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Abstract:  
The development of driver assistance and autonomous driving systems for vehicles has started to revolutionize the 

transportation sector, promising comfort, and safety. While significant technological progress has already been made 

in this area, many challenges remain. Among these challenges, ensuring safety has become even more critical due to 

the increasing use of complex, communicating, and reconfigurable embedded software. Current solutions to address 

safety include the use of model-based approaches for safety analyses instead of the traditional document-based safety 

analysis that is both informal and inefficient when faced with complexity. To this end, and in the context of 

automotive embedded software, we propose to rely on the use of fault patterns to improve the construction of 

software models used to conduct safety analyses. This paper makes a methodological proposal that improves current 

practices in terms of facilitated model construction and reusability, and that has been validated on the study of an 

automotive software component. 

 

I. Introduction 
The rapid development of embedded systems has led to numerous innovations in various systems in our modern 

society such as autonomous vehicles and highly computerized systems in airplanes. The technological challenges 

related with complexity and societal needs for guaranteeing safety induced by this trend opened new avenues for 

research in systems engineering but also exacerbated existing problems as they relate to the use of critical software 

and its contribution to systems safety.  

To cope with these issues, industrials developing safety critical systems are looking for new methods and tools 

for designing and sharing design ideas more efficiently while ensuring system safety as required by standards and 

regulations. In the past decades, most of systems and software engineering development processes relied on 

document-based methods that relied on informal design documents to convey design ideas and artefacts from one 

development stage to the other. The informal aspect of these practices (such as manual analysis based on informal 

documents that are subject to the interpretation of the safety analyst) makes them prone to errors and less efficient in 

regard of the complexity of today’s systems architectures. Although they are still widely used, these methods are 

now being challenged and model-based are more and more favored. In this context, embedded systems 

manufacturers are turning towards model driven engineering as part of both their systems and software development 

as well as systems safety assessment. In Systems Engineering (SE), this had led to the adoption of MBSE (Model-

Based Systems Engineering), a systems engineering practice aimed at describing both a problem (need) and its 

solution through models, concepts and languages [1]. Its adoption can now be considered a success story as we 

witness that more industrials developing safety critical systems are turning towards the MBSE approach in Systems 

and Software Engineering. Examples include Dassault with its integrated 3DS MBSE solution or SIEMENS that 

integrates MBSE within its Product Lifecycle management (PLM ) solution. In Systems safety, a similar trend has 

led to the development of Model based Safety Assessment (MBSA), a practice that enables the capture, through 

specific formalisms and languages, of a systems safety related model (that describes the failure behavior and unifies 

all the safety property of a system in a single model), on the basis of which different safety analyses can be made.  

However, despite the discipline being an early pioneer in the use of models, the wide adoption of model-based 

approaches for safety assessment has remained embryonic. In automotive, the ISO 26262 standard [2], titled "Road 

vehicles – Functional safety", requires performing safety analyses not only at system level but also at software level, 



2 

 

to ensure the safe behavior of the embedded software. Moreover, in the context of autonomous driving, embedded 

software assumes various critical safety functionalities. Unfortunately, today, the currents practices in safety analyses 

do not focus enough on embedded software even though the software implements the logic of some of the critical 

safety mechanisms. As a result, in the software context, safety analyses are either not performed or if performed, 

only done through traditional document-oriented approaches. Therefore, there is a need for more focused and 

rigorous methods for safety analyses at software level.  

This paper aims to propose a methodology, specially aimed at improving the practice of automotive embedded 

software safety analysis thought the use of fault patterns within the MBSA approach. In the next section, a state of 

the art of current MBSA approaches is presented. In section 3, a methodological proposal based on the use of fault 

pattern is made and applied to a case study in section 4. The results are discussed in section 5 and a conclusion in 

made in section 6.  

II. State of the art 
In systems safety, safety assessment has been dominated by document-centric methods and processes since the 

60s. Classical methods such as Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) have 

been complementarily used by experts in the industry for systems safety analyses. In these classical approaches, 

safety analyses are manually performed based on paper-style artefacts such as systems drawings or spreadsheets that 

are found in design documents. While these practices use a sort of well-defined semantics (such as Boolean operators 

and FTA symbols), their representation is often very far from the systems they describe.  

