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Towards an agile, model-based multidisciplinary process to improve operational
diagnosis in complex systems

Nikolena Christofi1, Xavier Pucel2, Claude Baron3, Marc Pantel4, Sébastien Guilmeau5, Christophe Ducamp6

Toulouse, France

Abstract

Systems’ online diagnostics require multidisciplinary system knowledge and experience by their operators. When the
complexity of the system rises, operational (in-service) diagnostics become a complex task. In an effort to improve the
efficiency while better handling the complexity of diagnostics during operations, the authors propose a methodology
aiming to increase the agility in complex systems’ development processes. This paper introduces a new way to
construct operational models early on the development cycle so as to improve the performance of monitoring activities
and, ultimately, increase the confidence on the systems’ resilience provided by its design.

Keywords: Satellite Systems, Health Monitoring, Online Diagnosis, Model-Based Systems Engineering (MBSE),
Model-Based Safety Assessment (MBSA), Maintainability, Behaviour Trees, Model-Based Operations, Agile
Techniques

1. Introduction

To this day, monitoring activities and associated tools used for Fault Detection and Diagnosis (FDD) [1] during
system operation are limited to specific functions provided by certain subsystems, while largely relying on the oper-
ators’ experience [2]. Past data i.e. Return of Operating Experience (ROE), also feed the algorithms used for FDD.
However, the ever growing complexity of embedded systems demand that the tools used for system monitoring have
an underlying knowledge of the whole system structure and behaviour, so as to provide a faster, and more reliable
diagnosis, especially when time is a key operational constraint. What is more, without precise knowledge of the sys-
tem design, it is ambitious for diagnostic tools to be able to provide a unique possible failure source, or the correct
troubleshooting procedure, in case the monitoring data contain alarm inconsistencies.

Diagnostic tools shall thus be able to provide the operators with dedicated views of the system, which will help
them perform diagnosis more efficiently. These views must incorporate the appropriate system information with the
defined level of detail while keeping monitoring and diagnosis in the main focus. An overly detailed view of the
system would make the operation model too heavy and long to exploit, while if the view is too coarse or stays only
at high level, the model might lack crucial information to assist in diagnosis. To this end, one approach consists in
collecting available information from the system architecture designed during Systems Engineering (SE), as well as
from the Safety Analyses (SA) documents and models, the latter regarding the potential failures. The aim would then
be to use the collection of data, information and models, to produce a tool that will support the operators in their
monitoring task: interpreting housekeeping data, troubleshooting problems, and performing system maintenance.
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Our goal is thus to use the system design information to construct operational diagnosis tools. We postulate that
this is possible with the introduction of an Operations-Dedicated Model (ODM), which shall include both system
design information –SE data, as well as the information produced by selected system dysfunctional analyses –SA
data. The latter shall help in the diagnosis activities by suggesting a possible source for the error, and its location in
the system.

We explore Behaviour Trees (BTs) as a solution towards the construction of ODMs to be used for operational
diagnosis. Considering that BTs can provide an intuitive way to model and simulate system behaviour, they can
also be used to meet the needs for a diagnostic model which includes the system’s dynamic aspects and not only its
structural information –as it is the case for the currently available diagnosis models. BTs have shown a lot of potential
in the last decade, mainly with their application to robotics and Artificial Intelligence (AI). Initially developed within
the gaming community to replace Finite State Machines (FSM) with more user friendly models, their use could be
widened to the field of operational diagnosis to model, implement and monitor the state of complex systems.

This paper explores the use of BTs to create a system behavioural model –namely ODM, oriented towards system
monitoring, which can be exploited during operations in order to increase efficiency in diagnosis. We show in place
that the BT model can be built during the design phase and along the production of other design models and docu-
ments, in a co-design manner, thus contributing to an agile system development process. The co-design of system and
BT models is a process within which documents and models of system function and dysfunction and BT models of
system monitoring for operational diagnosis are mutually constituted.

