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L2+ Induced Norm Analysis of Continuous-Time LTI Systems
Using Positive Filters and Copositive Programming

Yoshio Ebihara, Hayato Waki, Noboru Sebe,
Victor Magron, Dimitri Peaucelle, and Sophie Tarbouriech

Abstract— This paper is concerned with the analysis of the L2

induced norm of continuous-time LTI systems where the input
signals are restricted to be nonnegative. This induced norm is
referred to as the L2+ induced norm in this paper. It has been
shown very recently that the L2+ induced norm is particularly
useful for the stability analysis of nonlinear feedback systems
constructed from linear systems and static nonlinearities where
the nonlinear elements only provide nonnegative signals. For
the upper bound computation of the L2+ induced norm, an
approach with copositive programming has also been proposed.
It is nonetheless true that this approach becomes effective
only for multi-input systems, and for single-input systems this
approach does not bring any improvement over the trivial
upper bound, the standard L2 norm. To overcome this difficulty,
we newly introduce positive filters to increase the number of
positive signals. This enables us to enlarge the size of the
copositive multipliers so that we can obtain better (smaller)
upper bounds with copositive programming.
Keywords: nonnegative signal, L2+ induced norm, positive
filter, copositive programming

I. INTRODUCTION

Recently, control theoretic approaches for the analysis
of control systems driven by neural networks (NNs) have
attracted great attention [1], [2], [3]. The basic treatment
there is to recast the control system of interest into a feedback
system constructed from a linear system and nonlinear activa-
tion functions. Then, by capturing the properties of nonlinear
activation functions with the integral quadratic constraint
(IQC) framework [4], we can obtain numerically tractable
semidefinite programming problems (SDPs) for the analysis.

On the other hand, some activation functions in NNs
exhibit particular nonnegative properties that are hardly
captured by the standard IQC framework on the positive
semidefinite cone. As a typical example, the rectified lin-
ear units (ReLUs) return only nonnegative output signals
irrespective of input signals. This is the motivation of [5]
to consider the L2 induced norm of continuous-time LTI
systems where the input signals are restricted to be nonneg-
ative. This induced norm is referred to as the L2+ induced
norm in this paper. As the main result of [5], an L2+-
induced-norm-based small gain theorem has been derived
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for the stability analysis of recurrent neural networks with
activation functions being ReLUs. This has been proved
to be less conservative than the standard L2-induced-norm-
based small gain theorem [6]. Moreover, for the upper bound
computation of the L2+ induced norm, an approach with
copositive programming (COP) has also been proposed in
[5]. By applying inner approximation to the copositive cone,
we can eventually obtain numerically tractable SDPs for the
upper bound computation.

Even though the preceding work [5] provides basic ideas
for the treatment of the L2+ induced norm, the results there
are certainly deficient in the following aspects:
(i) For single-input systems, the upper bound characterized

by the COP in [5] reduces to the trivial upper bound, the
L2 induced norm. Namely, it is by no means possible
to obtain better upper bounds than the trivial one.

(ii) For multi-input systems, we can obtain a better upper
bound than the L2 induced norm by solving an SDP in
[5]. However, once we obtain this upper bound, there
is no way to obtain further better upper bounds.

These deficiencies are related to the size of the copositive
multipliers that is introduced in [5] to capture the nonnega-
tivity of the input signals. If we can somehow increase the
number of nonnegative signals, then we can enlarge the size
(freedom) of the corresponding copositive multiplier so that
we can obtain better (smaller) upper bounds.

To achieve this end, in this paper, we newly introduce
positive filters to increase the number of nonnegative signals
and then enlarge the size of copositive multipliers. More
precisely, we introduce a positive filter of specific form.
By increasing the degree of the positive filter, we can
construct a sequence of COPs and then a sequence of SDPs
by applying inner approximation to the copositive cone.
We prove that, by solving the sequence of SDPs, we can
construct a monotonically nonincreasing sequence of the
upper bounds of the L2+ induced norm. The effectiveness
of the proposed positive-filter-based method is illustrated by
numerical examples. We finally note that the analysis of the
L2+ induced norm is also motivated by recent advancement
on the study of positive systems [7], [8], [9], [10], [11], where
the treatment of nonnegative signals is essentially important.