With the introduction of Model-Based Safety Analysis (MBSA) starting around early 90s, through the earliest 

model-oriented safety analysis techniques such as FPTN [3], Figaro [4] or the AltaRica [5] language, the focus has 

shifted to model-based approaches that no more base safety analyses on paper-style documents, but on a formal 

model of the system under design. This move has led, nowadays to an academic trend that seeks to address the 

interdisciplinarity and the consistency of the use of broad models through MBSE and MBSA throughout Systems 

Engineering and Systems Safety. In this trend one possibility is to directly associate the MBSA safety models with 

the MBSE system models. This allows conducting safety analysis directly on an extended version of the MBSE 

model. Examples of methods that are based on this extended approach include the approach included in the 

xSAP/Nu-SVM [6] [7] safety analysis tool. Another example is the Hierarchically Performed Hazard Origin Studies 

[8] based on extended SIMULINK models [9]. Although a clear advantage of the extended approach resides in the 

consistency (between system design and safety) it enables through the use of a shared system and safety model, it is 

argued that basing safety analysis on an extended model can lead to false assumptions and thus leading to hidden 

safety flaws (despite this claim not being shared by all systems engineering and safety practitioners). Furthermore, 

the safety analysis resulting from such model could be difficult to exploit because of the complexity of the extended 

model. In practice, safety assessment models are primarily used for mathematical or probabilistic calculations such 

as minimal cuts or monté carlo simulations. The more complex the model, the more computing power is required to 

effectively perform these calculations. Furthermore, the result of the safety analysis can be difficult to exploit due to 

the source models being blurred and overloaded (making them lose their ability to support a seamless 

communication) while the generated formal models are incomplete and uselessly complex [10]. 

As an alternative to the described first approach, a more appealing trend in academic research is to build a 

separate MBSA model that needs to be kept consistent with the MBSE model through additional measures such as 

model synchronization [11]. This last approach is often based on dedicated safety modeling languages such as 

AltaRica [12], Figaro [4] or SAML [13]. These safety focused languages allow unambiguous representation of 

systems for the needs of safety analysis using well defined syntax and semantics. However, early experiments 

feedback suggests that, in the case of the dedicated model approach, the MBSA model construction can be 

challenging for safety analysts especially for complex systems. In such case, it is imperative to find the right level of 

details in modeling for fear of having a model too complex that may well be at the limit useless or irrelevant. 

Furthermore, some analysts don’t necessarily see the advantage and gain in time of modeling a separate 

dysfunctional architecture for safety analyses. However, as argued by Rauzy and Haskins in [10], systems 

description and safety analysis models are different by nature and efforts to unify such models in one single super 

model remains unrealistic. Based on this argument, the right direction is to keep a consistent separate MBSA model 

but make its construction easier. Nevertheless, the separate model construction can be challenging for large systems 

(what details, what modeling strategy etc.). 

To ease the construction of dysfunctional models to conduct safety assessment, efforts have been done mostly 

using generic libraries of system elements that exhibit some safety properties. An example is the Safety Architecture 

Pattern(SAP) approach proposed by Kheren in [14]. In this approach, a library of SAP (components that highlights 

useful system’s attributes from a safety point of view) are developed and coded using the AltaRica language. The 
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generic library is then reused to easily prototype safety-oriented systems architectures that can be reused to perform 

safety analysis using tools such as the OCAS Workshop[15]. Nevertheless, the proposed approaches are mostly 

aeronautic systems oriented. The developed libraries are often dedicated to avionics systems (such as pumps, 

electrical motors, valves, or control units). While these libraries can be used for modeling physical systems at system 

level in automobile, they are less suitable for modeling dedicated safety architectures of the embedded software. 

Moreover, although there are ongoing works that aim to apply the MBSA approach to automobile at system level, 

less focus is being put on embedded software. However, in the automotive context, ISO 26262 recommends 

conducting safety analyses not only at system level, but also at software level[2]. In this context, if the model-based 

approach is to be used for safety analysis at software architecture level as the commended by ISO26262, safety 

analyses can be made easier if patterns or libraries of safety related components (such as safety mechanisms used in 

software) can be developed drawing from the same principles as those described in the case of systems SAP-oriented 

approach.  

