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Abstract.  
A photovoltaic (PV) array having multiple cells in series with 

bypass diodes may exhibit multiple power peaks under 

uneven irradiation, therefore an algorithm is required to 

reach the global maximum power point (GMPP). While a lot 

of methods have been proposed in the literature, they are 

usually quite complex and does not fully utilize the 

characteristics of the PV array. This paper first highlights a 

rapid and optimized mathematical simulation of the PV 

array using MATLAB to find the probability distribution of 

voltage at GMPP under multiple irradiation conditions and 

temperatures. The resulting GMPP distribution in 22E6 

irradiation and temperature conditions checked for an array 

of 4 PV modules in series with bypass diodes is presented, as 

well as the optimizations in MATLAB necessary to keep 

simulation time in check.  From the obtained result, we 

propose a simple and efficient probability-based algorithm 

capable of reaching GMPP up to 93.64% of the time.  
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1. Introduction 
 

Harvesting energy through PV is usually the simplest and 

most viable source for mobile embedded systems away 

from the grid. Some examples are remote sensors to 

monitor a jungle’s ecosystem and a mountaineer up in the 

Alps trying to charge his/her phone. This mobility and 

unstable operating conditions mean that such PV systems 

must be efficient, resilient against rapidly changing 

irradiation and partial shading, yet simple enough to be put 

on a low power microcontroller (µC) (e.g., PIC18 8-bit µC 

family) Since PV cells are connected in series to increase 

harvesting potential, uneven insolation across the array 

may cause hotspots that accelerate degradation as well as 

significantly reduce the array’s power output [1]. 

Therefore, bypass diodes are usually used to provide a 

current path around the shaded modules, but this leads to 

multiple power peaks at the detriment of control efficiency 

(Figure 1) [2], [3].  

 

 
Figure 1 Power output of 4 PV modules in series with 

bypass diodes under different irradiation conditions 

 

Considering that under perfect irradiation the PV array 

still has a maximum power peak, there are great interest in 

optimizing PV systems in the literature which can be 

classified into 2 categories of algorithms: single peak 

capable and multiple peaks capable. The most well-known 

amongst the former are Perturb and Observe (P&O) [4], 

Incremental Conductance (IC) [5], β-parameter method 

[6], fractional open circuit voltage (Voc) [7], MPP locus 

characterization [8] and temperature based approximation 

of MPP [9]. In general, these algorithms are simple to 

implement and are efficient under good and stable weather 

conditions, but they cannot guarantee optimal power 

acquisition in less-than-ideal conditions. The multiple 

peaks capable methods on the other hand are capable of 

identify the true MPP when the array is partially shaded, 

and they can be divided into several sub-classes of 

algorithms. The first are improved versions of single peak 

capable methods like improved P&O or incremental 

conductance with zoning to multiples of 0.8Voc [10]–[13], 

which take advantage of the fact that the MPP of a single 

module can be found in this region. These approaches are 

also simple and decently good under stable weather 

conditions, but they fail to consider the voltage drop 

caused by activated bypass diodes and their convergence 

times are not great. The second type of GMPP methods are 

optimization algorithm based like genetic algorithm [14], 

differential evolution [15], particle swarm optimization 

(PSO) [16], [17], artificial bee colony (ABC) [18], 



grasshopper optimization [19], grey-wolf optimization 

(GWO) [20]–[22], flower pollination algorithm [23], 

student psychology based optimization [24], dragonfly 

algorithm [25], ant colony optimization [26], Henry gas 

solubility optimization [27] and cuckoo search algorithm 

[28]. These approaches can identify GMPP, but they suffer 

from several drawbacks, most notably their 

implementation complexity (e.g., floating points 

operations, exponentials, logarithms) and wild power 

swings during the search phase. Finally, there are fuzzy 

logic controllers methods [29]–[31] and neural network 

MPPT [32], which are all too heavy on a low-power µC. 

Another problem missing in the current literature was the 

distribution of GMPP for a particular PV installation. 