Notation: The set of n × m real matrices is denoted
by Rn×m, and the set of n × m entrywise nonnegative
matrices is denoted by Rn×m

+ . For a matrix A, we also write
A ≥ 0 (A > 0) to denote that A is entrywise nonnegative
(positive). We denote the set of n × n real symmetric,
positive semidefinite, and positive definite matrices by Sn,



Sn+, and Sn++, respectively. The set of n × n Hurwitz and
Metzler matrices are denoted by Hn and Mn, respectively.
For A ∈ Sn, we also write A � 0 (A ≺ 0) to denote that A
is positive (negative) definite.

II. PRELIMINARIES

A. Norms for Signals and Systems

For a continuous-time signal w defined over the time
interval [0,∞), we define

‖w‖2 :=

√∫ ∞

0

|w(t)|22dt

where for v ∈ Rnv we define |v|2 :=

√√√√ nv∑
j=1

v2j . We also

define
L2 := {w : ‖w‖2 < ∞} ,
L2+ := {w : w ∈ L2, w(t) ≥ 0 (∀t ∈ [0,∞)} .

For an operator H : L2 3 w 7→ z ∈ L2, we define its
(standard) L2 induced norm by

‖H‖2 := sup
w∈L2, ∥w∥2=1

‖z‖2. (1)

We also define

‖H‖2+ := sup
w∈L2+, ∥w∥2=1

‖z‖2. (2)

This is a variant of the L2 induced norm introduced in [5]
and referred to as the L2+ induced norm in this paper. We
can readily see that ‖H‖2+ ≤ ‖H‖2.

B. Copositive Programming

A copositive programming problem (COP) is a convex op-
timization problem in which we minimize a linear objective
function over the linear matrix inequality (LMI) constraints
on the copositive cone [12]. Even though a COP is a convex
optimization problem, it is hard to solve it numerically in
general. We summarize the definitions of cones related to
the COP and its basics in the appendix section, where the
materials there are borrowed in part from [13].

C. Positive Systems

In this paper, we introduce positive filters for the (upper
bound) computation of the L2+ induced norm of continuous-
time LTI systems. The definition of positivity and related
results are briefly summarized as follows.
Definition 1: [14] An LTI system is called internally pos-
itive if its state and output are both nonnegative for any
nonnegative input and nonnegative initial state.
Definition 2: [14] An LTI system is called externally pos-
itive if its output is nonnegative for any nonnegative input
under the zero initial state.
Proposition 1: [14] An LTI system with coefficient matrices
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m is
internally positive if and only if
A ∈ Mn, B ∈ Rn×m

+ , C ∈ Rl×n
+ , D ∈ Rl×m

+ .

III. L2+ INDUCED NORM ANALYSIS

A. Problem Description

Let us consider the LTI system G given by

G :

{
ẋ(t) = Ax(t) + Bw(t), x(0) = 0,
z(t) = Cx(t) + Dw(t)

(3)

where A ∈ Rn×n, B ∈ Rn×nw , C ∈ Rnz×n, and
D ∈ Rnz×nw . We assume that the system G is stable,
i.e., the matrix A is Hurwitz stable, and the pair (A,B)
is controllable. It is well known that the L2 induced norm
‖G‖2 defined by (1) coincides with the H∞ norm for stable
LTI systems and plays an essential role in stability analysis
of feedback systems. In this paper, we are interested in
computing the L2 induced norm where the input signal w
is restricted to be nonnegative. Namely, we focus on the
computation of the L2+ induced norm ‖G‖2+ defined by
(2). As noted, it is very clear that ‖G‖2+ ≤ ‖G‖2. Here, it
is well known that ‖G‖2+ = ‖G‖2 holds if G is externally
positive, see, e.g., [8], [9].

B. Motivating Example: L2+-Induced-Norm-Based Small
Gain Theorem

Let us assume nz = nw = m for G given by (3)
and consider the feedback system shown in Fig. 1, where
Φ : Rm 7→ Rm

+ is a static nonlinear operator satisfying
‖Φ‖2 = 1. We focus on the stability analysis of this feedback
system. Here, note that we have assumed that Φ returns only
nonnegative signals. This problem setting typically appears
in the stability analysis of recurrent neural networks with
activation functions being rectified linear units, see [13], [5].

- Φ

�
w

G
z

Fig. 1. Nonlinear Feedback System.

Then, from the standard L2-induced-norm-based small-
gain theorem [6], we see that the feedback system shown
in Fig. 1 is (well-posed and) globally stable if ‖G‖2 < 1.
On the other hand, by actively using the nonnegative nature
of Φ, it has been shown very recently in [5] that the feedback
system shown in Fig. 1 is (well-posed and) globally stable
if ‖G‖2+ < 1. As illustrated by this concrete example, the
L2+-induced-norm-based small-gain theorem has potential
abilities for the stability analysis of feedback systems with
nonnegative nonlinearities. This strongly motivates us to es-
tablish efficient methods for the (upper bound) computation
of the L2+ induced norm.

