estimates, we arrive at the following corollaries.
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I Corollary 42. Let F be a Shapley operator as above, supposing that F has a bias vector
and that erg(F ) is nonzero. Then, procedure ValueIteration stops after

Nvi 6 8n2WM2 min{s,n−1} (22)

iterations and correctly decides which of the two players is winning.

Proof. By Theorem 38 we have R(F ) 6 8nWMmin{s,n−1}. Moreover, by Lemma 37, erg(F )
is a rational number with denominator at most nMmin{s,n−1}. In particular, | erg(F )| >
(nMmin{s,n−1})−1. Hence, the claim follows from Theorem 10. J

I Remark 43. When specialized to deterministic mean-payoff games, i.e., when s = 0,
Corollary 42 yields Nvi = O(n2W ) which is precisely the bound that follows from the analysis
of value iteration by Zwick and Paterson [57].

I Corollary 44. Suppose that F has a bias vector and let µ := nMmin{s,n−1}. Then, Procedure
ApproximateConstantMeanPayoff, applied to F and to δ := µ−2, terminates in at
most

128n3WM3 min{s,n−1}

calls to the oracle. Moreover the interval returned by this procedure contains a unique rational
number of denominator at most µ, which coincides with the value, and optimal strategies can
be obtained from the approximate optimality certificates generated by the procedure.

Before proving this corollary, let us explain a key idea, how the optimal strategies can
be obtained from the output of Procedure ApproximateConstantMeanPayoff. This
procedure returns sub and super-eigenvectors x and y that satisfy κ− δ/8 + x 6 F (x) and
λ+ δ/8 + y > F (y). By selecting, for each state j ∈ VMin, a minimizing state i ∈ VMax in
the expression

Fj(y) = min
(j,i)∈E

(
−Aij + max

(i,k)∈E

(
Bik +

∑
(k,l)∈E

Pklyk
))
,

one gets a positional strategy which guarantees to Min a value at most λ+ δ/8. A similar
method is used to construct a positional strategy of Max. Then, since δ = µ−2 is smaller than
the separation bound between values of different strategies, we will deduce these strategies
guarantee a value of erg(F ) to each of the players, and so, they are optimal.

Proof of Corollary 44. By Theorem 38, the value R := 8nWMmin{s,n−1} satisfies the condi-
tions of Theorem 16. Therefore, ApproximateConstantMeanPayoff stops after at most
d8R/δe = 64n3WM3 min{s,n−1} iterations of its first loop. In particular, it makes no more
than 128n3WM3 min{s,n−1} calls to the oracle during its entire execution. Furthermore, it
outputs an interval [a, b] that contains erg(F ) and is of width at most δ. Since erg(F ) is a
rational number of denominator at most µ by Lemma 37 and δ := µ−2, erg(F ) is the unique
rational number in [a, b] of denominator at most µ. In particular, the exact value of erg(F )
can be found by the rational search technique, see, e.g., [37, 24]. Furthermore, the procedure
outputs two vectors x, y ∈ Rn such that a+ x 6 F (x) and b+ y > F (y). A pair of optimal
strategies (σ, τ) is then constructed as follows. For every i ∈ VMax let τ(i) ∈ VNat be a vertex
such that

max
(i,k)∈E

(Bik +
∑

(k,l)∈E

Pklxl) = Biτ(i) +
∑

(τ(i),l)∈E

Pτ(i)lxl .
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Analogously, for every j ∈ VMin, let σ(j) ∈ VMax be a vertex such that

min
(j,i)∈E

(
−Aij + max

(i,k)∈E
(Bik +

∑
(k,l)∈E

Pklyl)
)

= −Aσ(j)j + max
(i,k)∈E

(Bσ(j)k +
∑

(k,l)∈E

Pklyl) .

We claim that σ is optimal for Min and τ is optimal for Max. Indeed, let Fσ be the Shapley
operator of the game in which Min uses σ. Then, the definition of σ gives the inequality
Fσ(y) = F (y) 6 b+ y. Hence, cw(Fσ) 6 b. Even more, since Lemma 37 applies to Fσ, we
get cw(Fσ) 6 erg(F ). If τ ′ is any strategy of Max, and we denote by Fσ,τ ′ the operator
obtained by fixing both strategies, then we have Fσ,τ ′(z) 6 Fσ(z) for any z ∈ Rn and hence
gj(σ, τ ′) 6 cw(Fσ,τ ′) 6 cw(Fσ) 6 erg(F ) for every j ∈ VMin.Analogously, if τ is a strategy
of Max defined above and σ′ is any strategy of Min, then erg(F ) 6 gj(σ′, τ) for all j ∈ VMin.
Hence, the strategies (σ, τ) are optimal. J

I Corollary 45. The set of initial states with maximal value of a stochastic mean-payoff game
can be found by performing at most 65n4WM3 min{s,n−1} calls to an oracle approximating
its Shapley operator F with precision ε := 1/(8µ2), where µ := nMmin{s,n−1}.