Currently, our models for PV arrays are quite precise with 

the simple single diode model [33]–[35] and Simulink has 

proven to be an effective simulation tool for PV 

applications [36]. Moreover, there exists a computational 

method based on the Lambert W function that would 

vastly reduce the time needed to solve the PV equation 

[37]–[39]. However, most of the efforts to solve the PV 

equation mainly focus on obtaining the current output of a 

single PV module without any bypass diode and there was 

not yet any proposition on how to efficiently build the 

current output profile of an entire array with multiple 

bypass diodes numerically besides using Simulink. This 

method is acceptable if we are to perform a few 

simulations, but to observe the array’s performance under 

a wider range of weather conditions, it quickly becomes 

inefficient (i.e, 375000 conditions simulation take 

8h45min using MATLAB/Simulink 2020b on 8 parallel 

threads using a Ryzen 7 3700X 8-cores processor, 32GB 

of DDR4 3200MT/s).  

In this paper, we propose an optimized method to simulate 

the power output of a PV array and help to visualize the 

distribution of GMPP under a very wide range of 

irradiation and weather conditions. From this result, we 

will also be proposing a probabilistic approach to improve 

the traditional P&O method that should have a fast 

convergence time as well as simple enough to be easily 

implemented on a low power µC. The preliminary proof-

of-concept will be done in simulation via Simulink and 

compared to deterministic PSO, GWO and ABC 

algorithms. All results presented were tested using 4 PV 

monocrystalline modules in series with bypass diodes 

whose characteristics will be detailed in the later sections 

(Figure 2).  

 

2. Modelling PV arrays with bypass diodes 

under partial shading 

 
Since each one of our PV modules consist of 6 smaller 

cells in series, its model can be obtained via the modified 

single diode model as shown in Figure 3 and from the 

work of [34], we obtain the mathematical equations 

modelling our PV modules (1).  

 

 
Figure 2 PV modules whose parameters were used for 

the simulations 

 
Figure 3 Single diode model of the PV module and its 

respective bypass diode 
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Solving the methods proposed in [39], we obtain the 

explicit expression of current I for a given V, G and T (2). 

 

I = X −
Lambert(KYRseKXRs)

KRs
    (2) 
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V

Rp

(1+
Rs
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)
, Y =

I0eKV

(1+
Rs
Rp

)
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Next, we have the bypass diode which will be modeled 

using the simplified version of the Shockley diode 

equation (3). 

 

Ib = Ire
−qV

NkT     (3)

   

The parameters and their description as well as values used 

for the later simulations are detailed in Table 1. 

Combining the PV module current with the bypass diode 

current gives us total current output of each one of these 

PV + bypass diode block (4). 

 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝑋 −
𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝐾𝑌𝑅𝑠𝑒𝐾𝑋𝑅𝑠)

𝐾𝑅𝑠
+ 𝐼𝑟𝑒

−𝑞𝑉

𝑁𝑘𝑇  (4) 

 

Since these blocks of PV + bypass are connected in series, 

it means that their combined voltage output equals the sum 

of their respective voltage when operating under the same 

current. For this reason, we need to interpolate the above 

obtained I = f(V,G,T) into V = g(I,G,T), so that we can add 

the voltage of each block for a given current. An 



illustration of the method is given in Figure 4. This work 

can be done using MATLAB via the function ‘interp1()’.  

 

Table 1 Parameter description and numerical values 

of the PV module and bypass diodes used 

Name Description Value Unit 

G PV module irradiation Variable Wm-2 

Gref Standard irradiation  1000 Wm-2 

T PV module temperature Variable K 

Tref Reference temperature 298.15 K 

Vocn Open circuit voltage 3.8 V 

Iscn Short circuit current 1 A 

Rs Equivalent serial 

resistance of PV module 

0.2 Ω 

Rp Equivalent parallel 

resistance of PV module 

1200 Ω 

kv Voltage temperature 

coefficient 

-0.0026 VK-1 

ki Current temperature 

coefficient 

0.0023 AK-1 

A PV module equivalent 

diode ideality factor 

9.5  

q Electron charge 1.6x10-19 C 

k Boltzmann constant 1.38x10-23 JK-1 

Ir Bypass diode reverse 

saturation current 

0.017 A 

N Bypass diode ideality 

factor 

4.23  

 