The structure of this paper is as follows. Section 2 outlines the context of our research and the problematic
addressed. Section 3 presents a literature review on the involved topics. The proposed approach is presented in
Section 4, using an illustrating example in Section 4.1, and perspectives on the use of ODMs inside monitoring tools
for diagnostic purposes in Section 4.2. Finally, Section 5 draws conclusions and discusses future work opportunities.

2. Context and Motivation

Despite the recent flourishing of model-based languages, methods and tools for system development –system
design and Verification and Validation –V&V activities, diagnostic tools created for the same systems, have known a
different path. Existing diagnosis tools are often designed after the system is built; hence the opportunities to make the
system easy to operate –which would be the case if the tools were constructed during system design, are lost. Either
under the form of data-based [3] or model-based [4], these tools are often targeting single system functions/subsystems
–e.g formation flight [5], reaction wheels [6], or thrusters [7, 8, 9]. Consequently, their specificity to one function or
subsystem makes them non-generic, and thus not reusable.

Moreover, diagnostic models fail to include safety analyses methods’ derived information; methods such as Failure
Modes and Criticality Effects Analysis (FMECA), Fault Tree Analysis (FTA), Failure Logic Modelling (FLM) [10,
11], Failure Propagation Modelling (FPM) [12], or Model-Based Safety Assessment [13, 12]. On the other hand,
system diagnostic tools can be very generic i.e. agnostic of the domain usage: they use general diagnosis techniques,
such as Machine Learning (ML) [14], not specific to spacecraft operations.

Moreover, operational diagnostics, as a core part of satellite maintenance, is limited by many constraints, should
thus consist one of the major concerns in satellite design. Therefore, by integrating a diagnostic tool in the system
development process and co-designing it along with the system itself, we can ensure that the operational diagnosis
activities are well taken under consideration before the satellite deployment.

As mentioned in [15], this would mean that the system design and its monitoring models influence each other. The
proposed process is depicted in Figure 1, where it is illustrated with a space satellite system application. Following
the system’s deployment, the operator, having at their disposal the housekeeping data the Operation Centre (OC) has
received from on-board the satellite, can perform diagnosis with the help of the monitoring tool. The latter is using
the ODM built during the system development process (concurrently with the system design models) in the form of
BTs. This would add confidence in the diagnosis results as well to the operations model. For the needs of our project
we assume that the ODM is representative of the actual system emitting the monitoring data.
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Figure 1: Overview of the proposed approach: creating ODMs during system design phase (along with SE & SA models), to be used as a basis for
the “System Health Monitoring Tool”.

3. Literature Review

This section consists of a description of the current State of the Art (SoA) in the fields of MBSE –section 3.1,
and MBSA, as a prominent System Safety Assessment (SSA) methodology –section 3.2. The aim is to introduce the
reader to the topics involved in our approach. Finally, subsection 3.3 presents the basic semantics of BTs, which is
the formalism used to create the ODMs.

3.1. Model-Based Systems Engineering (MBSE)

MBSE facilitates the fulfillment of the SE requirements through design –structural and behavioural system mod-
elling in various decomposition levels. SE models allow the engineers to verify the solution’s design, functions and
envisaged operations, early on in the development process, resulting to the reduction of the overall project cost. MBSE
allows design alterations to take place in the beginning of system development and not when the solution is furtherly
developed.

By applying MBSE, one can create architectural models (express system structure and decomposition), func-
tional models (express system functions), and behavioural models (express system behaviour in different operational
scenarios). To represent these models, several types of formalism are used, along with their associated languages
and methodologies. The most common languages used in MBSE [16] are SysML [17] –based on OMG’s7 UML
[18] standard, and EAST-ADL [19]. ARCADIA [20], IDEF [21], and OPM [22] consist both MBSE languages and
methodologies. In terms of tools, IBM’s Rhapsody [23] and Magic Draw’s Cameo [24]–both based on SysML, and
Eclipses’ open-source Capella [25]–based on the Arcadia method, are the most popular.

