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Abstract. Goal structuring notation (GSN) is commonly proposed as a
structuring tool for arguing about the high-level properties (e.g. safety)
of a system. However, this approach does not include the representation
of uncertainties that may affect arguments. Several works extend this
framework using uncertainty propagation methods. The ones based on
Dempster-Shafer Theory (DST) are of interest as DST can model in-
complete information. However, few works relate this approach with a
logical representation of relations between elements of GSN, which is ac-
tually required to justify the chosen uncertainty propagation schemes. In
this paper, we improve previous proposals including a logical formalism
added to GSN, and an elicitation procedure for obtaining uncertainty
information from expert judgements. We briefly present an application
to a case study to validate our uncertainty propagation model in GSN
that takes into account both incomplete and conflicting information.

Keywords: Uncertainty propagation · Belief elicitation · Goal structur-
ing notation · Dempster-Shafer application · Safety cases.

1 Introduction

Due to its expressiveness, the goal structuring notation (GSN) has became a de-
facto standard for graphical documentation of argument structures. It is notably
used to argue about the safety of critical systems. However, even a well-designed
GSN may include uncertainties that may question the final statement of the
GSN. There is a lack of consensus about how to model these uncertainties in
the argument structure. An interesting proposal [19] is to use Dempster-Shafer
Theory (DST), since incomplete information can be explicitly modeled and cal-
culated with. Several research works are investigating its use, but as presented
in [7], the proposed uncertainty propagation schemes are often not clearly jus-
tified. This is mainly due to a lack of a clear definition of the logical relations
between GSN elements. We investigate this issue in this paper, using DST and
logical representations of arguments with new propagation models. We do not
replace GSN informal notation, but build a formal model on top of it to propa-
gate uncertainties. We also study how expert judgments can be elicited to feed
our models.
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The paper is structured as follows. Section 2 presents background and some
related works. Sections 3 and 4 present the uncertainty propagation and elicita-
tion methods respectively. Finally, Section 5 presents some experimental results
gained by the proposed approach.

2 Background and related work

Goal structuring notation (GSN) is a graphical notation/language which repre-
sents argument structures (i.e., safety and assurance cases) in form of directed
acyclic graphs (directed trees or arborescences). It breaks down a top claim,
called “goal”, into elementary sub-goals following a specific strategy and in ac-
cordance with a particular context. Each sub-goal is associated with pieces of
evidence, called solutions, which support the conclusion. Figure 1 represents a
typical hazard avoidance GSN pattern. To be considered as “acceptably safe”
(G1) all hazards (G2 to Gn) of the system (X), listed in the context box (C1),
should be provably handled (Sn1, Sn2, ...) following the strategy (S1). However,
this symbol-based language does not specify the nature of the logical links be-
tween G1, G2, . . . Gn, nor does it capture the uncertainty that may exist in the
argument structure. Previous works [5, 7] stated and discussed proposals that
deal with the issue of uncertainty. An important part of these studies use proba-
bility theory to address it [4, 8]. For instance, some authors [15] transform GSN
into a Bayesian network (BBN) and propagate probabilities accordingly. Due
to the limited expressiveness of the probabilistic framework when information
is lacking, such approaches can properly deal with uncertainties due to aleatory
phenomena, but they poorly represent epistemic uncertainties due to incomplete
information. In addition, these methods are also very greedy in terms of data,
which requires much time to collect and process.

As a generalization of probability theory, Dempster-Shafer theory [16] (DST)
offers tools to model and propagate both aleatory and epistemic uncertainty.
A mass function, or basic belief assignment (BBA), is a probability distri-
bution over the power set of the universe of possibilities (Ω), known as the
frame of discernment. Formally, a mass function m : 2Ω → [0, 1] is such that∑

E⊆Ω m(E) = 1, and m(∅) = 0. Any subset E of Ω such that m(E) > 0
is called a focal set of m. m(E) quantifies the probability that we only know
that the truth lies in E; in particular m(Ω) quantifies the amount of igno-
rance. A mass assignment induces a so-called belief function Bel : 2Ω → [0, 1],
defined by: Bel(A) =

