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Abstract. Critical systems such as those developed in the aerospace,
railway or automotive industries need official documents to certify their
safety via convincing arguments. However, informal tools used in cer-
tification documents seldom cover the uncertainty that pervades safety
cases. Several works use quantitative approaches based on belief func-
tions to model and propagate confidence/uncertainty in the argument
structures (particularly those using goal structuring notation). However
the numerical uncertainty information is often a naive encoding of quali-
tative expert inputs. In this paper, we outline a qualitative substitute to
Dempster-Shafer theory and suggest new qualitative confidence propaga-
tion models. We also propose a more faithful encoding of expert inputs.

Keywords: Goal Structuring Notation · argument structures · confi-
dence elicitation · Dempster-Shafer Theory · qualitative capacities.

1 Introduction

As the use of artificial intelligence (AI) in systems increases, the need for safety
assessment methods in the latter is also increasing. However, the lack of confi-
dence can jeopardize the social acceptance of these systems and therefore their
existence. Several approaches are used to assess confidence/uncertainty in such
systems (especially, the safety critical ones).

Many papers addressing the assessment of safety of systems rely on the graph-
ical representation of an argument structure like GSN (Goal Structuring No-
tation), plus quantitative representations of uncertainty. Typically, probability
theory is often used in Bayesian network models of GSNs. In order to address
the issue of incomplete information, Dempster-Shafer theory (DST) is also pro-
posed. In the latter case, argument trees can be modelled in classical logic using
if-then rules [6, 7].

However the quantification of uncertainty is often problematic, when it relies
on expert assessments. In many cases, experts supply qualitative assessments
using linguistic values like probable, very probable, unlikely, etc., which are then
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translated into numbers on the [0, 1] scale. This translation is somewhat ar-
bitrary. So, a legitimate question is whether a purely qualitative approach to
uncertainty, that would be a counterpart to the belief function approach, could
be promising. The idea is to avoid the quantitative encoding of qualitative es-
timates. It makes all the more sense as numerical degrees of belief obtained via
uncertainty propagation are often translated back to the qualitative scale, so as
to make the results more palatable. So it is legitimate to investigate a qualitative
approach.

This paper is a first step in this direction. It is structured as follows. Section 2
presents theoretical background on qualitative capacities that can be viewed as
a qualitative counterpart of belief functions, based on [5]. Section 3 deals with
the elicitation of qualitative capacities, based on an existing method where lin-
guistic term scales were mapped to belief functions. Section 4 use qualitative
belief measures on classical inference patterns. Section 5 recalls the a graphical
representation called Goal Structuring Notation (GSN), dedicated to argument
structures for safety cases. This section applies the qualitative uncertainty prop-
agation method from premises to conclusions of several types arguments. In
Section 6, a preliminary comparison of qualitative and quantitative uncertainty
propagation is proposed via an example.

2 From belief functions to qualitative capacities

As a generalization of probability theory, Dempster-Shafer theory [8](DST) of-
fers tools to model and propagate both aleatory (due to random events) and
epistemic (due to incomplete information) uncertainty.

A mass function, or basic belief assignment (BBA), is a probability distri-
bution over the power set of the universe of possibilities (W ), known as the
frame of discernment. Formally, a mass function m : 2W → [0, 1] is such that∑

E⊆W m(E) = 1, and m(∅) = 0. Any subset E of W such as m(E) > 0 is called
a focal set of m. m(E) quantifies the probability that we only know that the
truth lies in E; in particular m(W ) quantifies the amount of ignorance.

A mass assignment induces a so-called belief function Bel : 2W → [0, 1], de-
fined by: Bel(A) =

∑
E⊆A m(E). It represents the sum of all the masses support-

ing a statement A. The degree of belief in the negation ¬A of the statement A is
called disbelief:Disb(A) = Bel(¬A); the value Uncer(A) = 1−Bel(A)−Disb(A)
quantifies the lack of information about A.

The conjunctive rule of combination combines multiple pieces of evidence
(represented by mass functions mi, with i = 1, 2) coming from independent
sources of information: m∩ = m1⊗m2 such that: m∩(A) =

∑
E1∩E2=A m1(E1) ·

m2(E2). In DST, an additional step eliminates conflict that may exist by means
of a normalization factor (dividing m∩ by 1−m∩(∅)). This is Dempster rule of
combination [8], which is associative.