3.2. System Safety Assessment (SSA) and Model-Based Safety Assessment (MBSA)

System Safety Assessment (SSA) is an analysis which leads to the production of a series of documents reporting
all the identified hazards for the system in question, and the complying with the safety requirements [26]. For each
identified system Failure Condition (FC)–how the system could fail, characterised by their level of impact to the
environment, humans and the system itself (for space systems: catastrophic, critical, major, minor/negligible) [27], an
analysis shall be made, in order to identify the possible causes–and combination of, that can lead to these FCs.

A recently developed approach for performing SSA or Reliability, Availability, Maintainability and Safety (RAMS)
analysis, is MBSA. It is a technique which models the system’s structure and behavior in order to provide safety
analysis results. In this approach, various SSA-related activities are based on formal models which contain system
dysfunctional data. In order to perform dysfunctional analysis at system level, it is required to have a fundamental

7The Object Management Group® (OMG®) is an international, open membership, not-for-profit technology standards consortium, founded in
1989. OMG standards are driven by vendors, end-users, academic institutions and government agencies.

3



knowledge of (a) the nominal system behavior, limited to the scope and the level of abstraction useful for dysfunc-
tional analysis, in particular the reconfiguration and protection systems defined in the SE model, and (b) the various
ways the failures can occur and propagate inside the system [28].

Consequently, MBSA uses a formal model describing both the nominal system behavior and the possible faulty
behaviors, to analyse combinations of faults and their consequences in terms of feared events, which affect operational
availability (when a critical error occurs, the system is not available until the error is resolved). The resulting analytical
models are manually built by safety engineers from the available SE information. These models can be used to
compute quantitative and/or qualitative safety indicators. Several mathematical formalisms are used to support the
computations, mainly Markov chains [29], Petri nets [30] or Finite State Machines (FSMs) [31], each with different
variants. These types of underlying formalisms are important for the qualification of computation tools.

As in MBSE, a number of modelling languages supporting MBSA were developed, such as AltaRica (AltaRica
LaBRI [32], AltaRica DataFlow [33], AltaRica 3.0 [34]), Figaro [35], SAML [36], HiP-HOPS [37], Component Fault
Trees [38], Generalized Stochastic Petri Nets [39] and Safety Architect [40]. In our approach we use the AltaRica
language, since it has has become a de-facto European industrial standard for MBSA [41]. The most mature industrial
tools for MBSA based on AltaRica are Dassault’s Cecilia OCAS [42] and Apsys’ SimfiaNeo [43].

3.3. Behaviour Trees
BTs were first invented as a tool to build modular Artificial Intelligence (AI) in computer games. A known

alternative to FSMs, BTs are meant to provide better modularity, scalability, extendibility, adaptability and reuse of
code [44, 45, 46, 47, 48, 49, 50], and to be easier to understand for humans, thus allowing incremental functionality
design and efficient testing. On the benefits of modularity, Bagnell et al. state that ”individual behaviors can be reused
in the context of another higher-level behavior, without needing to specify how they relate to subsequent behaviors”
[51].

According to Colledanchise and Ögren, ”a Behavior Tree is a way to structure the switching between different
tasks (assuming that an activity can somehow be broken down into reusable sub-activities called tasks) in an au-
tonomous agent, such as a robot or a virtual entity in a computer game” [52]. According to Garcı́a et al., a Behavior
Tree is ”a mathematical model of plan execution that allows composing tasks in a modular fashion through a set of
nodes representing tasks and connections among them” [53].

BTs are widely used in systems control since they provide an easy way to perform conditional state switching.
However, the main reason we have chosen BTs as the means to construct the ODM is that they provide an answer to
the question ”What is the system currently doing?”, which is precisely the first question the operators ask themselves,
both when the system is in nominal mode, as well as when an issue has been identified.