∑
E⊆A m(E). It represents the sum of all the masses

supporting a statement A. Belief in the negation ¬A of the statement A is rep-
resented by: Disb(A) = Bel(¬A); the value Uncer(A) = 1− Bel(A)−Disb(A)
quantifies the lack of information about A. In this paper, a conjunctive rule
of combination is used for uncertainty propagation. This rule combines multi-
ple pieces of evidence (represented by mass functions mi, with i = 1, 2, ..., n)
coming from independent sources of information: m∩ = m1 ⊗ m2 such that
m∩(A) =

∑
E1∩E2=A m1(E1) · m2(E2). In DST, an additional step eliminates

conflicts that may exist by means of a normalization factor (dividing m∩ by
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Fig. 1. GSN example adapted from the Hazard Avoidance Pattern [14]

1−m∩(∅)). This is Dempster rule of combination [16]. This step is omitted here
to indicate the presence of possibly conflicting pieces of information.

Our approach builds on some previous works (mainly [2, 19]) that define a
number of argument types and associate to each of them an uncertainty prop-
agation formula in the setting of DST. However, in [2], no logical framework is
provided, which prevents a formal justification of uncertainty propagation for-
mulas. An implicit logical setting is offered in [19]. But it remains questionable
since, for instance, rules that represent the relations between premises and the
top-goal are modelled by equivalences. In our work we explicitly build propa-
gation rules on a logical framework and we adopt a more flexible format using
implications. A second issue is the elicitation process that collects information
from experts and transforms it into belief and disbelief pairs in DST. For that,
the method proposed in [2] and taken over in [19] is ad hoc. This transformation
between expert information and (belief, disbelief) pairs is not one to one when
the expert expresses no information. It yields some anomalous cases as discussed
in [9]. Finally, no proposal was given in [2] to elicit belief on rules, while in [19]
negative beliefs can be obtained, which is not acceptable. In this paper, we pro-
pose a new better-behaved elicitation approach based on the pignistic transform
proposed in [17] that solves the two last issues.

3 From GSN to Dempster-Shafer Theory

As defined by [13, 14], Goal Structuring Notation (GSN) is a non-formal repre-
sentation that does not formally specify how premises support a conclusion. In
order to model such a relation, we use logical expressions. Then we shall attach
degrees of uncertainty to these logical expressions and explain how to propagate
these degrees of uncertainty in the GSN, in agreement with classical logic.
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(C)
The system X is 
acceptably safe

(p)
All test results 
are conclusive

Fig. 2. A conclusion sup-
ported by one premise in GSN.

(C)
The battery is 

acceptably safe

(p1)
The risk of chemical 

leakage is treated

(p2)
The risk of explosion 

is treated

Fig. 3. A conclusion sup-
ported by two premise in GSN.

3.1 Logical modeling of GSN

Figure 2 represents a conclusion (C) supported by a single premise (p). It de-
scribes the situation in which the conclusion (C) is true if the premise (p) sup-
porting it is also true. This statement can be expressed using a logical implication
connective: p ⇒ C standing for ¬p ∨ C, using negation ¬ and disjunction ∨. It
is obvious that such an expression can only assert the validity of the conclusion
(in case p holds), i.e., whether C is provably true, not whether it is provably
false. Note that even if C can only be true or false, we may fail to know it. So
we work in a three-state universe (belief, disbelief and ignorance). To establish
disbelief in C, we need to add an implication of the form ¬p ⇒ ¬C. It describes
the situation where the conclusion (C) would be false, when the premise (p) is
false. We call such logical expressions “rules”. Those that induce belief in C are
called direct rules and those that induce disbelief are called reverse rules.