In contrast, we outline the qualitative approach in [3–5]. Let L be a finite to-
tally ordered set representing certainty levels. A qualitative capacity (q-capacity,
for short) is a function γ : 2W → L such that:
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γ(∅) = 0; γ(W ) = 1; A ⊆ B ⇒ γ(A) ≤ γ(B). Any q-capacity can be put in
the form:

γ(A) = max
∅̸=B⊆A

ρ(B),∀A ⊆ W, (1)

where ρ is formally a basic possibility assignment (BΠA) [3], namely, a possibility
distribution ρ : 2W → L on the power set of W , such that maxB⊆W ρ(B) = 1
and ρ(∅) = 0. The value ρ(B) is the strength of piece of evidence B. Several
BΠA’s can generate the same γ, the least of which is the qualitative Moebius
transform (QMT) of γ such that:

γ#(A) =

{
γ(A) if γ(A) > γ(A \ {w}),∀w ∈ A;

0 otherwise.
(2)

The value γ(A) (resp. γ(¬A)) qualifies the support in favor of (resp. against)
A, i.e. belief (resp. disbelief) in A using an element in the qualitative scale L.
The pair (γ(A), γ(¬A)) thus describes our epistemic stance with respect to A
in terms of belief and disbelief, ranging from no information (i.e., (0, 0)), to full
conflicting information (i.e., (1, 1)), from full belief (i.e., (1, 0)) to full disbelief
(i.e., (0, 1)). This is more general than possibility theory where the case (1, 1) is
not allowed.

Figure 1 presents the credibility and information orderings on pairs (belief,
disbelief) including extreme cases [5]. A proposition A is at least as credible as
B if γ(A) ≥ γ(B) and γ(¬A) ≤ γ(¬B) (solid arrows from B to A), thus ranging
from certainty of falsity (0, 1) up to certainty of truth (1, 0). A proposition A is
at least as informed as B if γ(A) ≥ γ(B) and γ(¬A) ≥ γ(¬B) (dotted arrows
from B to A), thus ranging from ignorance ((0, 0), no information) up to conflict
((1, 1), full contradictory information). In this situation, the amount of evidence
supporting the conclusion is equal to the one rejecting it. The set L× L is then
equipped with a bilattice structure. In order to qualitatively combine pieces of
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Fig. 1. Evolution of certainty and information in pairs (belief, disbelief)

evidence represented by possibilistic mass functions, i.e., BΠA’s ρi, coming from
several sources of information, the qualitative counterpart of the conjunctive rule
of combination for belief functions is: ρ∩ = ρ1 ⊕ ρ2 such that:
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ρ∩(A) = max
E1∩E2=A

{min[ρ1(E1), ρ2(E2)]} (3)

Due to the use of the (idempotent) minimum operation, the combined pieces
of evidence are not supposed to be independent. The result is not always a BΠA,
strictly speaking. First we may have that ρ∩(A) < 1 for all A. So we must add
the condition ρ∩(W ) = 1. This will not occur if we restrict to non-dogmatic
BΠA’s such that ρi(W ) = 1, which we assume in this paper. Besides, we may
have that ρ∩(∅) > 0, indicating conflict between the pieces of evidence.

3 Expert elicitation approach

In order to elicit qualitative capacities, we borrow from a methodology by Cyra
and Gorski [2]. Two types of information are collected from experts about a
statement A: A so-called decision and a level of confidence associated to it.
Then, these pieces of information are numerically encoded, and transformed to
belief and disbelief degrees in the sense of Shafer (see also [7]). More precisely:

– The decision index denoted by Dec(A), describes which side the assessor
leans towards, i.e., acceptance or rejection of A. It is associated with a bipolar
scale D = {0D = d−k, dk−1, . . . , d0 = e, d1, . . . dk = 1D} with 2k + 1 values,
the bottom of which (0D) expressing rejection, the top (1D) acceptance, and
the midpoint (e) a neutral position. Here we assume k = 2.

– The confidence index denoted by Conf(A) reflects the amount of information
an assessor possesses to support the decision. It uses a positive uni-polar scale
K with k+1 values (the top 1K expresses full confidence, the bottom 0K is
neutral - no information). For k = 2: these levels mean: lack of confidence
(C0 = 0K), moderate confidence (C1) and full confidence (C2 = 1K).