One of the benefits of BTs we have additionally identified is that their elements can be in the form of blackboxes
and be furtherly developed when new information is available; that being during the design phase or the operations
phase –in the case of telemetry data reception. In the following section we demonstrate that BTs are easy to integrate
within the design process. Based on the MBSE and MBSA models, and with operational objectives, we can create
a model that can then be used inside a monitoring tool, suited for diagnosis. In our modelling approach we use the

Figure 2: BTs’ sequence execution.

classic formulation of BTs as described in [52], where BTs can be considered as a form of directed tree, where the
flow amongst its nodes and edges is sequential in a left to right, depth first manner. The ticking execution sequence is
illustrated in Figure 2.
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BTs represent the possible system behaviours and their changes, in contrast to decision trees, which represent a
logical formula, usually for automated decision purposes. BT nodes are visited at each time step (called “tick”) during
execution, starting from the root node. Parent nodes specify which children nodes must be visited, and in which order.
Fallback and Sequence (parent) nodes define how the behaviour evolves when one of its child behaviour succeeds or
fails. Action (child) nodes contain executable information. A classical BT formulation [52] is depicted in Figure 3.

Figure 3: BTs’ basic elements.

Regarding our BT implementation to construct the ODMs, we use the PyTrees (python implementation of BTs)
library [54][55], which is relatively easy and intuitive to code with, so any engineer/scientist can build a BT model,
with no particular programming background or developer skills. In our approach, BTs consist of sequential tasks: al-
though PyTrees’ ticking mechanism is compatible with parallel execution, we do not use this feature in our modelling
approach, since no need has risen so far. Parallel execution in PyTrees is possible with the use of the the “parallel”
composite node, which visits all its children simultaneously at each tick [56].

In terms of the trigger mechanism, we propose a time-triggered (vs event-driven [57] pg. 199) BT execution,
in a way that the BT nodes are triggered in a time-increment manner and not by the order of the modelled events’
occurrence. When representing structural system information, we often use time-triggered modelling –in contrast with
dynamic system information, where event-driven modelling is preferred. Therefore, when dealing with highly complex
systems, we prefer to represent them with time-triggered models that can periodically check for the occurrence (or
not) of the modelled events, in an effort to reduce modelling complexity.

Regarding the periodicity of BTs, BT nodes are independent concurrent processes, that may or may not follow a
mutual clock, e.g. they may terminate at any time. However, the BT is only active at every tick, which means BT
events (starting a new action, mostly) only take place upon a tick. Ticks should be relatively fast with respect to the
system’s dynamics.

BTs can be modelled to be state-full i.e. having memory of all the visited nodes’ state –state information can be
either in the node type or the node instance (its source code), or state-less i.e. not “remembering” the state of multiple
nodes, rather than saving only the state of the lastly triggered node. Clearly this option changes the behaviour of the
composite nodes, while PyTrees can support both styles. By making the state-less modelling choice, one can affect
the performance of the BT: state-less BTs offer less control over the workflow, thus this control must be implemented
in the Action leaf nodes.

The BT implementation presented in this paper is using the default PyTrees’ setting for Sequence and Fallback
nodes, which is memory-full and memory-less, respectively. More specifically, the class syntax for the Sequence and
Fallback nodes is respectively the following[56]:

class py trees.composites.Sequence(name=Sequence, memory=True, children=None)

class py trees.composites.Selector(name=Selector, memory=False, children=None)

In regard to the interruption of BT behaviours, there may be many reasons to interrupt a node, some related
to the BT, some completely unrelated. Action nodes are free to implement their internal interruption management
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mechanism: it integrates easily in the BT paradigm. However, many libraries (including PyTrees) also include an
interruption mechanism for BT-related interruptions (in Fallback nodes mostly). In PyTrees, the memory parameter
of Selector nodes inhibits the interruption mechanism, e.g. with memory=True the Selector node does not try to
restart “high priority” terminated children, so there are no interruptions. With memory=False, the Selector node
always queries the high priority children first, so they can “restart” and interrupt a currently running low priority
child.

A simple example would be a system that tries to buy an item, but if it does not have enough money, works to earn
it. The version without interruption could be:
• Acquire item (Sequence)

– Work until enough money
– Buy item

In this version, the “Work until enough money” must internally check whether there is enough money, and terminate
or perform work accordingly. The version with interruption could be:
• Acquire item (Selector(memory=False))

– Try to buy (Sequence)
* Has enough money (Condition)
* Buy item

– Work
In this tree, the “Has enough money” and “Work” activities are separated. Because of “memory=False”, even when
the “Work” node is running, the BT still executes the “Try to buy” node. When the latter fails, it goes back to the
“Work” node. When the “Try to buy” node finally succeeds, the BT automatically interrupts the “Work” node.