Proof. Let δ := 1/µ2. By Theorem 35 we have δ < sep(F ). Furthermore, if we denote by
Dmax ⊂ VMin the set of initial states with maximal value, then by applying Theorem 38 to
FDmax we see that the number R := 8Wµ satisfies the conditions of Theorem 29, so that the
procedure TopClass applied to the Shapley operator F , with δ := 1/µ2 and R := 8Wµ, is
correct, and finds the set of initial states with maximal value. Furthermore, by Theorem 30,
TopClass can be executed by performing at most n2 +nd8R/δe = n2 +64n4WM3 min{s,n−1}

calls to the oracle that approximates F . J

I Remark 46. If we are given explicitly the graph of the game together with the probabilities
Pkj and the payoffs Aij and Bik, then the operator F can be evaluated exactly in O(E)
complexity, where E is the number of edges of the graph representing the stochastic mean-
payoff game. In particular, there is no need to construct an approximation oracle in order
to apply the results of this section. Nevertheless, even in this case it may be beneficial to
use an approximation oracle. Indeed, if we evaluate F exactly, then each value iteration
u := F (u) increases the number of bits needed to encode u. As a result, value iteration
would require exponential memory. In order to avoid this problem, one can replace F with
an approximation oracle F̃ obtained as follows. Let µ := nMmin{s,n−1} and ε := 1/(8µ2).
Given x ∈ R̄VMin , we first compute y := F (x) exactly and then round the finite coordinates
of y in such a way that the rounded vector ỹ satisfies |yj − ỹj | 6 ε whenever yj 6= −∞ and
ỹj is a rational number with denominator at most 8µ2. One can check that if we use such
a procedure as an approximation oracle, then all the algorithms presented in this section
require O

(
nE log(nMW )

)
memory, which is polynomial in the size of the input.

I Remark 47. Since a single call to the oracle approximating F can be done in O(E)
arithmetic operations, by combining Corollary 45 with Corollary 44 we see that the set of
states with maximal value, and a pair of optimal strategies within this set can be found in
O(n4EWM3 min{s,n−1}) complexity. This should be compared with the algorithm BWR-
FindTop from [18] which achieves the same aim using a pumping algorithm instead of
value iteration. If we combine the estimate from [51] with the complexity bound presented
in [18] for the pumping algorithm, then we get that BWR-FindTop has O(V 6EWs2sM4s +
V 3EW logW ) complexity, where V is the number of vertices of the graph. In particular, our
result gives a better complexity bound. Furthermore, the authors of [18] show that, given an
oracle access to BWR-FindTop and to another oracle that solves deterministic mean-payoff
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games, one can completely solve stochastic mean-payoff games with pseudopolynomial number
of calls to these oracles, provided that s is fixed. Hence, we can speed-up this algorithm by
replacing the oracle BWR-FindTop with our algorithms.

5 Solving Entropy Games With Bounded Rank

Recall that the dynamic programming operator T of an entropy game, as well as its conjugate
F , which we call the Shapley operator of an entropy game, were defined in (10) and (11). As
in the last section, we denote n := |VD| and we put W := max(p,k)∈E mpk.

5.1 Dominions of Entropy Games
We first describe the dominions of entropy games, and verify that this class of games satisfies
Assumption 2. Given a set S ⊂ VD, we denote by V S

P ⊂ VP the set of states of People that
have at least one outgoing edge that goes to S , i.e., V S

P := {p ∈ VP : ∃l ∈ S , (p, l) ∈ E }.
In the same way, we denote by V S

T ⊂ VT the set of states of Tribune that have at least one
outgoing edge that goes to V S

P , i.e., V S
T := {t ∈ VT : ∃p ∈ V S

P , (t, p) ∈ E }. The following
lemma characterizes the dominions of entropy games.

I Lemma 48. A set D ⊂ VD is a dominion of the operator F if and only if every outgoing
edge of every state of D goes to V D

T , i.e., if for every pair (k, t) ∈ D × VT we have
(k, t) ∈ E =⇒ t ∈ V D

T . Furthermore, if D is a dominion, then FD = log ◦TD ◦ exp, where
for all x ∈ RD

>0 and all k ∈ D we define

TD
k (x) := min

(k,t)∈E

t∈V D
T

max
(t,p)∈E

p∈V D
P

∑
(p,l)∈E
l∈D

mplxl .

Proof. The proof is similar to the proof of Lemma 31. By Lemma 21, D is a dominion if
and only if for every k ∈ D and every t ∈ VT such that (k, t) ∈ E we have

max
(t,p)∈E

∑
(p,l)∈E

mpl1l∈D > 0 . (23)

By definition, we have
∑

(p,l)∈E mpl1l∈D > 0 if and only if p ∈ V D
P , and so the relation (23)

holds if and only if t ∈ V D
T . The second part of the claim follows from the definition of

FD . J

In particular, as in the case of stochastic mean-payoff games, FD is the Shapley operator of
a smaller entropy game that takes place on the state space D ] V D

T ] V D
P .

I Lemma 49. If D is a dominion, then the subgame induced by D satisfies Assumption 1.

Proof. This is an immediate consequence of Lemma 48. J

I Lemma 50. The recession operator of F is given by

F̂k(x) = min
(k,t)∈E

max
(t,p)∈E

max
(p,l)∈E

xl, ∀k ∈ VD .

Proof. For every s > 0 and every x ∈ RVD we have

s−1F (sx) = s−1 log
(

min
(k,t)∈E

max
(t,p)∈E

∑
(p,l)∈E

mpl exp(xl)s
)

= min
(k,t)∈E

max
(t,p)∈E

s−1 log
( ∑

(p,l)∈E

mpl exp(xl)s
)
.
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To finish the proof, note that the inequality

max
(p,l)∈E

exp(xl)s 6
∑

(p,l)∈E

mpl exp(xl)s 6 nW max
(p,l)∈E

exp(xl)s

implies that s−1 log
(∑

(p,l)∈E mpl exp(xl)s
)
→ max(p,l)∈E xl. J

I Lemma 51. The Shapley operator F of an entropy game satisfies Assumption 2. Further-
more, if τ is an optimal strategy of Tribune, then for any k ∈ Dmax and any t ∈ VT such
that (k, t) ∈ E we have τ(t) ∈ V Dmax

P . Even more, if σ is an optimal strategy of Despot and
k /∈ Dmax, then σ(k) /∈ V Dmax

T .