With complex systems, it is more likely to find claims supported by more than
one piece of evidence. In these cases, it is necessary to consider the relationship
between the premises that support the same claim. On the other hand, logical
implications remain the only connective that links the evidence domain to the
conclusion. Through the different GSN patterns encountered in the literature,
we can identify three types:

– Conjunctive (C-Arg): It describes the case when all premises are needed
to support the conclusion. The direct rule is obtained by translating this
definition into a logical expression: (∧n

i pi) ⇒ C. On the other hand, the
reverse one is obtained by reversing the direct one: ¬(∧n

i pi) ⇒ ¬C, which is
equivalent to ∧n

i (¬pi ⇒ ¬C), a conjunction of simple rules.
– Disjunctive (D-Arg): It describes the case when one premise is enough

to support the whole conclusion. The corresponding rules are: ∧n
i (pi ⇒ C)

(direct), and (∧n
i ¬pi) ⇒ ¬C (reverse).

– Hybrid (H-Arg): It describes the case where each premise supports the
conclusion to some extent, but their conjunction does it to a larger extent.
This rule type could be considered as a general type which includes the two
previous ones. In fact, conjunctive and disjunctive types correspond to limit
cases of the hybrid one.

Figure 3 represents an example of the conjunctive type. To assert that the
battery is acceptably safe, all risks of chemical leakage and explosion should be



Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases 5

treated. It gives the expression: (p1 ∧ p2) ⇒ C. On the other hand, if one of the
risks remains present we may assert that the battery is unsafe, which gives the
expressions: ¬p1 ⇒ ¬C and ¬p2 ⇒ ¬C.

All rules defined above will be used to build our uncertainty propagation
model. Since the conjunctive and disjunctive types represent a special case of
the hybrid one, we will only present the last one. However, it is simple to deduce
their expressions from the general formula.

3.2 Uncertainty propagation model

In order to build our uncertainty propagation model, we define two kinds of
parameters:

– Uncertainty on premises: It is modeled as a mass function on each premise
of the argument: < m1

p, ...,m
n
p >. mi

p assigns a mass to the premise pi, one
on its negation (¬pi) and one on the tautology (Ω, representing ignorance)
summing to 1.

– Uncertainty on rules: It is used to evaluate the impact of premises on a
conclusion. We associate a simple support function [16] to each rule r of the
argument type. Each simple support function consists in assigning a mass
mr(r) = s to the rule and another one mr(Ω) = 1 − s to the tautology,
these weights summing to 1. The set of mass functions is formally defined
as: < m⇒,mi

⇒,m⇐,mi
⇐ >, where:

m⇒ and m⇐ represent, respectively, direct and reverse conjunctive mass
functions that assign support to rules (∧n

i pi) ⇒ C and (∧n
i ¬pi) ⇒ ¬C,

respectively.

mi
⇒, and mi

⇐ respectively, assign support to elementary rules pi ⇒ C and
¬pi ⇒ ¬C occurring in the disjunctive type.

Using the conjunctive rule of combination presented in section 2, to merge
the masses on the rules (conjunctive and disjunctive ones) with the masses on
premises (m∩ = m⇒ ⊗ m⇐ ⊗ mi

⇒ ⊗ mi
⇐ ⊗ mi

p), we quantify the uncertainty
on the conclusion C [1]. Since we work on a two-state frame of discernment for
both premises Ωp = {pi,¬pi} and conclusion ΩC = {C,¬C}, masses and (dis-
)belief degrees on premises, rules and the conclusion are equal. For instance,
mC(C) = BelC(C) and mC(¬C) = BelC(¬C) = DisbC(C). We can prove the
following results, by projecting m∩ on the universe ΩC = {C,¬C}:

BelC(C) =Bel⇒([∧n
i=1pi] ⇒ C) ·

n∏
i=1

{Belip(pi) · [1−Beli⇒(pi ⇒ C)]}

+ {1−
n∏

i=1

[1−Belip(pi) ·Beli⇒(pi ⇒ C)]} (1)
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DisbC(C) =Bel⇐([∧n
i=1¬pi] ⇒ ¬C) ·

n∏
i=1

{Disbip(pi) · [1−Beli⇐(¬pi ⇒ ¬C)]}

+ {1−
n∏

i=1

[1−Disbip(pi) ·Beli⇐(¬pi ⇒ ¬C)]} (2)

Where:

– BelC(C) (resp. DisbC(C)): the degree of belief (resp. disbelief) in the con-
clusion C obtained by projection of m∩ on ΩC .