III. Methodological proposal 
The goal of the methodological proposal is to construct a fault library of reusable software safety mechanisms 

that are commonly found in safety related software components, drawing form the SAP library-oriented approach 

described in the state of the art and given the need for improving safety analysis practices at software level in the 

automotive context. Our choice has been to use the dedicated model approach coupled with dedicated languages such 

as AltaRica as described in [16]. However, as stated earlier, building a dysfunctional model can be challenging 

especially for complex systems. To address this concern, our solution has been to focus on selecting and  including in 

the dysfunctional model only components that are safety-related as described in our previous work [17]. Even then, 

the failure propagation logic of these components must be manually written by the modeler (which can be time 

consuming for large systems).To address this concern, our first hypothesis is that making the MBSA model 

construction easier can both benefit its adoption by companies and improve the quality of safety analysis. A second 

hypothesis is that limiting the MBSA model to safety related components is sufficient to carry out meaningful safety 

analysis and can improve both efficiency and the quality of safety analysis. Therefore, the position of this paper is to 

make less painful for safety analysist the construction of MBSA models by proposing a set of predefined reusable 

libraries of software fault models to ease the dysfunctional model building process and improve the quality and 

consistency of the analyses. Its scope is limited to the context of automotive safety analysis at software level 

consistently with ISO 26262. Our methodology proceeds in 3 basic steps. The first one is to identify the safety 

mechanisms and their related software failure modes. The second step is to write the failure propagation logic 

through the safety mechanisms based on their functions and the identified failure modes; and to store the components 

in a library. The last step consists in reusing the elements stored in the library to build a dysfunctional model and 

conduct safety analyses.  

In the first step we proceed by identifying the software failure modes and associated safety mechanisms found in 

automotive software architectures. In automobile, these failure modes and associated safety mechanisms are well 

defined by IO 26262 [13, Annex E, Annex D]. They are further detailed by two annexes in AUTOSAR [18] [19]. 

These failure modes are clustered into 4 categories. They include “data integrity, initialization & configuration data” 

“data exchange”, “timing & control flow” and “data processing”. The “data Integrity” category summarizes all 

failure modes related to corrupted memory or initialization and configuration data related to the corruption of 

software data at one memory address such as the corruption of memory content, memory partitioning fault or 

memory access fault. The “Data Exchange” category covers failures related to data transmission between sender and 

receiver such as between different ECUs (Electronic Control Units) or software components. The “Timing and 

Control Flow” category covers failure modes related to the timing of execution and scheduling. To model these fault 

categories, we start by describing the software components’ behavior through a generic abstract template using states 

and transitions. An example of such a template consisting of a software component with generic failure modes is 

provided in in Figure 1. It shows 4 states (Inactive, Nominal, Erroneous and Failed), representing the execution 

status of the software component linked by several possible transitions (Minor fault, Major fault, Recovery etc.). The 

inactive state is the idle or initial state preceding the initialization where the software component is not solicited or 

does not provide its function. From this state, the 3 outgoing transitions labeled “Activation”, “Major fault” and 

“Minor fault” will lead the component to the “Nominal”, “Failed”, or “Erroneous” states respectively. In the nominal 

state, the software component executes and delivers its intended function. From this state, the component can revert 

to the Inactive state as indicated by the transition label “Deactivation” or move to the “Failed” or “Erroneous” states 

if a major or minor fault occurs as indicated by the transitions. In the erroneous state, the software component 

provides erroneous results while, in the “Failed” state, it fails to provide its intended function. From the generic 

pattern, more specific patterns related to  specific fault categories as described by ISO 26262 can be easily derived. 
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As an illustrative example, let us consider a piece of software that reads some critical data from memory, performs 

some critical calculations, and stores the result back to memory. Based on its function, the failure modes of this 

software component could include memory access related faults (such as read and write errors) as well control flow 

and timing related failure modes (such as execution failure, or untimely execution). Depending on the exact safety 

requirement, safety mechanisms to prevent the failure of this software component’s function could include a 

protection against unwanted writing and a watchdog timer. Based on this information, the elements that will be 

necessary to model the safety related behavior of this software component, are the failure mode related to the 

memory access and the two safety mechanisms that will be modeled though states and transitions within this 

software component. 