 
Figure 4 Illustration of how to obtain the current 

output of the array of 4 PV modules + bypass diodes 

 
Figure 5 Time estimation to complete the sweep of 20 

irradiation level per module for N modules in series 

 

 
Figure 6 GMPP probability distribution of PV array 

consisting of 4 modules in series with 4 bypass diodes 

(equal probability supposed) 

 
Figure 7 GMPP probability distribution of PV array 

consisting of 4 modules in series with 4 bypass diodes 

(real irradiation measurements) 

 

3. GMPP distribution of the PV array  

 
Using the previously described method, we can vary the 

irradiation for each module from 0 to 1000Wm-2 in steps 

of 10Wm-2, find the GMPP and register the voltage where 

GMPP occurred. To further improve its predicting 

capabilities, we also vary the temperature from 0°C to 

80°C in steps of 20°C, supposing homogenous 

temperatures for all modules, which should cover a wider 

operating range. The result obtained is presented in Figure 

6. It confirms that for a given temperature, the GMPP can 

be found in clear clusters on the voltage range and 

consistent with the approximation that it should falls in the 

vicinity of 0.8Vocn plus some multiples of Vocn, sans 

some voltage drop caused by activated bypass diodes. We 

can also observe that for increasing temperature, the peak 

distribution shifts toward the left (lower voltage) which is 

consistent with the negative voltage coefficient of 

monocrystalline silicon. Another distribution result based 

on real world irradiation measurement can be found in 

Figure 7, acquired using 4 SP Lite2 pyranometers 

strapped to the back of a bicycle during a ride of around 1 

hour around Toulouse, France (10h34 to 11h22, 

21/06/2021). The sampling frequency is 5kHz per channel 

with subsequent filtering making the effective sampling 

frequency 100Hz. The resulting graph was also filtered of 

power peaks below 1W because they are not realistically 

extractable.  



However, we should also note about several optimization 

taken during this step to avoid excessive runtimes. The 

first problem is with ‘interp1()’ function which is 

computationally intensive comparing to other vector 

operations and should be done only once. Therefore, the 

program calculates the I/V profile of the PV module + 

bypass for all irradiation and temperatures only once and 

store these I/V into memory. To construct the overall, I/V 

of the entire array, a simple addition is necessary which 

drastically reduces runtime (about a factor of 1000) (Table 

2). 

 

Table 2 Average execution time of each iteration in 

the loop for 3 different simulation methods 

Method Time (µs) 

Simulink  672000 

‘interp1() at each iteration’ 8000 

Precalculated table 9 

 

The second optimization is the removal of redundant 

conditions. For an array of PV modules in series, whether 

they receive 1000-800-400-200Wm-2 respectively or 

1000-400-800-200Wm-2 respectively should give the 

same output. The time gained from this can be observed in 

Figure 5, plotting the amount of time needed to sweep an 

array of N modules in series with a precision of 20 levels 

of irradiation per module. By choosing the arbitrary limit 

of simulation time to 1 day, we see that instead being 

capable of checking only 8 modules in series without 

optimization, we can check up to 20 modules in series. 

This means that the presented method can be scaled up to 

more powerful systems beyond 100W. 

 

4. Proposed improved P&O fast GMPPT  
 

With the distribution graph clearly denominating zones 

where the GMPP can be found, we can conclude that 

randomly searching the voltage range, or calculating the 

power at each iteration is not necessary. Instead, we 

propose a fast GMPPT method where we only measure the 

power at 3 specific voltage values and continue with P&O 

where the power obtained is the highest. To evaluate the 

feasibility of such algorithm, we devise the following 

criteria (Figure 8): 

• If the power gradient from the chosen voltage 

point and the GMPP is constantly increasing, it 

means that a P&O from that point can reach 

GMPP. 

• Otherwise, P&O will be stuck in a local peak and 

fail to reach GMPP. 
By choosing 3 voltage values 5.2V, 8.2V and 12.2V on the 

sweep performed in Figure 6, and by applying the 

aforementioned criteria to evaluate the probability of 

finding GMPP, we have a success rate of 93.64% over 

22106375 distinct irradiation/temperature conditions 

checked, 3.46% failure rate and 2.89% are power at GMPP 

too low to be extractable (i.e. below 1W) or inaccessible 

peaks . This is because we will be testing this method on a 

buck converter that output to a Li-ion battery operating at 

around 3.2-4V.  