– Belip(pi) (resp. Disbip(pi)): the degree of belief (resp. disbelief) in the ith

premise.
– Bel⇒([∧n

i=1pi] ⇒ C) (resp. Beli⇐(¬pi ⇒ ¬C)): the degree of belief in the
direct conjunctive rule (resp. ith reverse rule).

We can notice that each formula (1) and (2) is the result of the summation
of two terms. The first part expresses a generalized conjunction (the product),
and the second part reflects a generalized disjunction (the probabilistic sum
1−(1−a)(1−b)). To extract propagation formulas for the pure conjunctive type
(C-Arg), it is enough to set to zero the masses on the direct rules (Beli⇒(pi ⇒ C))
and the mass on the conjunctive reverse rule (Bel⇐([∧n

i ¬pi] ⇒ ¬C)). Similarly,
to derive the pure disjunctive formulas (D-Arg), we set to zero the mass on the
conjunctive direct rule (Bel⇒([∧n

i=1pi] ⇒ C)) and the masses on the reverse
rules (Beli⇐(¬pi ⇒ ¬C)). We obtain:

C-Arg :

{
BelC(C) = Bel⇒([∧n

i=1pi] ⇒ C) ·
∏n

i=1 Belp(pi)
DisbC(C) = 1−

∏n
i=1[1−Disbip(pi) ·Beli⇐(¬pi ⇒ ¬C)]

D-Arg :

{
BelC(C) = 1−

∏n
i=1[1−Belip(pi) ·Beli⇒(pi ⇒ C)]

DisbC(C) = Bel⇐([∧n
i=1¬pi] ⇒ ¬C) ·

∏n
i=1 Disbip(pi)

Note that the belief (resp. disbelief) degree of the conclusion (BelC(C)) only
depends on the belief (resp. disbelief) degree of premises (Belip(pi)) and of the

corresponding direct (reverse) rules (Bel⇒ and Beli⇒).
However, we observe in some cases that the sum of belief and disbelief of

the conclusion, as calculated above, is greater than 1 which is not coherent.
This is when the mass m∩(∅) > 0. It is then counted in both sums defining
the degrees of belief and disbelief. It indicates the presence of conflict between
premises and rules. The coherence property BelC(C) + DisbC(C) ≤ 1 always
hold if m∩(∅) = 0. If it is not null, the conflict mass (3) should be subtracted
from both belief and disbelief values, in order to get genuine contradiction-free
degrees of belief and disbelief that respect the coherence property.

In [10], we provided a recursive equation to compute mn
∩(∅) for n premises

when we know mn−1
∩ (∅):

mn
∩(∅) = Beln−1

C (C) ·mn(¬pn ∧¬C)+Disbn−1
C (C) ·mn(pn ∧C)+mn−1

∩ (∅) (3)

where:
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– Beln−1
C (C) = {1−

∏n−1
i=1 [1−Belip(pi) ·Beli⇒(pi ⇒ C)]} −mn−1

∩ (∅)
– Disbn−1

C (C) = {1−
∏n−1

i=1 [1−Disbip(pi) ·Beli⇐(¬pi ⇒ ¬C)]} −mn−1
∩ (∅)

– mi(pi ∧ C) = Belip(pi) ·Beli⇒(pi ⇒ C)

– mi(¬pi ∧ ¬C) = Disbip(pi) ·Beli⇐(¬pi ⇒ ¬C)

Remark: D-Arg and C-Arg are conflict-free. Assuming that rule masses are
maximal (= 1), for n = 2 we get: BelC(C) = Bel1p(p1) · Bel2p(p2) (for C-Arg)
and BelC(C) = Bel1p(p1) +Bel2p(p2)−Bel1p(p1) ·Bel2p(p2) (for D-Arg).