The bipolar scale D is equipped with an order-reversing map νD such that
νD(d−i) = di. Especially we have that νD(Dec(A)) = Dec(¬A). The unipolar
scale K is isomorphic to the positive part of D. This assumption makes K and
D commensurate. K is equipped with an order-reversing map νK such that:
νK(Ci) = Ck−i.

In order to switch from a (Dec(A), Conf(A)) pair to (γ(A), γ(¬A)), we use
a transformation that maps D×K to the belief-disbelief scale L×L containing
pairs (γ(A), γ(¬A)). The scale L has the same number of elements as K (i.e., 3
here). The mapping f : D ×K → L× L: must satisfy some conditions [5]:

– If the expert declares lack of confidence, the result is f(Dec(A), 0) = (0, 0),
whatever the trend expressed on the decision scale.

– If the expert is fully confident, then f(1, 1) = (γ(A), γ(¬A)) = (1, 0), f(0, 1) =
(0, 1), f(e, 1) = (1, 1). Indeed, for the latter, there is a total conflict: the ex-
pert is maximally informed (Conf(A) = 1), and cannot decide between A
and its negation (Dec(A) = e).

– max(γ(A), γ(¬A)) = Conf(A): the belief in A or its negation cannot be
stronger than the confidence.
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– if Dec(A) is the midpoint of D, then γ(A) = γ(¬A)(= Conf(A)) (no reason
to take side).

– if Dec(A) is less than the midpoint of D, then γ(A) < γ(¬A) = Conf(A),
and the smaller Dec(A), the smaller γ(A).

– ifDec(A) is greater than the midpoint ofD, then γ(A) = Conf(A) > γ(¬A),
and the greater Dec(A), the smaller γ(¬A).

These conditions lead to propose the following translation formulas [5]:

if Dec(A) < e, γ(A) = min[νK(Dec(¬A)), Conf(A)] and γ(¬A) = Conf(A);

if Dec(A) > e, γ(A) = Conf(A) and γ(¬A) = min[νK(Dec(A)), Conf(A)];

if Dec(A) = Dec(¬A) = e, γ(A) = γ(¬A) = Conf(A).

In Table 1, we grouped all possible (Dec, Conf) pairs on premises with their
appropriate counterparts (γ(A), γ(¬A))∈ L × L, using the formulas above. We
can notice an anti-symmetry between belief and disbelief degrees regarding the
central column (D0 = e: no decision). We also notice that when no information
is available (C0: Lack of confidence), no matter what choice is made the degrees
of belief and disbelief take a minimal value. On the other hand, in the case
of a fully informed expert (C2: Full confidence) the decision value varies from
rejection to acceptance.

Table 1. Values from (Dec, Conf) to (Bel,Disb) pairs on premises

Conf
Dec

D−2 (Rej) D−1 (Opp) D0(ND) D1 (Tol) D2 (Acc)

C0 (Lack of confidence) (0,0) (0,0) (0,0) (0,0) (0,0)

C1 (Moderate confidence) (0,λ) (λ,λ) (λ,λ) (λ,λ) (λ,0)

C2 (Full confidence) (0,1) (λ,1) (1,1) (1,λ) (1,0)

4 Logical inference for qualitative capacities

Logical reasoning and numerical belief functions are not often put together. An
approach to reasoning with Dempster rule of combination was proposed in [1].
In this approach each formula in a knowledge base is viewed as a simple support
function and combined with other formulas in the knowledge base. Besides, the
application of belief functions to argument structures has been studied in [2, 10,
7] to build models for uncertainty propagation. For instance in [7], we assign
mass functions to logical expressions such as facts pi, ¬pi, and rules pi ⇒ C,
¬pi ⇒ ¬C, (∧n

i=1pi) ⇒ C and (∧n
i=1¬pi) ⇒ ¬C, in order to deduce the belief

on the conclusions C and ¬C. Here we develop the same approach, albeit using
qualitative capacities.

The simplest pattern is modus ponens, i.e. inferring C from p and p ⇒ C.
We assume two BΠA’s ρp on {p,¬p} with values in L, say ρp(p) = αp, ρp(¬p) =
αp, ρp(⊤) = 1, and a simple support function ρ⇒ with ρ⇒(p ⇒ C) = β⇒,
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ρ⇒(⊤) = 1, where ⊤ stands for the tautology. The capacity γC is obtained via
projection for the conclusion C by the q-conjunctive rule has a BΠA ρC such
that: γC(C) = ρC(p∧C) = min(ρp(p), ρ⇒(p ⇒ C)) = min(αp, β⇒), γC(¬C) = 0.