 
Figure 1. Failure modes of a generic software component 

The second step focuses on writing failure propagation logic of the identified safety mechanisms knowing their 

function and considering the associated failure modes identified in the first step. To do so, we first need to study the 

safety mechanism and identify their basic behavior, what their inputs are, and the result they produce in normal or 

faulty execution. Once done, we can write the failure propagation logic of the identified safety mechanisms. To this 

end we use Failure Truth Tables (FTT) that we introduced in our early work [16]. FTTs are dysfunctional failure 

propagation tables consisting of discrete input and output variables whose possible values are defined depending of 

the failure behavior of the components function. FTTs can be used to capture the dysfunctional logic of a function 

based on its inputs. Depending on the expression of the safety requirements that the identified mechanisms are to 

fulfill, logical operators such as “or, and” and program control structures such as “if-then-else” can be useful to 

express the function or the combination of several mechanisms within a software component. Therefore, we also 

need to write and add to the library, the failure propagation logic through theses operators and control structures. 

This will result in a library of safety mechanism, operators and control structures that will be used in the last step to 

construct the dysfunctional model of a system.  

The last step consists in using the elements stored in the library to construct the dysfunctional model. This step 

requires having a tool that offers library support. Using the elements stored in the library in an appropriate MBSA 

tool, one can easily model the dysfunctional architecture of a systems through drag and drop. This is possible since 

the safety mechanisms self-contain their propagation logics as well as the associated fault modes. Therefore, there is 

no need to write the failure propagation logic code in this step.  

IV. Implementation in SimfiaNeo and case study  
The objective of the case study was to first develop a library of safety mechanisms and used it to model the 

dysfunctional architectures. To this end, we are using SimfiaNeo [20] , an MBSA modeling tool based on the 

AltaRica language and developed by APSYS-Airbus. It offers a graphical modeling interface based on Eclipse and 

implements the dataflow version of the AltaRica language. SimfiaNeo allows to graphically build the AltaRica 

model of a system and to directly perform various safety analyses based on minimal cuts or in the form fault trees 

and FMEAs directly from the AltaRica model. Furthermore, the tool in its latest version offers library features that 

make it suitable for our proposal. It allows the modeling, storing and instantiation of custom components in a library. 

In the context of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD), we aim to 

apply the proposed methodology on a practical case study, the longitudinal control software component.  The 

longitudinal control is a function of the ADAS technology. It is a software component whose purpose is to ensure 

speed and braking control in autonomous driving mode. It is built around the ACC (Adaptive Cruise Control), a 

speed and distance control system that calculates how fast the vehicle can travel while remaining in a safe situation 
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with respect to certain predefined events (turns, traffic jams, stop signs, etc.). To ensure its safe activation, the 

longitudinal control relies on an internal monitor (a subcomponent called supervisor that manages its states) and a 

failsafe controller (a subcomponent that places the longitudinal control in some predefined safe states when some 

faults occur). Safety requirements associated with the longitudinal control are documented in a safety concept 

through safety goals that are declined to Unwanted Software Events (UWSE) at the software level. In this case study, 

we focus on one single UWSE related to the occurrence of an unintentional acceleration above the permissible 

acceleration limit (defined by ISO 22179) during travel (v ≠ 0 km/h) entailing longitudinal control. Other constraints 

also exist (e.g., the user must be able to deactivate the ACC at all times).  

1. Pattern prototyping and dysfunctional model construction with SimfiaNeo 
Using our described approach, we modeled the basic structures of software components using the previously 

described fault categories and safety mechanisms. First, we declared the necessary AltaRica domains in SimfiaNeo. 

To this end, we declare 5 domains with different literals encompassing data integrity, Data exchange, Safety 

mechanism, generic state, and generic data. Using these 5 domains we modeled bricks of components representing 

the elements of a software safety architecture including elements such as generic software components, generic 

safety mechanisms, Boolean operators, and program control structures.  

Description the fault patterns 
In automobile, software fault modes and associated safety mechanisms are clustered into 4 categories. Including 

include “data integrity, initialization & configuration data” “data exchange”, “timing & control flow” and “data 

processing”. In this subsection we present a fault pattern related to the data exchange as an illustrative example and a 

generic behavioral pattern for safety mechanisms.  