Proof. The operator F satisfies the first part of Assumption 2 by Remark 22. To prove the
remaining claims, we proceed as in the proof of Lemma 34. Let χ be the escape rate of F ,
and let Dmax be the set of states of maximal value. Furthermore, let τ : VT → VP be an
optimal strategy of Tribune. We consider a reduced operator

T τk (x) := min
(k,t)∈E

∑
(τ(t),l)∈E

mτ(t)lxl

obtained from a game in which Tribune plays according to τ . Let F τ = log ◦T τ ◦ exp. By
the optimality of τ we get χ(F τ ) = χ. Since F̂ τ (χ) = χ,Lemma 50 implies that

t(χ) = min
(k,t)∈E

max
(τ(t),l)∈E

χl

for all k ∈ Dmax. Note that t(χ) = max(p,l)∈E χl if and only if p ∈ V Dmax
P . Hence, for every

k ∈ Dmax we have

(k, t) ∈ E =⇒ τ(t) ∈ V Dmax
P .

This proves the second claim. In particular, if k ∈ Dmax and (k, t) ∈ E , then t belongs to
V Dmax
T and so Dmax is a dominion by Lemma 48. To prove the third claim, let σ : VD → VT

be an optimal strategy of Despot. As above, we consider the reduced operator

Tσk (x) := max
(σ(k),p)∈E

∑
(p,l)∈E

mplxl

and we let Fσ = log ◦Tσ ◦ exp. Since F̂σ(χ) = χ, Lemma 50 implies that

t(χ) = max
(σ(k),p)∈E

max
(p,l)∈E

χl .

Hence, we get k ∈ Dmax whenever σ(k) ∈ V Dmax
T . This proves the third claim.

It remains to prove that cw(FDmax) = t(χ). To do so, let σ̃ : Dmax → V Dmax
T be an optimal

strategy of Despot in the subgame induced by Dmax. We extend σ̃ to a strategy σ̃ : VD → VT
by setting σ̃(k) := σ(k) for all k /∈ Dmax. Let T ′(x) := M σ̃,τx, where M σ̃,τ ∈ Rn×n is the
associated ambiguity matrix. In this way, T ′(x) is the operator of a game in which both
strategies are fixed. In particular, if we take F ′ := log ◦T ′ ◦ exp, then χ(F ′) > χ by the
optimality of τ . Furthermore, if k /∈ Dmax, then the third claim implies that the dipaths
in G σ̃,τ that start in k are the same as in the graph G σ,τ . Therefore, by Proposition 8,
χ(F ′)k = χk for all k /∈ Dmax and so

k /∈ Dmax =⇒ χ(F ′)k < t(χ) . (24)
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Moreover, if k ∈ Dmax, then χ(F ′)k > t(χ) and Proposition 8 shows that there exists a
strongly connected component C of G σ̃,τ such that ρ(M σ̃,τ [C ]) > t(χ) and such that there
exists a dipath from k to C in G σ̃,τ . By (24), this dipath does not go through any vertex in
VD \Dmax. Therefore, this dipath only goes through vertices in

S := Dmax ] {σ̃(k) : k ∈ Dmax} ] {τ(σ̃(k)) : k ∈ Dmax} ⊂ Dmax ] V Dmax
T ] V Dmax

P

and the component C is included in S . Consider the subgame induced by Dmax and suppose
that in this game Tribune uses a strategy τ̃ : V Dmax

T → V Dmax
P that agrees with τ on the set

{t ∈ V Dmax
T : ∃k ∈ Dmax, (k, t) ∈ E }. Note that there exists at least one such strategy by the

second claim. Furthermore, since C is included in S , Proposition 8 implies that the value
of state k in the game obtained by fixing (σ̃, τ̃) is not smaller than its value in the original
game. By the optimality of σ̃ and since k ∈ Dmax was arbitrary, we have cw(FDmax) > t(χ).
The other inequality follows from Lemma 24.

J

5.2 Bit-Complexity Bounds for Entropy Games
We define the rank of the entropy game to be the maximum of the ranks of the ambiguity
matrices, see Definition 7. The following result will be established by combining a separation
bound of Rump [48] for algebraic numbers, with bounds on determinants of nonnegative
matrices with entries in an interval, building on the study of Hadamard’s maximal determinant
problem for matrices with entries in {0, 1} [22].

I Theorem 52. Suppose two pairs of strategies yield distinct values in an entropy game of
rank r, with n Despot’s states. Then, these values differ at least by ν−1

n,r where

νn,r := 2r(r + 1)8rr−2r2+r+1(ne)4r2(
1 ∨ W2

)4r2

.

Proof. Step 1. First, we note that if C is a k × k matrix with entries in [0,W ], we have

|detC| 6 (k + 1)
√
k
k
(W/2)k . (25)

Indeed, this follows by writing C = B +WJ/2, where J is the matrix whose entries are all
equal to one and B = C −WJ/2, so that −W/2 6 Bij 6 W/2, then by expanding detC
by multilinearity as a function of columns, i.e., detC = detB +

∑k
i=1(±1) det(B̂i, (W/2)1)

in which B̂i denotes the matrix obtained by deleting column i of B, noting that the other
terms of this multilinear expansion are zero owing to repeated appearances of columns
proportional to 1. By Hadamard inequality, |detB| 6 kk/2(W/2)k, and similarly for each
|det(B̂i, (W/2)1)|, which gives (25). (We note that when all the entries of C belong to {0, 1},
the bound can be refined to |detC| 6

√
k + 1k+1

/2k, see [22].)
Step 2. Let A be the n×n ambiguity matrix associated with a pair of strategies. Since A

has rank at most r, it has at most r non-zero eigenvalues, and so, the n− r first coefficients
of the characteristic polynomial QA := det(XI −A) =