If p =
∧n

i=1 pi, then the above formula holds with ρp(p) = minni=1 ρ
i
p(pi).

If there is also a BΠA ρ⇐ assigning a weight β⇐ to the reversed implication
¬p ⇒ ¬C there is an additional weight on ¬C via the combination ρp⊕ρ⇒⊕ρ⇐
using equation (3) and projection on C’s universe.

γC(¬C) = ρC(¬p ∧ ¬C) = min(ρp(¬p), ρ⇐(p ⇐ C)) = min(αp, β⇐).

Consider the case with more than one premise. Suppose we have to merge BΠA’s
ρip on pi, ρ

i
⇒ , ρi⇐, i = 1, . . . n. As in its quantitative counterpart, the BΠA

pertaining to the conclusion C obtained from this fusion may assign a mass to
the contradiction. Conflict always appears when four items are merged of the
form: pi and pi ⇒ C with ¬pj and ¬pj ⇒ ¬C, j ̸= i, whose conjunction is a
contradiction ∅ with mass:

ρijC (∅) = min[ρiC(pi ∧ C), ρjC(¬pj ∧ ¬C)]

= min[ρip(pi), ρ
i
⇒(pi ⇒ C), ρjp(¬pj), ρj⇒(¬pj ⇒ ¬C)]]

For two premises, the final mass on contradiction is ρC(∅) = max(ρ12C (∅), ρ21C (∅)).
Besides, using (1) we get: γC(C) = max[ρC(p1 ∧ C), ρC(p2 ∧ C)] ≥ ρC(∅) and
γC(¬C) = max[ρC(¬p1 ∧ ¬C), ρC(¬p2 ∧ ¬C)] ≥ ρC(∅).

5 Application to safety cases

Goal structuring notation (GSN) is a graphical notation/language which rep-
resents argument structures (i.e., safety and assurance cases) in the form of
directed acyclic graphs (directed trees or arborescences). It breaks down a top
claim, called “goal”, into elementary sub-goals following a specific strategy and
in accordance with a particular context. Each sub-goal is associated with pieces
of evidence, called solutions, which support the conclusion. Despite the fact that
it presents all the evidence supporting the safety of the system, GSN fails to
show how premises support the conclusion and the confidence that can be given
to them. Both questions bring uncertainty to arguments, which may affect their
merits. To address this issue, confidence propagation schemes were proposed to
complement GSN patterns.

Some approaches use DST to model and propagate confidence in GSN pat-
terns in the literature [2, 7, 9]. These papers consider a number of argument types
and associate confidence propagation formulas to each of them. In practice, they
also devise transformation formulas that turn uncertainty assessments of experts
(on a qualitative scale) about premises to numerical belief and disbelief degrees.
This transformation is a source of uncertainty. Indeed, qualitative inputs are of-
ten naively translated into equidistant values in the unit interval. Therefore, the
qualitative approach to uncertainty developed in [3–5], and the elicitation and
the inference methods of Sections 3 and 4 may lead to more robust confidence
assessment approaches.
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Here, we use the argument types defined in [7]. An argument type describes
the interaction between premises to support a conclusion. This type of interac-
tion is either a conjunction (C-Arg), a disjunction (D-Arg), or a combination of
both (H-Arg, a hybrid type). We can translate each argument type into logical
expressions often called rules. Since we use only implication to describe links
between the universe of premises (Wp = {p,¬p}) and that of the conclusion
(WC = {C,¬C}), two kinds of rules are used: direct rules, which model the
acceptance of the conclusion (C), and reverse rules which model its rejection
(¬C). Then, to each rule, we assigned a simple support function (a mass on the
rule, and another on the tautology). We also assigned masses to the premises
and their negation. Finally the propagation formulas, for each type, are obtained
using the qualitative combination rule (3). Below, we recall our argument types
and associate to each of them to qualitative uncertainty propagation formula.