3.3 Belief and Disbelief elicitation

The model of uncertainty propagation presented above requires two types of
inputs in order to compute belief and disbelief degrees of a conclusion: Be-
lief/Disbelief on the rules and on the premises. These two information items
will be directly collected from experts. To give their assessment about a premise
or a rule, experts are asked to fill in an evaluation matrix, presented in Figure
4. Each point of this matrix corresponds to a strength of decision, denoted by

C6: For sure

C5: Very High Confidence

C4: High Confidence

C3: Low Confidence

C2:  Very Low Confidence

C1:  Lack of Confidence

Fig. 4. Evaluation matrix

Dec(A), and a degree of confidence in this decision, denoted by Conf(A) at-
tached to a proposition A. In a scale of 5 equidistant items, decision describes
which side the expert leans towards: From the rejection (Dec(A) = 0) of a
claim A, to its acceptance (Dec(A) = 1). It is formally the same as a degree of
probability. On the other hand, confidence reflects the amount of information
an expert possesses that can justify a decision. There are 6 equidistant levels
of the confidence scale, from “Lack of confidence” Conf(A) = 0 to “For sure”
Conf(A) = 1.

In Figure 5, we present four extreme expert assessments (see the black dot).
The upper matrices represent the case of total confidence. The assessor rejects
(resp. accepts) the claim in Figure 5.a (resp. 5.b). It corresponds to a maximal
disbelief (resp. belief) degree. In contrast, the lower matrices represent resp. the
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cases of total conflict (Figure 5.c) and ignorance (Figure 5.d). In both cases, the
expert cannot make a clear decision either because he has as a lot of information
both to support and reject the claim (Conf(A) = 1), or because he has no
information (Conf(A) = 0). In contrast to other works [2, 18], we allow the
assessor to use a midpoint value (Dec(A) = 1/2) to show full hesitancy.

(a)

(c)

(b)

(d)

Fig. 5. Extreme assessments (black dot)

Uncertainty on premises: To be used in equations (1) and (2), the pair
(decision, confidence) is translated into a triple (belief, disbelief and uncertainty).
To do so, we use the formula proposed in [2], which defines confidence as the sum
of belief and disbelief degrees (equation (4), left). On the other hand, we consider
decision as the pignistic transform [17] that turns a mass into a probability
(equation (4), right). So, we solve the following system for Bel(p) and Disb(p):

Conf(p) = Bel(p) +Disb(p); Dec(p) =
1 +Bel(p)−Disb(p)

2
(4)

However, as indicated in [9], the pignistic transform can generate negative belief
and disbelief values when the pair (Dec,Conf) given by an expert lies outside
the triangle shown in Figure 4. Known as “Josang Triangle” [12], it represents
a constraint that brackets decision Dec(p) between two values:

1− Conf(p)

2
≤ Dec(p) ≤ 1 + Conf(p)

2
(5)

It guarantees that all clear-cut decisions (rejection or acceptance) are made only
when the confidence level is maximal. To avoid negative belief and disbelief
values, we must adjust the decision value to respect constraint (5). Therefore,

when Dec(p) < 1−Conf(p)
2 (rejection: black dots in Fig. 4), we set Dec(p) =

1−Conf(p)
2 . On the other hand, when Dec(p) > 1+Conf(p)

2 (acceptance: grey dots

in Fig. 4), we set Dec(p) = 1+Conf(p)
2 .
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Example 1. Suppose we get the following assessments on two goals (p1) and (p2):

– p1: Opposable with high confidence (Dec(p1) = 0.25, Conf(p1) = 0.6).
– p2: Acceptable with very high confidence (Dec(p2) = 1, Conf(p2) = 0.8).