∑n
k=0Q

A
kX

k are zero. The coefficient
QAn−k of Xn−k in this polynomial is given by the sum of minors of order k of A. Hence, using
the inequality established in Step 1, together with the inequality

(
n
r

)
6 (ne/r)r, we get

Sn,r :=
n∑
k=0
|QAn−k| =

r∑
k=0
|QAn−k| 6

r∑
k=0

(
n

k

)
(k+1)

√
k
k
(W2 )k 6 (r+1)2(ne

r

)r√
r
r(1∨W2 )r .
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Step 3. Now, if A,B are two n× n ambiguity matrices, consider the product QAQB of
the characteristic polynomials of A and B. Let S denote the sum of absolute values of the
coefficients of QAQB . Then,

S 6 S2
n,r 6 an,r := (r + 1)4(ne

r

)2r
rr
(
1 ∨ W2

)2r
.

Now, we use a theorem of Rump, [48, Th. 3], showing that for a polynomial of degree d with
integer coefficients whose sum of absolute values is bounded by S, the distance between any
two distinct real roots is at least

2
√

2
(
d
d
2 +1(S + 1)d

)−1
. (26)

We apply this result to the polynomial QAQB , which is of degree d = 2r, showing that the
roots of this polynomial are separated at least by the inverse of the following quantity

2−3/2(2r)r+1
(
an,r + 1

)2r
6 2−3/2(2r)r+1a2r

n,r exp
(
2r log(1 + a−1

n,r)
)

6 2−3/2(2r)r+1a2r
n,r exp(2ra−1

n,r) 6 (2r)r+1a2r
n,r

= 2rrr+1(r + 1)8r(ne
r

)4r2

r2r2(
1 ∨ W2

)4r2

,

in which the second inequality follows from the concavity of the logarithm, and the third one
follows from the fact that for all n > r > 1,

2ra−1
n,r 6 2r

(
(r + 1)4(ne

r

)2r
rr
)−1

6
2

(r + 1)3
r

r + 1
exp(−2r)

rr
( r
n

)n
6 2 exp(−2) ,

together with 2−3/2 exp(2 exp(−2)) 6 1.
Since the value of an entropy game coincides with a non-zero eigenvalue of the ambiguity

matrix associated with a pair of strategies, the result is established. J

I Remark 53. When W > 2, the separation bound of ν−1
n,r may be written as C−1

n,rW
−4r2 .

The exponent of W may be improved at the price of increasing the combinatorial factor Cn,r,
by using a theorem of Mahler [39], showing that for a polynomial of degree d, with integer
coefficients bounded by M , and without distinct roots, the inverse of the distance between
two distinct roots is bounded by

ϑd,M = 3−1/2(d+ 1)(2d+1)/2Md−1 .

As explained in [48], one can deduce from this a separation root for polynomials P with
possibly multiple roots, after replacing P by P̃ := P/ gcd(P, P ′). Using Malher’s bound
instead of (26), we would arrive at a bound (C ′n,r)−1W−4r2+2r instead of C−1

n,rW
−4r2 .

Theorem 52 readily entails a separation bound for values of strategies. Using the
observation fact that the value of an entropy game is always in the interval [1, nW ], we next
deduce a separation bound for the logarithms of these values, differing only by a nW factor:

I Corollary 54. The value of an entropy games lies in the interval [1, nW ]. Moreover,
suppose two pairs of strategies yield distinct values in an entropy game of rank r, with n
Despot’s states. Then, the logarithms of these values differ at least by ν̂−1

n,r where

ν̂n,r := nWνn,r .
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Proof. We first recall the following property of monotonicity of the spectral radius: if U, V
are nonnegative matrices, then,

U 6 V =⇒ ρ(U) 6 ρ(V ) (27)

see [14, Chap. 2, 1.5].
Let λ, µ denote the distinct values determined by two pairs of strategies, and suppose,

without loss of generality, that λ > µ. By Proposition 8, the numbers λ and µ coincide
with the Perron roots of some irreducible principal submatrices of ambiguity matrices.
In particular, suppose that λ = ρ(U [C ]) in which U is an ambiguity matrix, and C the
subset of indices of rows and columns used to extract the matrix. Since all the players
alway have at least one allowed move, we deduce there are distinct elements i1, . . . , is of
C such that Ui1i2 . . . Uisi1 6= 0, and since the entries of the ambiguity matrix are integer,
Ui1i2 , . . . , Uisi1 > 1. We deduce that U [C ] > V where V is a {0, 1} matrix whose only
non-zero entries are in the positions (i1, i2), . . . , (is, i1), and by (27), ρ(U [C ]) > ρ(V ) = 1.
Moroever, since all the multiplicities are bounded byW , we have that U [C ] 6WJ , where J is
the C ×C matrix whose entries are all equal to 1, and so, ρ(U [C ]) 6 ρ(WJ) = |C |W 6 nW .

This entails that 1 6 λ, µ 6 nW . By the intermediate value theorem, log λ − logµ =
(λ− µ)/ξ for some ξ ∈ (1, nW ), and so, log λ− logµ > (λ− µ)/(nW ) > ν̂−1

n,r. J

I Proposition 55. Let 0 < δ < 1. Then, there exist vectors w, z ∈ RVD
>0 such that

e−δb(V∞)w 6 T (w), eδt(V∞)z > T (z), and max{‖ logw‖H, ‖ log z‖H} 6 1200(n3 logW +
n2 log δ−1).