Simple argument (S-Arg): This argument describes the case of a conclusion (C)
supported by a single premise (p), hence the name “simple”. If the premise is
true, then so is the conclusion: p ⇒ C. Note that only the information about the
acceptance of the conclusion can be inferred in this situation. Since we work on
a three-state paradigm (belief, disbelief and uncertainty), the reverse rule ¬p ⇒
¬C is introduced to add conditions for the possible denial of the conclusion.
Then, we associate to the direct and reverse rules simple BΠA’s (resp., ρ⇒ and
ρ⇐), and a BΠA on the premise space, as done above. We can prove:

S-Arg :

{
γC(C) = min[γp(p), γ⇒(p ⇒ C)]
γC(¬C) = min[γp(¬p), γ⇐(¬p ⇒ ¬C)]

(4)

We can notice that the belief γC(C) depends only on the direct rule and the
acceptance of the premise, while the disbelief γC(¬C) only depends on the reverse
rule and the disbelief of the premise.

Conjunctive argument (C-Arg): This argument type describes the situation when
two premises or more are jointly needed to support a conclusion. We formally
defined its direct and reverse rules (resp.) by: (∧n

i=1pi) ⇒ C and ∧n
i=1(¬pi ⇒

¬C). Following the same reasoning of the previous argument type, we put a
simple BΠA on each rule (ρ⇒ and ρi⇐), and another BΠA on each premise
(ρip). Then we combine them with the rule of combination (ρ = ρr ⊕ ρp, with

ρp = ρ1p ⊕ ...⊕ ρnp and ρr = ρ⇒ ⊕ (⊕n
i=1ρ

i
⇐)) and get:

C-Arg :

{
γC(C) = min{minni=1 γ

i
p(pi), γ⇒([∧n

i=1pi] ⇒ C)}
γC(¬C) = maxni=1{min[γi

p(¬pi), γi
⇐(¬pi ⇒ ¬C)]} (5)

In the formulas of the quantitative approach [7] operations a + b − ab and ab
replace max,min, respectively, thus highlighting the similarity between the re-
sults obtained from each model. Indeed, we can notice that the C-Arg, like its
quantitative counterpart, favors the propagation of the premise with the least
strength (minimal belief, with a maximal disbelief degree).

Disjunctive argument (D-Arg): In this situation, each premise can support alone
the whole conclusion. Formally, the direct and reverse rules are defined as follows:
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∧n
i=1(pi ⇒ C) and (∧n

i=1¬pi) ⇒ ¬C. The calculation of γC(C) and γC(¬C) is
identical to the one above, swapping the two expressions:

D-Arg :

{
γC(C) = maxni=1{min[γi

p(pi), γ
i
⇒(pi ⇒ C)]}

γC(¬C) = min{minni=1 γ
i
p(¬pi), γ⇐([∧n

i=1¬pi] ⇒ ¬C)} (6)

We can notice that this model, as its quantitative counterpart [7], favors
the propagation of the premise with the greatest strength (maximal belief and
minimal disbelief degree).

Hybrid argument (H-Arg): This argument type describes the situation where
each premise supports the conclusion to some degree, but their conjunction does
it to a larger one. Therefore, all conjunctive and disjunctive rules will be used
in this argument type. Thus, we obtain:

H-Arg :


γC(C) = max{min[minni=1 γ

i
p(pi), γ⇒([∧n

i=1pi] ⇒ C)],
maxni=1(min[γi

p(pi), γ
i
⇒(pi ⇒ C)]}

γC(¬C) = max{min[minni=1 γ
i
p(¬pi), γ⇐([∧n

i=1¬pi] ⇒ ¬C)],
maxni=1 min[γi

p(¬pi), γi
⇐(¬pi ⇒ ¬C)]}

(7)

We can notice that eq.(7), presents a combination between C-Arg formu-
las (5), and D-Arg (6). Assuming a maximal belief (= 1) (resp. disbelief) on
premises, it is enough that the simple direct rules take a null value (resp. the
reversed conjunctive one) to get the conjunctive argument type. And conversely,
to get the disjunctive argument type, put null values on direct conjunctive and
simple reversed rules. The S-Arg, represent a special case when only one premise
is available (n = 1). In the following, only the H-Arg will be used since it covers
the four types.

6 Application example

On an artificial example (Figure 3) that displays three argument types (C-Arg,
D-Arg and H-Arg), we apply our approach in order to see how each type affects
the propagation of uncertainty from premises to the overall goal (conclusion).
We also apply the quantitative approach presented in [7] on the same example.
To compare results from both approaches, we will use the same decision and
confidence scales (see Figure 2).