As described by ISO 26262 in the software scope, the “Data Exchange” category covers failure modes related 

data transmission between sender and receiver such as between different ECUs or software components. The pattern 

presented on Figure 2 shows how the execution of a receiving software component subjected to this category can be 

affected. Like the pattern shown in Figure 1, it has 4 states: “Init,” “Nominal”, “Erroneous”, and “Failed”. From the 

initial state (blue state on Figure 2), the function will either move to the “Nominal” or “Erroneous” states as 

indicated by the outgoing transitions depending on a successful or unsuccessful data transmission initialization. In 

the nominal sate, the software component executes normally and fulfils its function. If a data transmission 

initialization fault has led the function to the “Erroneous” state, an execution of a safety mechanism can bring the 

function to nominal if successful or to the “Failed” state (red state on Figure 2) if unsuccessful. The function can also 

move to from the nominal state to the “Erroneous” state with the occurrence of inconsistencies of the transmitted 

data (such as corruption, incorrect data value, out of range data values or incorrect sequence of data). In the “Failed” 

state, the software component fails to provide the expected function due to missing or loss of transmitted data or due 

to the safety mechanism failure to recover from the “Erroneous” state. As it can be seen in Figure 2, this pattern is 

built on the generic pattern presented in Figure 1. However, it differs by the specificity of its failure modes expressed 

in the transitions that are specific to “Data Exchange” fault category. Based on this pattern, another related pattern 

was derived to cover the specificity of other data exchange related faults such as delayed data transmission that will 

cause the function’s execution to be delayed. It such case, the “Erroneous” state was further split into several states 

depending on the specificity of the software component.  

 
Figure 2. Data exchange fault pattern 

The next pattern aims to capture the behavior of a generic software safety mechanism. The 4 states (Nominal  

Inactive, Nominal Active, Misleading and Failed) represent the execution state of the safety mechanism. In the 

“Nominal inactive” state, the safety mechanism is in its nominal execution state with no fault detected. When a fault 
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is detected, it moves to the “Nominal active” state. In this state, the safety mechanism is successful in reacting and 

correcting the effect of the fault. From this states, an erroneous or failed reaction will lead the safety mechanism to 

“Misleading” or “Failed” states respectively. 

Figure 3. Generic safety mechanism fault pattern 

The behavior of the safety mechanism is completed with writing failure propagation logic knowing their function 

and considering the associated fault modes identified earlier. To do so, we first need to study the safety mechanism’s 

function and identify their basic behavior, what their inputs are, and the result they produce in normal or faulty 

execution. Once done, we can write the failure propagation logic of the identified safety mechanisms. Depending on 

the expression of the safety requirements that the identified mechanisms are to fulfill, logical operators such as “or, 

and” and program control structures such as “if-then-else” can be useful to express the function or the combination 

of several mechanisms within a software component. While these operators are already part of the AltaRica 

semantics and can be expressed in assertions, modeling them in virtual bricks allows to graphically associate the 

components without rewriting the propagation logic. Therefore, we also need to write and add to the library, the 

failure propagation logic through theses operators and control structures. This will result in a library of safety 

mechanism, operators and control structures that will be use in the last step to construct the dysfunctional model of a 

system. 

Modeling  
Having opted for an approach based on a dedicated model, we must first identify the information necessary for its 

construction, starting with the software architectural design documents and the Technical Safety Concept (TSC) 

resulting from the system level safety assessments. The TSC is an aggregation of safety requirement specifications 

(often in textual and tabular format) from the system, as well as their allocations to hardware and software 

components and associated information (text, diagrams or sketches), which justify that safety measures and 

mechanisms are in place. Based on the TSC and the definition of the items, we can identify the safety-relevant 

components and interfaces to model, as well as the requirements and safety mechanisms to evaluate in the context of 

the dysfunctional architecture. In this way, we can represent in the dysfunctional architecture only those components 

that impact the safety goals, which are high-level safety requirements resulting from the preliminary risk analysis at 

the vehicle level (see ISO 26262-1 3.139). This will also avoid overloading the dysfunctional model with elements 

unnecessary for safety. 