To calculate Bel(pi) and Disb(pi), we write them in terms of Dec(pi) and

Conf(pi), from (4): Bel(p) = Conf(p)−1
2 +Dec(p),Disb(p) = Conf(p)+1

2 −Dec(p).
We can notice that the assessment for p1 is inside the triangle in the matrix

(Figure 4). Hence, there is no need to adjust the values:
Bel(p1) =

0.6−1
2 +0.25 = 0.05, Disb(p1) =

0.6+1
2 − 0.25 = 0.55 and Uncer(p1) =

1−Bel(p1)−Disb(p1) = 0.4 for the amount of ignorance.
On the other hand, the assessment for p2 is situated outside the triangle. In

this case, we can be sure that the decision degree must be adjusted in accordance
with the confidence value to get correct inputs. Before adjustment, we find a
negative value of disbelief, which does not make sense: Bel(p2) = 0.8−1

2 + 1 =
0.9 and Disb(p2) = 0.8+1

2 − 1 = −0.1. Following the description above, we

set Dec(p2) = 1+Conf(p2)
2 = 1+0.8

2 = 0.9. Then we find that Bel(p2) = 0.8,
Disb(p2) = 0 and Uncer(p2) = 1−Bel(p2)−Disb(p2) = 0.2.

Uncertainty on rules: Assuming clear-cut knowledge about some (or all)
premises (Belip(pi), Disbip(pi) ∈ {0, 1}) and total ignorance about the others

(Uncerip(pi) = 1), we notice that BelC(C) and DisbC(C) in (1) and (2) are
equal to rule masses. For instance, in the case of a conclusion C supported by
two premises p1 and p2, assuming total acceptance of these two premises with
maximal confidence, we get: BelC(C) = Bel⇒([p1 ∧ p2] ⇒ C). While assuming
total rejection with maximal confidence of p1, and total ignorance about p2, we
get: DisbC(C) = Bel⇐(¬p1 ⇒ ¬C).

In order to collect masses on rules, under the assumption mentioned above
(sure truth, sure falsity or ignorance on premises) we use the same approach as
for eliciting uncertainty on premises. First, using the evaluation matrix (Figure
4), we take the expert opinions about the conclusion (which corresponds to the
rules masses under those assumptions). Then, we change them to belief values
using transformation formulas (4).

Moreover, we assume that a rule is either accepted or discarded, but not
negated. In fact, for any rule R : p ⇒ C we do not consider a positive disbelief
because this would imply a belief in ¬(p ⇒ C) = p ∧ ¬C, i.e., ¬R which is not
a rule. So we only assign mass to a rule or to the tautology; the latter is the
extent to which a rule is discarded. This constraint impacts the allowed pairs
(Dec, Conf) for the expert. The latter is constrained to choose only a decision
on the positive side (from “No decision” to “acceptable”) for direct rules. On
the contrary, (s)he can only choose a negative decision (from “rejectable” to “No
decision”) for the reverse rules. Formulas in (4) are used to derive the degrees
of belief on rules.
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Example 2. Consider the case of Figure 2:

– Direct rule (R1 : p ⇒ C): Assuming Dec(p) = 1, expert assigns “Tolerable
with high confidence” to C: Dec(C) = 0.75, Conf(C) = 0.6

– Reverse rule (R2 : ¬p ⇒ ¬C): Assuming Dec(p) = 0, expert assigns “Op-
posable with very high confidence” to C: Dec(C) = 0.25, Conf(C) = 0.8

We can notice in this example that both cases respect the Josang constraint
(5). Hence, there is no need to adjust the decision value. Using (4) for the

direct rule R1: Bel⇒(R1) = BelC(C) = (0.6)−1
2 + (0.75) = 0.55 and we

set Bel⇒(¬R1) = 0. In the same way, for the reverse rule R2: Bel⇐(R2) =

DisbC(C) = (0.8)+1
2 − (0.25) = 0.65 and we set Bel⇐(¬R2) = 0.

4 Uncertainty assessment procedure

In this section, we present our approach to uncertainty propagation from premises
to the top goal of a GSN. As illustrated on Figure 6, this procedure is structured
in two phases.