Regarding elicitation, we use the evaluation matrix in Figure 2 to collect
expert opinions, and transform them using formulas in Section 3 to get belief
and disbelief on premises. Regarding the elicitation of belief weight on rules,
we benefit from an observation made on the quantitative models [7]. Indeed, we
notice that under some assumptions for the premises, the value of the conclusion
is the value of the rule. For instance, assuming full support (resp. positive or
negative) on all premises gives the value of the conjunctive rule (resp. direct
and reversed): γC(C) = γ⇒([∧n

i=1pi] ⇒ C) or γC(¬C) = γ⇐([∧n
i=1¬pi] ⇒ ¬C).

On the other hand, assuming a total support (resp. positive or negative) on one
premise (pi) and total ignorance on the other gives the value of the appropriate
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Fig. 3. GSN artificial example

disjunctive rule: γC(C) = γi
⇒(pi ⇒ C) or γC(¬C) = γi

⇐(¬pi ⇒ ¬C). So, we will
use the same Table 1 to transform the assessment to rules. However, to avoid
the negation of rules, the assessor can only choose between the positive decision
(from “no decision” to “acceptable”) for direct rules; only negative decisions
(from “rejectable” to “no decision”) for the reversed ones. Indeed, rules can
only infer uncertainty on one side of the decision scale.

The example in Figure 3, presents a top-goal (G) supported by two sub-goals
(G1) and (G2) through a hybrid argument type (H-Arg). Each one of them is
also supported, respectively, by two premises. Goal (G1) is supported by the
premises (P1) and (P2) related by a conjunctive argument type (C-Arg). On the
other hand, goal (G2) is supported by the premises (P3) and (P4) related by a
disjunctive argument type (D-Arg). For simplicity, we set all masses on rules to
their maximal values (= 1). Then, we use four settings with different premise
values and compute the confidence in the top goal.

Table 2. Pairs (decision, confidence) according to both qualitative (Qual.) and quan-
titative [7] (Quant.) methods for the example (see Fig. 2 for the meaning of symbols)

Meth. 1st 2nd 3th 4th

P1 - (Opp;C2) (Tol ;C2) (Tol ;C2) (Opp;C2)

P2 - (Tol ;C2) (Tol ;C2) (Tol ;C2) (Opp;C2)

P3 - (Tol ;C2) (Tol ;C2) (Tol ;C2) (Opp;C2)

P4 - (Tol ;C2) (Opp;C2) (Tol ;C2) (Opp;C2)

G
Quant. (ND ;C0) (Tol ;C1) (Tol ;C1) (Opp;C1)
Qual. (ND ;C2) (Tol ;C2) (Tol ;C2) (Opp;C2)

In general, we can see from Table 2 that both approaches give close results
which fit well with our expectations. The only difference is in the confidence
values. We can say that, in this case the qualitative approach gives results with
higher levels of confidence than the quantitative one.

We notice from Table 2 that the first case gives a “no decision”. This result
is explained by the fact that we end up with two opposite judgments in the
H-Arg (conflict situation) due to C-Arg that propagates the premise with least
strength (opposable) to G1 (G2: tolerable). On the contrary, in the 2nd column,
we get a “tolerable” decision, because the D-Arg favors the propagation of the
premise with the greatest weight (tolerable) to G2 (G1: tolerable). In the 3th
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and 4th columns we can notice, as expected, that the top goal keeps the same
decision as premises respectively: “tolerable” and “opposable”.

The difference in the degree of confidence between qualitative and quantita-
tive approaches is due to the nature of the operations used. For example, the
C-Arg favors the propagation of the weakest premise (weaker belief and stronger
disbelief). In the quantitative setting, we use the product and the probabilistic
sum. And in the qualitative case, we use min and max, which does not model
attenuation or reinforcement effects in case of independent pieces of information.
This is one limitation of the qualitative approach.

7 Conclusion

In this paper, we propose a qualitative confidence assessment approach. We
provide formulas to propagate confidence in GSN from the premises to the top-
goal using qualitative mass functions. Each of these functions is collected from
experts in the form of a decision and the associated confidence degree, and then
transformed into a q-capacity. By sticking to qualitative values, the possible
arbitrariness of the transformation of expert opinions into quantitative values
(used in some previous approaches) is eliminated. Furthermore, it seems that the
qualitative approach gives results similar to the quantitative one in [7]. However,
more experiments are needed to confirm this conclusion.
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