C. Basic Results

The next result forms an important basis of this study.



Proposition 2: [5] For the LTI system G given by (3) and
a given γ > 0, let us consider the following conditions (i)
and (ii).
(i) ‖G‖2+ ≤ γ.

(ii) There exist P ∈ PSDn and Q ∈ COPnw such that[
PA+ATP PB + CTD

∗ DTD − γ2Inw
+Q

]
� 0. (4)

Then we have (i) ⇐ (ii).
The copositive matrix variable Q in (4) is referred to

as the copositive multiplier in this paper. On the basis of
Proposition 2, let us consider the COP:

γ := inf
γ,P,Q

subject to (4), P ∈ PSDn, Q ∈ COPnw . (5)

In relation to this COP, recall that

‖G‖2 = inf
γ,P

subject to (4), P ∈ PSDn, Q = 0.

It follows that ‖G‖2+ ≤ γ ≤ ‖G‖2. Unfortunately, as we
have already mentioned, it is hard to solve the COP (5) in
general. However, an upper bound of γ can be computed
efficiently by replacing the copositive cone COP in (5)
with the Minkowski sum of the positive semidefinite and
nonnegative cones PSD +NN as follows:

γ := inf
γ,P,Q

subject to (4),

P ∈ PSDn, Q ∈ PSDnw +NNnw .
(6)

Note that this problem is essentially an SDP and hence
tractable. We can readily see that ‖G‖2+ ≤ γ ≤ γ ≤ ‖G‖2
holds.

Up to this point, we have described the basic ideas of the
(upper bound) computation of ‖G‖2+ given in [5]. However,
these results are certainly deficient in the following aspects:
(i) In the case where nw = 1, i.e., if the system G has only

a single disturbance input, then it is very clear that γ =
‖G‖2. This is because, since COP1 = PSD1 = R+,
and since the copositive multiplier Q enters in block-
diagonal part in (4), we see that the optimal value of Q
in COP (5) is zero. Namely, if nw = 1, it is impossible
to obtain an upper bound of ‖G‖2+ which is better than
the trivial upper bound ‖G‖2 if we directly work on (5).

(ii) In the case where nw > 1, it has been shown by
numerical examples in [5] that we can obtain an upper
bound γ of ‖G‖2+ that is strictly better than ‖G‖2 (i.e.,
γ < ‖G‖2). However, once we obtain γ, we have no
way to obtain further better upper bounds than γ.

To overcome these difficulties, we provide a new way for
the upper bound computation of the L2+ induced norm with
positive filters in this paper.
Remark 1: In [13], the l2+ induced norm for discrete-time
operators has been defined in a similar way to (2). In the
COP-based treatments of l2+ induced norm computation of
discrete-time LTI systems, we of course encounter the same
difficulties as (i) and (ii) described above. However, in the
case of discrete-time systems, we can employ the discrete-
time system lifting [15] so that we can artificially increase
the number of disturbance inputs. This enables us to employ

copositive multipliers of larger size. By means of this lifting-
based treatment, we can establish an effective method for the
upper bound computation of l2+ induced norm, see [13] for
details. We finally note that there is no genuine counterpart of
the lifting in the continuous-time system setting, and hence
we surely need an alternative solution.

IV. BETTER UPPER BOUND COMPUTATION BY
POSITIVE FILTERS

For better upper bound computation of ‖G‖2+, it is
promising to actively use the fact that the input signal w
is restricted to be nonnegative. To this end, let us introduce
the positive filter given by

Gp :


ẋp(t) = Apxp(t) +Bpw(t), xp(0) = 0,

zp(t) =

[
Inp

0nw,np

]
xp(t) +

[
0np,nw

Inw

]
w(t).

(7)

Here, Ap ∈ Hnp ∩Mnp , Bp ∈ Rnp×nw

+ . It is clear that the
filter Gp is positive from Proposition 1.

We next plug Gp with G and construct the augmented
system Ga given by

Ga :


ẋa(t) = Aaxa(t) +Baw(t),

z(t) = Caxa(t) +Daw(t),

zp(t) =

[
0np,n Inp

0nw,n 0nw,np

]
xa(t) +

[
0np,nw

Inw

]
w(t).