Existing BT libraries are built for control purposes, and rely almost exclusively on the past behaviour statuses
“success”, “failure” and “running” to decide to start or interrupt other behaviours. In our approach, we require that
the status of each behaviour can be enriched with health indicators, such as alarms, specific to each behaviour. This
enriches the ticking mechanism with an alarm gathering mechanism, that can be used for User-Interface (UI) or
automated reasoning purposes. This mechanism can be flexibly implemented in the PyTrees library through the use
of visitors. This feature is illustrated in the next section.

4. Proposal

In traditional satellite system development process, the SE, SA and Operations stages occur sequentially –each
stage commences after the precedent’s completion, and evolve linearly in time –no recurring loop is connecting the
three stages. There is however an exception regarding the SE and SA stages, the activities of which interlock during
system design. Nevertheless, SE and SA activities finish long before the system operation phase starts. Therefore,
if any issue is detected at operation time (which could have been avoided by a change in design), there will be no
modification in the SE or SA documents and models, since the latter would significantly augment the project cost.
This modification would thus be dismissed, even if the operational impact would be beneficial in the long term.

In our proposal, SE and SA documents and models are being concurrently developed with the ODM. Hence oper-
ational aspects can be taken into account in the SE and SA activities. This would not only increase the confidence of
the system design in regards to its representation of the actual system, but also to the foreseeing of possible operational
issues, which can be avoided by modifying the system design, early on the system life cycle [58]. This would also
decrease the system development cost, while optimising system design.

SE is defined by an iterative system development process. All teams involved in the system design (SE/MBSE,
RAMS/SA) are striving for continued improvement through constant dialogue and joint meetings at each iteration
step –concept of concurrent design [59]. Our proposal consists in incorporating the ODMs’ team in the feedback
loop, so as to increase the agility of the system design process. This shall imply the involvement of more stakeholders
(operators / ODM architects) in the design phase.

The proposed methodology implies the constant amelioration of system design at each iteration loop, which in-
creases the efficiency of the system design activities. The co-conception and co-design of system models means that
any modifications are made early on the life cycle development process; in contrast to making changes at the end,
during the V&V and testing phase. Hence an increase of efficiency is achieved, by reducing the total time and cost of
the design phase. The proposal thus not only is agile, but also improves the agility of current methodologies, widely
used in the aerospace industry.
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4.1. Illustration of the ODM construction process

As mentioned in section 3.3, one of the benefits of BTs is that its elements can be in the form of black boxes and
be furtherly developed when new information is available. This way, BT models can be easily integrated within the
design process. Based on the SE and SA models, and with operational objectives, we can create a model that can then
be used inside a monitoring tool, suitable to diagnosis. An illustration of our proposal is presented in Table 1, where
a juxtaposition of SE and SA information and the implementation into a BT is depicted.

As shown in Table 1, information can be added in the BT models gradually, when new information concerning the
system is available. In this example we tackle the case of an Earth Observation satellite that shall fulfill its primary
mission, which is to take photos of the area(s) of interest on Earth and transmit them back to the OC, as we can see
in the first model iteration. The information coming from preliminary SE activities, here shown in the first column, is
“Satellite must perform Earth Observation”. This information can be translated in a BT model–as shown in the 3rd
column, where a single action node “Observe Earth” is included in the tree, under the “Mission” node–here a Fallback
node.

Throughout the system design development, the FMEA team can produce new system information, as shown in
the second column, as for example, “Mission may fail”. This information can be integrated in the BT model with the
addition of a new action node (“Mission Fail”), on the right side of the “Observe Earth” node, which represents the
system’s nominal mode. This would mean that, if the “Observe Earth” node ticking returns “failure”, the “Mission
Fail” node will be ticked. If the “Observe Earth” node returns “success” or “running”, the “Mission Fail” node will
not be ticked.