This proposition will be established by observing that for a given value of δ, w and z are
defined by semi-linear constraints, and by using bitlength estimates on the generators and
vertices of polyhedra defined by inequalities. To do so, we first state, for convenience, the
following consequences of Theorem 5, which follow by applying this theorem to the Shapley
operator F = log ◦T ◦ exp,

b(V∞) = sup{λ > 0: ∃w ∈ Rn>0, λw 6 T (w)} (28)

t(V∞) = inf{µ > 0: ∃z ∈ Rn>0, µz > T (z)} . (29)

We also recall that the encoding length of an integer number r is defined as 〈r〉 :=
dlog2(|r| + 1)e + 1. Moreover, if r = p/q is a rational number then its encoding length
is defined as 〈r〉 := 〈p〉 + 〈q〉. The encoding length of an affine inequality with rational
coefficients ax 6 b is defined as 〈b〉+ 〈a1〉+ · · ·+ 〈an〉. In the proof, we use the following
straightforward inequalities:

I Lemma 56. If r > 1 is a natural number, then log2(r) 6 〈r〉 6 3 + log2(r). If r1, . . . , rm
are rational numbers, then 〈r1 + · · ·+ rm〉 6 2(〈r1〉+ · · ·+ 〈rm〉) and 〈r1r2〉 6 〈r1〉+ 〈r2〉. J

Proof of Proposition 55. We have T (1) 6 nW1, so that T `(1) 6 (nW )`1 for all ` and
therefore V∞ 6 nW1. Likewise, since mpl are natural numbers, we have T (1) > 1 and so
V∞ > 1. In particular, we have b(V∞) > 1, so the open interval ]e−δb(V∞),b(V∞)[ is of
length at least 1− e−δ > δ

1+δ . Thus, it contains a rational number q ∈ Q with denominator
at most 2(1+δ)

δ = 2 + 2
δ 6 4

δ . Since b(V∞) 6 nW , the numerator of q is not greater than
4nW
δ , and so the encoding length of q satisfies

〈q〉 6 10 + log2 n+ log2W + 2 log2 δ
−1 .
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Let w ∈ Rn>0 be any vector that satisfies qw 6 T (w). Since q < b(V∞), the existence
of such a vector follows from (28). For every t, let pt be such that (t, pt) ∈ E and
max(t,p)∈E

∑
(p,l)∈E mplwl =

∑
(pt,l)∈E mptlwl. Likewise, for every k let tk be such that

(k, tk) ∈ E and
min

(k,t)∈E
max

(t,p)∈E

∑
(p,l)∈E

mplwl = max
(tk,p)∈E

∑
(p,l)∈E

mplwl .

In this way, we have

Tk(w) =
∑

(p(tk),l)∈E

mp(tk)lwl

for all k. Consider now the polyhedron W ⊂ Rn defined by the inequalities

∀(t, p) ∈ E ,
∑

(p,l)∈E

mplxl 6
∑

(pt,l)∈E

mptlxl

∀(k, t) ∈ E ,
∑

(pt,l)∈E

mptlxl >
∑

(p(tk),l)∈E

mp(tk)lxl

∀k, qxk 6
∑

(p(tk),l)∈E

mp(tk)lxl

∀k, xk > 0 .

(30)

Then, we have w ∈ W∩Rn>0 soW is nonempty. Even more, any vector x ∈ W∩Rn>0 satisfies
qx 6 T (x). Let

φ := 1 + 4n(3 + log2W ) + 2〈q〉 6 50(n log2W + log2 δ
−1) .

Then, Lemma 56 shows that every inequality that describes W has encoding length at
most φ. Hence, by [29, Lemma 6.2.4], there exists two finite sets X,Y ⊂ Qn such that
W = conv(X) + cone(Y ) and every entry of every vector in X ∪ Y has encoding length
at most 4nφ. Furthermore, we have X ⊂ Qn>0 because X ⊂ W and Y ⊂ Qn>0 because
x+ λy ∈ W for any (x, y) ∈ X × Y and λ > 0. By Carathéodory’s theorem [49, Section 7.7],
there exist x0, . . . xn ∈ X, y1, . . . , yn ∈ Y such that w ∈ conv(x0, . . . , xn) + cone(y1, . . . , yn).
Since w ∈ Rn>0 and X,Y ⊂ Qn>0, the point w̃ ∈ W defined as

w̃ := 1
n+ 1x0 + · · ·+ 1

n+ 1xn+1 + y1 + · · ·+ yn

also satisfies w̃ ∈ Rn>0. Moreover, the inequalities from Lemma 56 show that every entry
of w̃ has encoding length at most 60n2φ. Therefore, for all k we can write w̃k = pk/qk,
where the numbers pk, qk are natural and their encoding length is bounded by 60n2φ. In
particular, we have ‖ log2 w̃‖H 6 2‖ log2 w̃‖∞ 6 2 maxk(log2 pk + log2 qk) 6 240n2φ 6
1200(n3 log2W +log2 δ

−1) and w̃ satisfies the claim. The proof of the other part is analogous,
using the fact that the open interval ]t(V∞), eδt(V∞)[ has length at least eδ − 1 > δ, and so
it contains a rational number with denominator at most 2/δ. J

We deduce the following parameterized complexity result.

I Theorem 57. In an entropy game of rank at most r, we can find the set of initial states
with maximal value by performing O(nRn,rν̂n,r) calls to an oracle approximating F with
precision δ/8 where δ = (ν̂n,r)−1.
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Proof. The claim follows by combining Theorem 30 with the estimates from Corollary 54
and Proposition 55. J

I Remark 58. We note that the oracle used in Theorem 57, approximating the Shapley
operator of an entropy game up to a given precision, can be implemented in polynomial time,
this follows by using a result of Borwein and Borwein [19] on the approximation of the log
and exp maps, together with a scaling argument, see [1, Lemma 27].
As an intermediate step, we solve strategically the special case of entropy games whose value
is independent of the initial state. To do so, we suppose that we have access to the graph of
the game as well as to an oracle that approximates the operator F .