(8)

Here,

xa :=

[
x
xp

]
, Aa :=

[
A 0
0 Ap

]
, Ba :=

[
B
Bp

]
,

Ca :=
[
C 0nz,np

]
, Da := D.

(9)

In the above augmented system Ga, it is very important to
note that the output zp is nonnegative for any nonnegative
input w. By focusing on this property, we can obtain the first
main result of this paper as summarized in the next theorem.
Theorem 1: For the LTI system G given by (3) and a given
γ > 0, let us consider the following conditions (i) and (iii).
(i) ‖G‖2+ ≤ γ.

(iii) There exist Pa ∈ Sn+np and Qa ∈ COPnp+nw such
that[
PaAa +AT

a Pa + CT
a Ca PaBa + CT

a Da

BT
a Pa +DT

a Ca DT
a Da − γ2Inw

]
+

[
0n,np+nw

Inp+nw

]
Qa

[
0n,np+nw

Inp+nw

]T
� 0.

(10)

Then, we have (i) ⇐ (iii).
For the proof of this theorem, we need the next lemmas.

In the following, we partition Qa ∈ COPnp+nw as

Qa =

[
Qa,11 Qa,12

QT
a,12 Qa,22

]
, Qa,11 ∈ COPnp , Qa,22 ∈ COPnw .

Lemma 1: For Ap ∈ Hnp ∩Mnp and Qa,11 ∈ COPnp , let
us consider the unique solution Pp ∈ Snp to the Lyapunov
equation
PpAp +AT

p Pp +Qa,11 = 0. (11)
Then, we have Pp ∈ COPnp .



Proof of Lemma 1: The proof can readily be done if we
note that

Pp =

∫ ∞

0

exp(AT
p t)Qa,11 exp(Apt)dt

and exp(Apt) ≥ 0 (∀t ≥ 0) holds since Ap is Metzler.
Lemma 2: Suppose Pa ∈ Sn+np satisfies (10) with Qa ∈
COPnp+nw . Then, we have
Pa ∈

{
P +

[
0n,n 0n,np

0np,n Pp

]
: P ∈ PSDn+np , Pp ∈ COPnp

}
. (12)

Proof of Lemma 2: Suppose Pa ∈ Sn+np satisfies (10)
with Qa ∈ COPnp+nw . Then, it is very clear that there
exists W ∈ Sn+np

+ such that

PaAa +AT
a Pa + CT

a Ca +

[
0n,n 0n,np

0np,n Qa,11

]
+W = 0

where Aa ∈ Hn+np from (9). If we regard this equation as
the Lyapunov equation with respect to Pa ∈ Sn+np , we see
from the linearity that Pa ∈ Sn+np can be written as

Pa = P +

[
0n,n 0n,np

0np,n Pp

]
.

Here, P ∈ Sn+np

+ is the unique solution to the Lyapunov
equation

PAa +AT
a P + CT

a Ca +W = 0

whereas Pp ∈ Snp is the unique solution to the Lyapunov
equation (11). From Lemma 1, we have Pp ∈ COPnp and
hence the proof is completed.

Now we are ready to prove Theorem 1.
Proof of Theorem 1: For the augmented system Ga, we
consider the trajectory of its state xa for the input w ∈ L2+

with ‖w‖2 = 1. From (10), we readily see[
xa(t)
w(t)

]T [
PaAa +AT

a Pa + CT
a Ca PaBa + CT

a Da

BT
a Pa +DT

a Ca DT
a Da − γ2Inw

] [
xa(t)
w(t)

]
+

[
xp(t)
w(t)

]T
Qa

[
xp(t)
w(t)

]
≤ 0 (∀t ≥ 0).

From this inequality and (8), we have

d

dt
xa(t)

TPaxa(t) + z(t)T z(t)− γ2w(t)Tw(t)

+zp(t)
TQazp(t) ≤ 0 (∀t ≥ 0).

By integration, we arrive at

xa(T )
TPaxa(T ) +

∫ T

0

z(t)T z(t)− γ2w(t)Tw(t)dt

+

∫ T

0

zp(t)
TQazp(t)dt ≤ 0 (∀T > 0).