Moving on to the implementation on a buck converter, 

reaching only 3 voltage points is not a trivial task because 

there is no linear relationship between the duty cycle and 

input voltage, but we can regulate the duty cycle so that 

the input voltage approaches the desired values. Given that 

during this regulation only a comparison needs to be made 

(whether voltage measured equals what we want), the 

algorithm still retains its simplicity. Furthermore, by 

registering the duty cycles that correspond to each one of 

the desired voltage points during the last search, 

subsequent scans should take considerably less time to 

finish than the initial initialization.  

For the converter, we use a DC/DC buck converter whose 

averaged model can be found in Figure 9. For the 

preliminary evaluation of our proposed method, we are 

going to compare it against P&O [4], deterministic PSO 

(DPSO) [40], GWO [20] and ABC [18]. All algorithms are 

written in our application context using the description 

from their respective articles. Since the converter’s 

response time to any duty cycle step is at most 3ms, the 

commands will be sent at 5ms intervals. The test 

conditions would be for 3 irradiation conditions in Figure 

1, initially starting at condition (1), changing to (2) and 

then to (3). Temperature is fixed for all modules at 60°C. 

For condition (1) where the array is evenly irradiated 

(Figure 10), P&O converged rapidly and without 

oscillation thanks to its optimal starting position, then we 

have GWO and DPSO converges relatively quickly 

around 80ms, our method converges a bit slower at around 

120ms and finally ABC converges late at around 170ms. 

Concerning the amount of power obtained, there is no 

clear edge for any of the methods. When the condition 

changes from (1) to (2) (Figure 11), the GMPP position 

changes rapidly from around 12V down to 5V with a local 

peak around 9V, and it is here that P&O shows its 

weakness, with GWO also failing to converge toward 

global peak, however this seems to vary from run to run. 

Our proposed method converges around 20ms later than 

DPSO at around 90ms with ABC the last to converge 

toward global peak. Finally, when the condition changes 

from (2) to (3) (Figure 12), the GMPP changes to around 

9V and here we have P&O, our method, DPSO and GWO 

all converges at around the same speed, with ABC again 

trailing behind. We also observe the effects of 

memorization of the previous duty cycles on the voltage 

search phase: 8 steps, then 7 steps then 5 steps.  

With this result, our method is not strictly superior in terms 

of convergence time, nor does it guarantee that the system 

will arrive at GMPP all the time. However, in terms of 

implementation complexity, the most complex operation 

is integer multiplication to obtain the power values, which 

is on par with P&O. This is also true for DPSO, however 

it has more comparisons and multiplications at each 

control cycle. Finally, we have GWO and ABC integrating 

a lot of randomized numbers, floating point 

multiplications and divisions. 

 
Figure 8 Illustration of success and failure criteria for 

propose fast GMPPT method 



 

 
Figure 9 Averaged DC/DC buck converter model used 

for the Simulink model 

 

 
Figure 10 Algorithms comparison, condition (1): 1000 

- 1000 - 1000 - 1000Wm-2 

 
Figure 11 Algorithms comparison, condition (2): 1000 

- 1000 - 500 - 200Wm-2 

 
Figure 12 Algorithms comparison, condition (3): 1000 

- 1000 - 800 - 500Wm-2 

 

5. Conclusions 

 
In this paper, an efficient method to quickly simulate the 

power output of an array under a large amount of weather 

conditions was presented together with optimizations that 

made it possible. Using this capability, we plotted the 

distribution of the GMPP on the voltage range proving 

clear zone delineation for this application of 4 PV modules 

with 4 bypass diodes and estimated that our proposed fast-

tracking method can reach GMPP in 93.64% of the time. 

The Simulink simulation result compared versus other 

lightweight algorithms like DPSO, P&O, GWO, ABC 

shows promise and warrants further research with testing 

on real hardware as well as real world weather conditions.  
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