We used the readily available model bricks to model the patterns and their states in the tool, assigning the 

previously created domains to them. An overview of the modeled system along with the fault patterns is presented in 

Figure 4. Depending on the function of the pattern, different domains were used. Through the creation of AltaRica 

events in SimfiaNeo, we then modeled the transition firing conditions using the events identified in the state 

machines previously presented in the methodological proposal section. An AltaRica transition is characterized by a 

guard (condition to fulfill before triggering the effect), an effect (action resulting from the state change), and 

potentially a distribution (exponential, Dirac etc.) associated to the event. For each event, the SimfiaNeo tool allows 

to specify a probability that will be used during calculations. However, given in the context of software faults, such 

values are irrelevant and a probability of 1 was used instead. For each pattern, we wrote fault propagation logic 

linking the corresponding inputs (if they exist), internal states and outputs. We described the states of the inputs and 

outputs using the AltaRica domain that we named “Generic Data” and that incorporates four states: Nominal, Lost, 

Delayed, Erroneous. Using these states, we were then able to model the dysfunctional information flows between 

components trough AltaRica expressions. Using the elements stored in the library in an appropriate MBSA tool, one 

can easily model the dysfunction architecture of a systems through drag and drop. This is possible since the safety 
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mechanisms self-contain their propagation logics as well as the associated fault modes. Therefore, there is no need to 

write the failure propagation logic code in this step. We constructed the model presented on Figure 4 using the 

elements stored in the library as shown by the library icon in some of the components (e.g., component identified as 

ETH at the bottom left of the models). As an examples the components labeled CAN and ETH in Figure 4 were both 

modeled thorough an instantiation of the data exchange fault pattern described earlier as well as some internal 

components in the “vehicle-status-input” component that receive these data. Similarly, the “memory” component 

shown on Figure 4 as well as some subcomponents in the “longitudinal controller” component that read data from 

the memory were modeled though the instantiation of the data integrity fault pattern. Through these reusable 

libraries, we are able to model the dysfunctional behavior and failure propagation without having to manually rewrite 

their AltaRica code.  

 
Figure 4. Pattern prototyping and dysfunctional model construction with SimfiaNeo 

2. Safety Analyses 
Using the SimfiaNeo Tool, we performed various safety analyses including step by step simulations, minimal 

cuts, FTA and FMEA based on the dysfunctional model constructed using the previously developed fault patterns. 

Having completed the modeling of the longitudinal control software component and the components that interact 

with it, the objective was to perform safety analyses from the dysfunctional model. For this purpose, we set up 

AltaRica observers on the outputs we were interested in (as shown in Figure 4). An AltaRica observer is an indicator 

that can be associated with a failure condition or feared event that we wish to capture. For example, let us consider, 

the UWSE that we have chosen for our case study related to an “unintended Acceleration > ISO 22179 acceleration 

limit while travelling (v ≠ 0 km/h) requested by the longitudinal control feature”. In our model, we identified that 

the acceleration target and request in the speed controller subcomponent (Speed-Ctrl) are limited to 0.2G until 

vehicle speed vehicle is above 10 km/h. We also identified that the final value of the acceleration target is 

transmitted to the engine through the engine management command ‘PWTWheelTorqueCmd’ (Powertrain Wheel 

Torque Command). Thus, any erroneous value of ‘PWTWheelTorqueCmd’ can result in the violation of the safety 

goal and the occurrence of the UWSE. Therefore, the observers predicate to capture the occurrence of this UWSE 

can simply be ‘PWTWheelTorqueCmd =Erroneous’. Having added the expression of the observer to the model, the 

objective was to verify, by means of the simulation, FMEAs, minimal cuts and fault trees, whether we could 

Domains 

Fault patterns 

Observer 
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determine the events or failures that could lead to the transmission of this erroneous command that can result in the 

violation of the chosen UWSE.  

Simulations 
Having run a series of simulations, we observed the propagation of failures to observers through the visualization 

of components in different colors (red: in the presence of a failure; orange: in error state; green: in nominal state), as 

shown in Figure 5. However, hierarchical components (consisting of blocks containing several subcomponents) 

appeared without color during the simulation. This step—although not overly formal—allows the model to be 

verified as it is being built. The analyst can then use it to quickly evaluate the dysfunctional architecture by 

visualizing how all the components and observers react to the presence of one or more failures at specific locations. 

The simulation can be used to confirm and demonstrate (for communication purposes) the feared scenarios identified 

with the classic methods (FMEA and fault trees) that we will discuss in the following subsections.  