I Proposition 59. In an entropy game of rank at most r, such that the value is independent
of the initial state, we can find a pair of optimal strategies for both players by performing
O(nRn,rν̂n,r) calls to an oracle approximating F with precision δ/16 where δ = (ν̂n,r)−1.

Proof. The proof is similar to the proof of Corollary 44. We use ApproximateConstant-
MeanPayoff to obtain two vectors x, y ∈ RVD and an interval [a, b] of width at most δ/2
such that a+ x 6 F (x) and b+ y > F (x). By Theorem 16 combined with the estimates from
Corollary 54 and Proposition 55, this requires O(nRn,rν̂n,r) calls to an oracle approximating
F . By Corollary 54, the interval [a, b] contains erg(F ). For every k ∈ VD we have

b+ yk > min
(k,t)∈E

max
(t,p)∈E

log
( ∑

(p,l)∈E

mple
yl
)
.

For every p ∈ VP we approximate the expression log
(∑

(p,l)∈E e
yl
)
to precision δ/8 using

the procedure from [1, Lemma 27]. Let Qp ∈ R denote this approximation and let σ be a
strategy of Despot that satisfies

min
(k,t)∈E

max
(t,p)∈E

Qp = max
(σ(k),p)∈E

Qp

for all k ∈ VD. We have

b+ yk > min
(k,t)∈E

max
(t,p)∈E

log
( ∑

(p,l)∈E

mple
yl
)
> −δ/8 + min

(k,t)∈E
max

(t,p)∈E
Qp

= −δ/8 + max
(σ(k),p)∈E

Qp > −δ/4 + max
(σ(k),p)∈E

log
( ∑

(p,l)∈E

mple
yl
)
.

Hence, if we denote by Fσ the Shapley operator obtained by fixing σ, then b+δ/4+y > Fσ(y).
In particular, cw(Fσ) 6 b+ δ/4. Since the interval [a, b+ δ/4] is of length smaller than δ
and contains erg(F ), Corollary 54 implies that cw(Fσ) 6 erg(F ) and σ is optimal. We can
construct an optimal strategy of Tribune in an analogous way. J

The following decomposition property for entropy games extends a classical property of
deterministic mean-payoff games. Once the set of Despot’s states with maximal value is
known, it allows one to determine the value of the other states by reduction to an entropy
game induced by the other states of Despot.

I Lemma 60 (Decomposition property). Let S1 := Dmax]V Dmax
T ]V Dmax

P and S2 := V \S1.
Furthermore, suppose that S2 is nonempty. Consider the induced digraphs G [S1] and G [S2]
of the original graph G = (V ,E ). Then, the entropy games arising by restricting the graph
to G [S1] and G [S2] satisfy Assumption 1. Furthermore, if (σ1, τ1) are optimal strategies of
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Despot an Tribune in the induced entropy game on G [S1] and (σ2, τ2) are optimal strategies
of Despot and Tribune in the induced entropy game on G [S2], then the joint strategies

∀k ∈ VD, σ(k) =
{
σ1(k) if k ∈ Dmax,
σ2(k) otherwise,

∀t ∈ VT , τ(t) =
{
τ1(t) if t ∈ V Dmax

T ,
τ2(t) otherwise.

(31)

are optimal in the original game.

Proof. The game on G [S1] satisfies Assumption 1 by Lemmas 48 and 51. The other game
satisfies this assumption by the definition of the set S2. Indeed, if p ∈ VP ∩S2, then all the
outgoing edges of p go to VD \Dmax, so they are in G [S2]. Likewise, if t ∈ VT ∩S2, then
all the outgoing edges of t go to VP \ V Dmax

P , so they are in G [S2]. If k ∈ VD ∩S2, then
Lemmas 48 and 51 shows that k has an outgoing edge that goes to VT \ V Dmax

T , so this edge
is in G [S2].

To prove the second part of the claim, let σ̂, τ̂ be any pair of optimal strategies of
Despot and Tribune in the original game and let χ be the escape rate of the operator F .
Let χσ,τ be the escape rate of the operator obtained by fixing (σ, τ). We use analogous
notation for other pairs of strategies. By Lemma 51 for every k ∈ VD \ Dmax we have
σ̂(k) /∈ V Dmax

T . Hence, Proposition 8 combined with the optimality of σ̂, τ2, σ2, τ̂ gives the
inequality χk > χσ̂,τk > χσ,τk > χσ,τ̂k > χk. Therefore, χσ,τk = χk for all such k.

Let σ̄ be an optimal response to τ , i.e., an optimal strategy of Despot in the game in
which Tribune plays according to τ . To prove the optimality of τ it is enough to show
that χσ̄,τ > χ. Consider the game obtained by fixing (σ̄, τ). Note that if we remove from
the graph G σ̄,τ the edges that go from V Dmax

P to VD \ Dmax, then the value of this game
can only decrease.Moreover, by Lemma 51 we have σ̄(k) ∈ V Dmax

T for all k ∈ Dmax and
cw(FDmax) = cw(FDmax) = t(χ). Hence, the optimality of τ1 combined with Proposition 8
give χσ̄,τk > t(χ) = χk for all k ∈ Dmax. Furthermore, we have σ̄(k) /∈ V Dmax

T for all
k ∈ VD \ Dmax. Indeed, suppose that σ̄(k) ∈ V Dmax

T . Then, there is a dipath in G σ̄,τ that
goes from k to Dmax and so χσ̄,τk > t(χ) by the previous observation. However, σ̄ is an optimal
response to τ and therefore we have χσ̄,τk 6 χk < t(χ), which gives a contradiction. Thus,
σ̄(k) /∈ V Dmax