The first one, called modeling phase, collects expert opinions on rules, ex-
pressed with qualitative scores (Dec,Conf), and translates them into numerical
mass assignments to rules. It will be conducted by asking (2n+ 2) questions to
the assessor using the evaluation matrices, n being the number of premises. The
first (2n) questions concern masses on elementary rules (direct and reverse). For
instance, to get, respectively, the values of Beli⇐(¬pi ⇒ ¬C) and Beli⇒(pi ⇒ C)
the expert will be asked the following questions (in case n = 2):

1. Supposing no knowledge about premise p1 (resp. p2) : (Dec = 0.5, Conf = 0)
and minimal Dec value (rejectable for sure) in premise p2 (resp. p1): (Dec =
0, Conf = 1), what is your Decision/Confidence in the conclusion?

2. Supposing no knowledge about premise p1 (resp. p2): (Dec = 0.5, Conf = 0)
and a maximalDec value (acceptable for sure) concerning premise p2( resp. p1) :
(Dec = 1, Conf = 1), what is your Decision/Confidence in the conclusion?
The additional two questions concern the conjunctive rules (resp. reverse
and direct):

3. Supposing minimal Dec value (rejectable for sure) concerning both premises
p1, p2 : (Dec = 0, Conf = 1), what is your Decision/Confidence in the
conclusion?

4. Supposing maximalDec value (acceptable for sure) concerning both premises
p1, p2 : (Dec = 1, Conf = 1), what is your Decision/Confidence in the
conclusion?

We assume that once these masses on rules are evaluated, they can be used for
the considered system using the second phase explained below.

The second phase, called application phase, concerns the collection of expert
data on premises. One question per premise is then formulated to the experts:
considering the knowledge on the pieces of evidence (also called solutions in
GSN), what is your “Decision” and “Confidence” concerning premise pi?
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Grouped in a questionnaire, these (3n+2) questions will be asked in form of
matrices to be filled in by the assessor (for rules, some matrices may be pre-filled,
see Figure 6). Then, these values (on rules and premises) are used to calculate the
belief/disbelief in the conclusion (eqs. (1) and (2)). Finally, we may transform
the resulting triple (Belief, Disbelief, Uncertainty) concerning the conclusion,
to a pair (Decision, Confidence) using formulas (4) and approximate them by
qualitative values.

Modeling phase
Questionnaire

Application phase

Conjunctive rules 
elicitation

Disjunctive rules 
elicitation

Calculated 
(Decision, Confidence)

Comb.

Fig. 6. Schema of the assessment framework for safety argument

5 Case study

In this section, we use a portion of GSN proposed in [3] to test and validate our
uncertainty propagation approach. That study proposed a hybrid architecture
of a collision avoidance system for drones, Urban Air Mobility and Air Taxis
with horizontal automatic resolution. It is named ACAS-X (Next-Generation
Airborne Collision Avoidance System). It replaces a set of lookup tables (LUTs)
(that provide anti-collision maneuvering guidance according to the speed of the
two aircrafts, their relative positions, and the time until the loss of vertical sep-
aration occurs) by a neural network (NN) of much smaller size. In addition to
the NN-based controller, this architecture includes a safety net which contains
a portion of LUTs (already established as safe) for unsafe areas (where the NN
may give results different from those of the LUTs), and a check module which
controls the switch between these two sub-systems (NN and LUTs). The GSN
section (figure 7) in which we are interested, argues that “G1: Real world situa-
tions where MLM3 is not robust are identified and mitigated”. To demonstrate
this statement, the top goal (G1) is broken down into two sub-goals (G2) and
(G3). (G2) ensures that the property was correctly defined to identify all unsafe

3 Machine learning Model.
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situations (G4) and formally checked (G6) in each of the areas (called p-boxes)
into which the input space was correctly decomposed (G5). (G3) ensures that
unsafe situations were properly mitigated via an appropriate architecture (G7).