Failure Mode and Effects Analysis 
We used SimfiaNeo to generate the FMEA tables from the dysfunctional model we had built. The FMEAs list all 

the events resulting in the violation of a safety goal (or of a created observer), doing so for each component of the 

model. Figure 6 shows an excerpt from an FMEA, containing a certain number of elements typically found in these 

tables. The first column (Event) lists the events causing the violation. In the following columns, we can find the 

Local Effect (effect of the event on the output of the initial component), the Intermediate Effect (effect of the event 

on all intermediate components between the initial component and the final observer), and the Final Effect (effect on 

the output of the model; in here, the effect on the observers described previously). For instance, in relation to our 

chosen UWSE, the excerpt from Figure 6 shows how faults in the vehicle status input component related to vehicle 

speed can affect other components and the final observer. 

Figure 6. FMEA 

SimfiaNeo can export this document as an Excel spreadsheet, allowing for better data processing and sharing. 

This is an important asset of the tool, considering that MBSA tools are not necessarily used by many but every 

engineer manipulates Excel files. Note, however, that Figure 6 represents only a very small excerpt from the initial 

FMEA, which has more than 18,000 lines. Therefore, if the goal is to obtain usable details or to make a synthesis, 

this representation is not ideal.  

To analyses the usefulness of this FMEA, a comparison with a manually performed FMEA would have been 

interesting. However, in the context of current practice in our case, there are no software FMEAs performed using 

Figure 5. Simulation 



9 

 

the traditional approach. In contrast to fault trees that focus on one feared event, FMEAs are systematic and 

constitute a great way of showing that all failure modes have been accounted for within the system. This remains a 

difficult task for the safety analyst especially in the software context where failure modes can be plethoric. Despite 

the absence of a comparison with a manually performed FMEA, we argue that our approach allows performing this 

type of analysis that is otherwise difficult to perform manually.  

Minimal cut set and fault tree 
The generation of the minimal cuts is achieved through the configuration of the cut set and sequence calculation 

engine for a given observer. Thus, for an observer we can choose the maximum order of the cuts, the filter type 

(minimal cut or minimal sequence) and the generation type (combination, permutation or stochastic) which will be 

used during the cut set or sequence calculations. The maximum order corresponds to the maximum number of 

primary events in a sequence. To choose the maximum order, we experimented with  values ranging from 2 to 5. We 

observed that SimfiaNeo load on the processor and memory consumption remained relatively constant (respectively 

close to 30% and 700 Megabyte) regardless of the maximum order value, while the computation time increased 

exponentially from under 2 minutes for order 2 to 7 hours for order 5. Meanwhile the maximum order in the resulting 

minimal cut set remained equal to 3 even if we consider sequences of size 4 or 5. We chose order 3 for our case 

study—the higher the order, the longer the generation of the cut will take. An order of 3 is therefore a good tradeoff 

between computation time and accuracy. The choice of the filter type is also important; we have chosen the “minimal 

cuts” option since it makes fault tree generation possible. Lastly, the choice of the generation type specifies the 

combinatorial or stochastic sequence (based on random simulations) used during the generation of the cut. 

Figure 7. Minimal cut 

As an example, we considered the chosen UWSE linked to the transmission of an erroneous torque command to 

the engine. For this UWSE, we generated a minimal cut by choosing “order 3” as value of the maximum order, the 

“minimal cut” filter and “permutation” as the generation type. The generated minimal cut is shown in Figure 7. It 

shows combinations (of order 1, 2) of basic events that could cause the specified UWSE, as well as their associated 

probabilities (added by default). We can see that the cut highlights the events and the hierarchical components, 

enabling traceability of the components at high level (as shown in Figure 7). For dysfunctional models where several 

subcomponents have identical nomenclature, this traceability allows to clearly identify the origin of each event.  