T for all VD \Dmax. In particular, the optimality of τ2 gives χσ̄,τk > χσ,τk = χk.
Analogously, let τ̄ be an optimal response to σ and consider the game obtained by fixing

(σ, τ̄). The optimality of σ2 gives χσ,τ̄k 6 χσ,τk = χk for all k ∈ VD \ Dmax. Fix k ∈ Dmax
and let C be any strongly connected component of G σ,τ̄ that can be reached form k in this
graph. If C contains a vertex from VD \Dmax, then the previous observation combined with
Proposition 8 gives ρ(Mσ,τ̄ [C ]) < t(χ). If C does not contain any such vertex, then it is
included in S1. Hence, the optimality of σ1 combined with Proposition 8 and the equality
cw(FDmax) = cw(FDmax) = t(χ) give ρ(Mσ,τ̄ [C ]) 6 t(χ). Hence, χσ,τ̄k 6 t(χ) = χk for all
k ∈ Dmax and σ is optimal. J

Then, by combining Theorem 57 and Lemma 60, we get:

I Theorem 61. A pair of optimal strategies of an entropy game of rank r can be found in
O(n2Rn,rν̂n,r) calls to an oracle that return F with a precision of 1/(16ν̂n,r). Then, entropy
games in the original model of Asarin et al. [11] and with a fixed rank are polynomial-time
solvable, whereas entropy games with weights, in the model of Akian et al. [1], and with a
fixed rank, are pseudo-polynomial time solvable.

Sketch of the proof of Theorem 61. We solve entropy games by the following algorithm.
We find the states with maximal value using TopClass, find optimal strategies on this
dominion using Proposition 59, we split the game in two as in the decomposition property
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(Lemma 60) and continue recursively on the smaller game. The bound on the number of
calls to the oracle follows from Theorem 57, Lemma 60 and Proposition 59. Since the
approximating oracle can be constructed in polynomial time as discussed in Remark 58, this
algorithm can be implemented to work in polynomial memory. Furthermore, as in Remark 47,
the time complexity of this algorithm is dominated by the number of calls to the oracle
multiplied by the time cost of a single call. J

I Corollary 62. Entropy games with weights and with a fixed number of People’s positions
are pseudo-polynomial time solvable.

Proof. The claim follows from Theorem 61 by noting that the rank of an entropy game is
bounded by the number People’s states. J

5.3 A Lower Complexity Bound for Value Iteration for Entropy Games
We say that a state of a game is significant if there are several options in this state, in
particular, a state p of People is significant if there are at least two distinct arcs (p, k) and
(p, l) in E . We may ask whether the statement of Corollary 62 carries over to entropy games
with a fixed number of significant People’s states. The following result shows that this
can not be derived from the universal value iteration bounds, since value iteration needs
Ω(Wn−1) iterations to recognize the optimal strategy.

I Theorem 63. There is a family of Gn(W ) of Despot-free entropy games, and a constant
C > 0, with the following properties:
1. Gn(W ) has arc weights 6W , only one significant Tribune’s position, with two actions,

and 2n+ 1 People’s positions among which there are only 4 significant positions;
2. The action of Tribune that is optimal in the mean-payoff entropy game is never played, if

Tribune plays optimally in the entropy game of finite horizon k, for all k 6 CWn−1.
To construct this game, we need an estimate of the positive root of a special polynomial pn.

I Proposition 64. Consider the polynomial pn(x) = xn −W (xn−1 + · · ·+ 1), where W > 0.
Then, pn has a unique positive root, xn(W ), which satisfies

xn(W ) = W + 1− 1/Wn−1 + o(1/Wn−1) , as W →∞ .

Proof. Recall that Descartes’ rule of sign states that the number of positive roots of a
polynomial is bounded by the number of variations of signs of the sequence of its coefficients,
and that it is equal modulo 2 to this number. It follows that pn(W ) has a unique positive root,
for all W > 0. Let us define the Newton polygon ∆ as the upper boundary of the convex hull
of the points (i, j) such that pn has a monomial of degree i in x and of degree j in W . Then,
the Newton-Puiseux theorem [54] shows that all the roots of pn have Puiseux series expansions,
with a leading term aWα + o(Wα) where α is the opposite of a slope of the Newton polygon
∆ of pn, and a ∈ C \ {0}. Moreover, the horizontal width of an edge determine the number
of roots of order Wα, counted with multiplicities. Here, the monomials −W, . . . ,−Wxn−1

determine the edge [(0, 1), (n− 1, 1)], which is of slope 0, and has horizontal width n− 1. The
monomials −Wxn−1 and xn determine the edge [(n− 1, 1), (n, 0)], which is of slope −1 and
has horizontal width 1, So there are n−1 roots xi(W ) = aiW

0+o(W 0) = ai+o(1) asW →∞,
with 1 6 i 6 n− 1, and there is one root xn(W ) = anW

1 + o(W ). Substituting xi(W ) in
pn(xi(W )) = 0, for 1 6 i 6 n− 1, we find that ai must be a root of 1 + · · ·+ xn−1. Thus, ai
cannot be positive for i < n. So, the unique positive root of pn is xn(W ) = anW + o(W ).
Substituting xn(W ) in pn(xn(W )) = 0, and cancelling negligible terms, we get an = 1. Hence,
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we can write xn(W ) = W + y(W ), where y(W ) = o(W ). Moreover, using (xn−1 + · · ·+ 1) =
(xn − 1)/(x − 1), pn(x) = 0 can be rewritten as xn(x −W − 1) + W = 0. Substituting
xn(W ) = W + y(W ), we end up with y(W ) = 1 −W/xn(W )n = 1 − 1/Wn−1 + o(1/Wn),
hence, xn(W ) = 1 +W − 1/Wn−1 + o(1/Wn−1). J

We denote by

An(W ) =



W . . . . . . W

1 0 . . . . . . 0

0 . . . . . . ...
... . . . . . . . . . ...
0 . . . 0 1 0


the n× n companion matrix of the polynomial pn(W ).