In the third iteration, we assume the information “A mission fail can sometimes be mitigated by putting the
Satellite on Standby Mode” is available by the SE team. This information can be integrated in the BT model by
adding a new action node between the “Observe Earth” and “Mission Fail” node, which represents the “Standby”
mode of the system. Consequently, if the “Observe Earth” node ticking returns “failure”, the “Standby” node will be
ticked. If the “Standby” node also returns “failure”, the “Mission Fail” node is ticked. If the “Observe Earth” node
returns “failure” and the “Standby” node returns “success” or “running” the “Mission Fail” node will not be ticked.
The latter would signify–in case of system monitoring, that the system is currently in Standby mode.

The SE activities might then conclude that the Earth observation activity has three phases: capture photos, save
photos, send photos to Operations Centre. The “Observe Earth” action node can then be turned into a Sequence node
in the BT model, and have three children, namely “Capture photos”, “Save photos” and “Send photos”. This would
mean that if the “Capture photos” activity is successful, then the “Save photos” activity can be performed. Similarly,
if the “Save photos” activity is successful, the “Send photos” activity is able to be performed. If one of the activities
cannot be performed, the “Observe Earth” activity will fail, and so the BT will return “failure” as well.

Lastly, we assume that the FMEA teams communicate to the SE teams that a fault leading to instrument over-
heating thus causing the mission to fail can be detected by the operator, if able to monitor the instrument’s health
status data during the “Capture photos” phase. The SE team can then conclude that adding temperature monitoring
capabilities in the picture capturing instrument can help prevent system failure, and implement it in the system design.
This new design modification shall also be added in the BT; this way the BT model is up-to-date with the SE and SA
system models.

4.2. Exploitation of the ODM: Diagnostic Tools

The ODM is being created in parallel with the system functional and dysfunctional models and documents. How
this activity ultimately improves the system’s resilience is out of the scope of this paper, since there are many more
steps in between. However, we can already point out that since the ODM is created at the design stage, it is possible
to analyze it, identify design flaws that may impede operations, and derive new SE and SA requirements to address
these flaws.

The most direct way to use the ODM is to build a UI component out of it, that displays the behaviour statuses in
a hierarchical way, including possible alarms. The hierarchical nature of the model helps operators focus on relevant
behaviours to quickly pinpoint problems and launch appropriate troubleshooting procedures.

Automated diagnosis techniques based on models [3] or data [4] can easily be integrated when they focus on
particular components or functions of the system. Their output can be used to raise alarms in the associated behaviours,
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Table 1: Illustration of the first iterations of a satellite design. At each iteration, the BT model can incorporate information coming from the system
design process related activities, while remaining at each step a valid model.

Functional textual
information

Dysfunctional textual
information Behaviour Tree

Satellite must perform
Earth Observation

Mission

Observe
Earth

Mission may fail

Mission

Observe
Earth

Mission
Fail

A mission fail can
sometimes be mitigated

by putting the Satellite on
Standby Mode

Mission

Observe
Earth

Standby

Mission
Fail

Earth observation activity
has 3 phases: capture

photos, save photos, send
photos to OC

Mission

Observe
Earth

Standby

Mission
Fail

Capture
photos

Save
photos

Send
photos

A fault leading to instrument
overheating causing the mission

to fail can be detected by
operator monitoring health
status data during “Capture

photos” phase

Add instrument
temperature monitor for

operator

Mission

Observe
Earth

Standby

Mission
Fail

Capture photos
→ Temperature

Save
photos

Send
photos
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or alternatively the automated diagnosis tool can be considered a behaviour in itself, that raises alarms when detecting
abnormal situations.

The ODM is a model that can be used to support automated reasoning techniques. A pattern of alarms in some
behaviours could be automatically associated to a diagnosis, or a troubleshooting procedure. There are many ways
to implement such reasoning (case-based reasoning, decision rules, constraint programming), that depend on aspects
specific to the system and its environment.