Real-world situations where the MLM is 
not robust are identified and mitigated

(G1)

Ensure that all unsafe situations are 
correctly identified and mitigated

(ST)

All unsafe situations are identified
(G2) (G3)

All unsafe situations identified are 
mitigated

(G7)
Architecture mitigation (switch to the 

LUT when appropriate)
The LUT property is 

correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

Certified 
development 

process DO178

(S4)
Formal verification 

results

(S3)The validation is trivial (it 
consists of mathematical 

decomposition on the 
whole 3D input space)

(S2)

The validation of this 
property is trivial

(S1)

Fig. 7. Assurance Case - ML subsystem robustness [3]

Table 1 groups the degrees of belief on the rules involved in this case. Fol-
lowing the assessment procedure above, these values are the result of a ques-
tionnaire4 answered by a safety expert about this system. We can notice that
all direct conjunctive rules receive maximal weights and the elementary rule
weights for (G1) and (G2) are null. Thus, we deduce that this GSN represent a
conjunctive type where all sub-goals are needed to support (G1). As seen in [10],
C-Arg tends to propagate the premises that support the conclusion with the least
weight, increasing along with it the uncertainty level. Thus, we can explain why
we go from acceptable premises with very high confidence (G6, G7), high confi-
dence (G5) and for sure (G4) to a tolerable top goal (G1) with low confidence
(Dec = 0.692, Conf = 0.384). Graphs in figures 8 and 9 present, respectively,
the sensitivity of decision and confidence degrees of the conclusion (G1) to the
sub-goals (G4), (G5), (G6) and (G7). To determine the latter, we vary the value
of a premise from its minimal to its maximal value, while we keep the values of
the other premises to their base values. We can notice that all values, are indeed
included in the interval [0,1]. We can also notice that the pair (decision, confi-
dence) on the goal (G1) varies from “Rejectable for sure” (Dec = 0, Conf = 1)
to “Tolerable with high confidence” (Dec = 0.82, Conf = 0.64). The sub-goal
(G4) has the lowest influence on decision and the highest influence on confidence;
the opposite applies for sub-goal (G5).

4 The questionnaire is available in [11].
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Table 1. Elicited belief degrees on rules

Goal (Gi) Belief degree on rules

G1

(i = 2, n = 3)

Bel⇒([∧n
i Gi] ⇒ G1) = 1

Bel⇐([∧n
i ¬Gi] ⇒ ¬G1) = 1

Bel⇒(Gi ⇒ G1) = 0
Bel⇐(¬Gi ⇒ ¬G1) = 1

G2

(i = 4, n = 6)

Bel⇒([∧n
i Gi] ⇒ G2) = 1

Bel⇐([∧n
i ¬Gi] ⇒ ¬G2) = 1

Bel⇒(Gi ⇒ G2) = 0
Bel⇐(¬Gi ⇒ ¬G2) = 1

G3
Bel⇒(G7 ⇒ G3) = 1

Bel⇐(¬G7 ⇒ ¬G3) = 1

Opposable
0.25

Tolerable
0.75

Rejectable
0.00

D
ec

(G
4
)

D
ec

(G
5
)

D
ec

(G
6
)

D
ec

(G
7
)

No Decision
0.50

Fig. 8. Decision sensitivity on the top
goal G1

Low confidence
0.4

High confidence
0.6

Very high confidence
0.8

For sure
1

C
o

n
f(

G
4
)

C
o

n
f(

G
5
)

C
o

n
f(

G
6
)

C
o

n
f(

G
7
)

Fig. 9. Confidence sensitivity on the
top goal G1

6 Conclusion

In this paper, we propose an extensive approach to the elicitation and propa-
gation of uncertainty in a logical GSN model and report on a preliminary case
study for testing our approach. However, some issues still need to be addressed.
First of all, our propagation model does not consider all GSN components (such
as Justification, Assumption, etc.). In addition, our elicitation model seems to
encourage experts to give extreme values of (decision, confidence) so that we
often end up with a conjunctive or disjunctive type. But these two types are
not the only types that exist in literature. Finally, the transformation of expert
opinion from quantitative to qualitative values is also a source of uncertainty. In
a future work, we plan to develop a purely qualitative approach to information
fusion based on [6], and compare it to the quantitative one.
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