I Lemma 65. The left Perron eigenvector un of the matrix An(W ) satisfies

1
2u

n
1 6 uni 6 un1 for all 2 6 i 6 n .

Proof. Noting that pn(W + 1) > 0 > pn(W ), and using the intermediate value theorem, we
deduce that the unique positive root xn(W ) of pn satisfies W < xn(W ) < W +1. The Perron
root λ of An(W ) coincides with xn(W ). We have λu1 = Wu1 + u2, λu2 = Wu1 + u3,. . . ,
λun−1 = Wu1 + un, λun = Wu1. Since all the entries of u are positive, we deduce
that ui > u1W/λ > u1W/(W + 1) > u1/2, for all 2 6 i 6 n. From λu1 = Wu1 + u2,
we deduce that u2 6 (λ − W )u1 6 u1. Then, from λu2 = Wu1 + u3, we deduce that
u3 6 λu2 −Wu1 6 λu1 −Wu1 6 u1. Continuing in this way, we get that ui 6 u1 for all
2 6 i 6 n. J

The proof of Theorem 63 also relies on the following lemma. We denote by 1n the unit
column vector of Rn.

I Lemma 66. Let α > 1. Then, in the expression

z(k) = max(1>nAkn1n, α1>n−1A
k
n−11n−1)

the maximum is achieved by the rightmost term, for all k such that

k 6 k∗ := log(α(n− 1)/(4n))
log(λn/λn−1) . (32)

Proof. Let λn := xn(W ). The Perron eigenvector un is defined only up to a positive
multiplicative constant, so from Lemma 65, we may assume that 1>n 6 un 6 21>n . Hence,

n

2λ
k
n 6

1
2λ

k
nu

n1n = 1
2u

nAkn1n 6 1>nAkn1n 6 unAkn1n = λknu
n1n 6 2nλkn .

Hence, 1>nAkn1n 6 α1>n−1A
k
n−11n−1 holds as soon as

2nλkn 6
n− 1

2 αλkn−1 ,

which is the case when (32) holds. J
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Figure 7 The entropy game constructed in the proof of Theorem 63, here for n = 3. The circles
represent People’s states, whereas the square represents the unique significant Tribune’s state. The
weights are indicated on the arcs. For α� 1, when the horizon is small, it is optimal for Tribune to
play “bottom right”, whereas when the horizon is large, the optimal move of Tribune is “bottom
left”.

Proof of Theorem 63. We next set α := 8, so that log(α(n − 1)/(4n)) > log 2. Using the
asymptotics of λn = xn(W ) given by Proposition 64, we find that

k∗ = (log 2)Wn−1 + o(Wn−1) (33)

We now claim that z(k) can be interpreted as the value in horizon k + 1 of an entropy
game satisfying the conditions of the theorem. Figure 7 illustrates the proof when n = 3.

First, we note that the term 1>nAkn1n can be interpreted a the value in horizon k + 1 of a
Despot-free and Tribune-free entropy game, with n+ 1 People’s states, among which there
are only two significant states, one encoding the first row of An, and another one encoding
the row vector 1>n . Recall every turn of an entropy game involves a succession of three stages,
with moves made by Despot, Tribune, and People. So, this interpretation requires to insert
dummy states of Despot and Tribune for each transition between People states. E.g., on the
figure, in which dummy states are not represented, the value of the entropy game in horizon
k + 1 with initial state 6 is precisely 1>3 Ak313.

The term α1>n−1A
k
n−11n−1 admits a similar interpretation, with n People’s states instead

of n+ 1. One significant state encodes the first row of An−1, whereas the other significant
state encodes the row vector α1>n−1. E.g., on the figure, the value of the entropy game in
horizon k + 1 with initial state 7 is precisely 1>2 Ak212.

We complete the construction of the entropy game Gn(W ) by adding a significant state
of Tribune, with only two options: moving to the state encoding 1>n , or moving to the state
encoding α1>n−1. On the figure, this significant state of Tribune is labeled 8.

Then, using the dynamic programming equation (9), we see that the value of the
corresponding entropy game in horizon k, starting from the significant state of Tribune, is
precisely z(k − 1). Since λn > λn−1, in the mean-payoff entropy game, the optimal action
for Tribune is to move to the state encoding 1>n (move “bottom left” on the figure) which
guarantees a geometric growth of λn. However, for k 6 k∗ + 1, the optimal action, for the
initial move, is to select the term achieving the maximum in the expression of z(k), and so,
to move to the state encoding α1>n−1 (move “bottom right”). J
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6 Concluding Remarks

We developed generic value iteration algorithms, which apply to various classes of zero-sum
games with mean payoffs. These algorithms admit universal complexity bounds, in an
approximate oracle model – we only need an oracle evaluating approximately the Shapley
operator. These bounds involve three fundamental ingredients: the number of states, a
separation bound between the values induced by different strategies, and a bound on the
norms of Collatz-Wielandt vectors. We showed that entropy games with a fixed rank (and in
particular, entropy games with a fixed number of People’s states) are pseudo-polynomial time
solvable. This should be compared with the result of [1], showing that entropy games with
a fixed number of Despot positions are polynomial-time solvable. Since fixing the number
of states of Despot or People leads to improved complexity bounds, one may ask whether
entropy games with a fixed number of significant Tribune states are polynomial or at least
pseudo-polynomial, this is still an open question.
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