Taking the example illustrated in Table 1 as a use case, we created a tool to display the status of the BT nodes called
at each execution i.e. the BT nodes’ response to the embedded ticking mechanism, which can be one of the three:
“Success”, “Failure” or “Running”. Each execution is defined by an incremental time step T (tn), where t = t0, ..., tn−1,
n ∈ Z, t0 = 0. We also implemented an “Alarm” feature, so that raised alarms associated with a behaviour can also
also appear in the tool interface.

Table 2 shows an example interface of a diagnostic tool using the BT model of the last row and column of Table
1 as its ODM, after 3 time executions. In this case scenario, we can observe that in the first execution (T0), the status
of the root node “Mission” is “Running”, since the status of its first node “Observe Earth” is also “Running”. As a
Fallback node, the “Mission” node “inherits” the status of its first successful or running child node. After another
“Running” interval, the status of the satellite mission function returns “Sucess”, indicating the mission’s successful
completion (with or without errors in between).

The Sequence node “Observe Earth” needs all of its children nodes to succeed in order for it to take the status
“Sucess”; on the contrary, if at least one of its children nodes returns “Failure”, the “Observe Earth” function would
equally fail. In this case, its first child node “Capture Photos”, along with the temperature check of its camera sensor
has successfully completed its function. Then, we can see that the following function “Save Photos” is “Running”,
meaning that the satellite is in the process of saving the photos taken. Thus the function “Observe Earth” is in process,
hence the satellite is currently undergoing its principal mission.

Table 2: Diagnostic tool UI example.

Type of Behaviour Status Status Status

Node Name T0 T1 T2

Fallback Mission Running Running Success

Sequence Observe Earth Running Running Success

Action Capture Photos /
Check Temperature Success Success Success

Action Save Photos Running !Alarm! Success Success

Action Send Photos – Running Success

Action Standby – – –

Action Mission Fail – – –

However, we can see that the “Save Photos” function has raised an alarm, which would indicate to the operator
that there might be a problem related to the On-Board Computer (OBC), the memory e.g. over-warmed electronics,
etc. In such case, the operator shall have a troubleshooting sequence related to each error or alarm raised, which they
would follow in order to establish a road-map leading to the fault resolution. In the next time interval (T1), we can
safely assume that the satellite is in the process of sending the photos to the OC, while in the third (T2), that the
satellite has successfully completed its mission for the moment.

If the operator had access solely to the information presented in the last column (T2), which only displays the
results of the “Observe Earth” function –and not the underlying process, they would not be able to “see” the alarm
raised during the photos saving function. A model-based diagnostic tool which uses an ODM with a BT formalism
can have several benefits over traditional diagnostic procedures, such as the one illustrated in this use case scenario.
Effectively, a comparison with current monitoring methods can only be made by using a real-life model of a complex
satellite system, and feedback from operators. In this paper we present only a proof-of-concept.
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5. Conclusion

Monitoring tools for diagnosis during system operations are, to this day, still lacking important information needed
for the operators to perform their supervision and diagnostic tasks efficiently. They mainly rely on knowledge acquired
through previous experience as well as engineers’ and operators’ know-how, rather than system design elements. For
this reason we propose a methodology for the concurrent construction of a model dedicated to system monitoring
for diagnosis, along with the system design (construction of SE and SA models). Our methodology would not only
increase the agility of the system development process, but also the confidence on the system design by creating a
monitoring tool which is equally based on its design information as well as ROE. Eventually, our proposal shall be
validated by real-life operators, after having tested the model’s integration in a specific tool, as part of a representative
case study. We plan to evaluate it through feedback from industrial partners, research labs, and space agencies.
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[46] M. Colledanchise, P. Ögren, How Behavior Trees modularize robustness and safety in hybrid systems, in: 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 1482–1488. ISSN: 2153-0866.
[47] M. Colledanchise, P. Ögren, How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior Compositions, the

Subsumption Architecture, and Decision Trees, IEEE Transactions on Robotics 33 (2017) 372–389. Conference Name: IEEE Transactions
on Robotics.
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