During the execution of these calculations, however, several compilation errors occurred, some of them due to the 

presence of loops in the failure propagation chain. This is a known issue related to the dataflow version of the 

AltaRica language. To solve this problem, we modified the assertions of the failure propagation involved in these 

loops. In the case of a redundant evaluation of a variable (where one of the assertion is part of the loop), removing 

the redundant evaluations of the involved variable allowed to break the loop. For this purpose, we considered a loop 

and identified the self-dependent variables in the chain of assertions constituting this loop. One possibility was to 

remove this variable from one of the assertions if it was already considered in another assertion. If this was not 

possible without modifying the validity of the assertion, the second possibility was to remove the dependency link 
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and successively assign to the state variable all possible values and perform the calculations with each scenario. In 

the latter case, it was necessary to manually change the value of the variable to include the scenarios which were 

excluded by assigning it a fixed value. In both cases, the dysfunctional logic of the assertion remains valid. 

For a defined feared event, SimfiaNeo allows the generation of FTAs from the equivalent minimal cut. Through 

its tree structure and logical combinations, FTAs illustrate how basic events (located at the bottom of the tree) can 

lead to the feared event (at the top of the tree). In other words, FTAs highlight the causal chain between the basic 

events at the component level (at the bottom of the tree) and the high-level feared event (at the top of the tree) 

through a tree structure represented in graphic form. In SimfiaNeo, it was possible to generate an equivalent reduced 

fault trees from minimal cuts for a defined feared event. Nevertheless, we did not identify any added value through 

this generation as the minimum cuts in our opinion present the same information in a more concise and readable 

format. Furthermore, generating FTAs from minimal cuts can be considered counter intuitive as in practice safety 

engineers use the reverse process (they use FTAs to compute minimal cuts). 

V. Discussion 
The results obtained from the application to the case study shows that using fault patterns and the adequate tool, 

the dysfunctional model construction is made easy and safety analyses can benefit from this alternative new analysis 

method. The specificity of the case study demonstrates that the use of software-oriented fault patterns can benefit the 

application of MBSA in the automotive software safety context. Furthermore, tools such as SimfiaNeo relieve the 

safety expert of manual calculations while allowing him to concentrate on modeling. The benefits are reflected in 

terms of reusability of the models. Once the fault patterns are built, they can be reused to build the dysfunctional 

model and make it possible to conduct analyses with different parameters for many UWSEs based on the same 

model. In the traditional approach, the safety analyst spends much of their effort interpreting various design 

documents to manually construct classical model’s safety models such as FTAs or FMEAs. The analyst would need 

to manually construct as many FTAs as there are feared events. If the design evolves, they will need to individually 

update all the fault trees and the FMEAs. Through our proposal, the dysfunctional model is easy to construct. If the 

system design evolves, the dysfunctional model can be updated, and updated safety analyses can be automatically 

derived. In addition, representing the behavior of the system without ambiguity is possible through the formal 

semantics of AltaRica, turning it into a possible candidate in a certification context. All these elements make this 

safety analysis method an interesting alternative that has the potential not only improve current practices but to 

contribute to the adoption of the model-based approach. Nevertheless, we noted some limitations on the method. One 

of the difficulties brought about by a dedicated dysfunctional model is maintaining its consistency with the design 

model when the latter evolves; this problem was already true when working on analyses based on fault trees and is 

not addressed by our proposal. Implementing additional measures is therefore necessary to guarantee consistency. 

Another limitation, related to the AltaRica dataflow, is the inability to natively manage loops; our solution was to 

modify some assertions in order to remove these loops. Finally, as the case study involves a system of reduced 

complexity, the scaling up of our methodological proposal is yet to be evaluated and we will need to perform a 

comparison with safety analyses results obtained through the traditional manual approach to fully evaluate the 

proposed approach. 

VI. Conclusion 
This paper made a methodological proposal based on fault patterns that can be used to build a dysfunctional 

model, and from which it is possible to derive classic safety models. Using the SimfiaNeo tool and the AltaRica 

language, the methodology was applied on a case study, building a dysfunctional model of a software from which we 

were able to generate FMEAs and minimal cuts. These results are encouraging and demonstrate the usefulness of 

patterns to facilitate MBSA model construction. More generally, they show that it is possible to apply an MBSA 

approach to evaluate software safety, especially in automotive applications. They also highlight the benefits of 

generating safety analyses from a dysfunctional model (time saving and reusability). Building on these results, the 

study must now continue to evaluate the complexity of the systems for which the methodology and the tooling can be 

reasonably applied. Since the proposal of this paper is based on a dedicated dysfunctional model, it will also be 

essential to supplement the method with a mechanism that ensures consistency between the design models and the 

safety models. 
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