(13)

Since Qa ∈ COPnp+nw and zp ∈ L2+, we first note that∫ T

0

zp(t)
TQazp(t)dt ≥ 0 (∀T > 0). (14)

On the other hand, since xp is nonnegative in xa(=
[ xT xT

p ]T ), we see from Lemma 2 that

xa(T )
TPaxa(T ) ≥ 0 (∀T > 0). (15)

With these facts in mind, we take the limit T → ∞ in (13)
and obtain∫ ∞

0

z(t)T z(t) dt− γ2

∫ ∞

0

w(t)Tw(t) dt ≤ 0. (16)

This clearly shows ‖z‖22 ≤ γ2‖w‖22 = γ2. To summarize,
we arrive at the conclusion that

‖G‖2+ = sup
w∈L2+,∥w∥2=1

‖z‖2 ≤ γ.

This completes the proof.
Remark 2: In stark contrast with the standard L2-induced
norm computation case, the Lyapunov certificate Pa ∈
Sn+np that satisfies (10) does not satisfy Pa ∈ PSDn+np in
general. Namely, we have (12).
Remark 3: Even though our proof of Theorem 1 has been
done by purely time-domain arguments, it has close rela-
tionship with the general IQC theorem [16], [17] basically
characterized in frequency domain. Recall that the key con-
ditions in the proof are (14) and (15), and these are related
to the motivation of the study in [17]. The key condition
(14) is referred to as the hard (finite horizon) IQC in [17],
and its weaker condition is called the soft (infinite horizon)
IQC. Moreover, even though (15) does hold, the Lyapunov
certificate Pa in (10) is not positive semidefinite in general
(Lemma 2), and this conforms to the general setting of
[17] that deals with indefinite Lyapunov certificates and soft
(infinite horizon) IQCs. Therefore, it seems that the current
result can be basically subsumed into the general framework
of [17]. However, since we have introduced COP multipliers,
the relationship of Theorem 1 with [17] is not yet very clear
to us. This topic is currently under investigation.

On the basis of Theorem 1, let us consider the following
COP and SDP:

γa := inf
γ,Pa,Qa

γ subject to (10),

Pa ∈ Sn+np , Qa ∈ COPnp+nw ,
(17)

γa := inf
γ,Pa,Qa

γ subject to (10),

Pa ∈ Sn+np , Qa ∈ PSDnp+nw +NNnp+nw .
(18)

Then, we readily obtain

‖G‖2+ ≤ γa ≤ γa. (19)

Moreover, we can obtain the next theorem that verifies
the effectiveness of the introduction of positive filters in
computing better (smaller) upper bounds.
Theorem 2: Let us consider the positive-filter-based upper
bounds γa and γa of ‖G‖2+ given respectively by (17) and
(18). Then, in relation to the filter-free upper bounds γ and
γ given respectively by (5) and (6), we have
γa ≤ γ (≤ ‖G‖2), γa ≤ γ (≤ ‖G‖2) (20)

Proof of Theorem 2: In the following, we prove γa ≤ γ.
The proof for γa ≤ γ follows similarly. To prove γa ≤ γ, it
suffices to show that the condition (10) in (iii) of Theorem 1
holds with γ = γ + ε for any ε > 0.

We first note from the definition of γ given by (5) that for
any ε > 0 there exist P ∈ Sn, Q ∈ COPnw , and ε1 > 0



such thatPA+ATP + CTC PB + CTD 0

∗ DTD − (γ + ε)2Inw
+Q ε1B

T
p Pp

∗ ∗ ε1(PpAp +AT
p Pp)

 � 0.

Here, Pp ∈ Snp

++ is the unique solution of the Lyapunov
equation

PpAp +AT
p Pp + I = 0. (21)

By applying a congruence transformation to the preceding
inequality, we havePA+ATP + CTC 0 PB + CTD

∗ ε1(PpAp +AT
p Pp) ε1PpBp

∗ ∗ DTD − (γ + ε)2Inw
+Q

 � 0.

This clearly shows that (10) in (iii) of Theorem 1 holds with
γ = γ + ε and

Pa =

[
P 0
0 ε1Pp

]
∈ Sn+np , Qa =

[
0np,np 0

0 Q

]
∈ COPnp+nw .

This completes the proof.
Theorem 2 shows that for any positive filter Gp the

corresponding upper bound γa given by (17) (γa given by
(18)) is better (no worse) than the filter-free upper bound γ
given by (5) (γ given by (6)). In Section VI, we demonstrate
by numerical examples that γa can be strictly better than γ
as expected.

V. CONCRETE CONSTRUCTION OF POSITIVE FILTERS

As for the positive filter Gp given by (7), let us consider
the specific form given by

Ap = Ap,α,N := Jα,N ⊗ Inw ∈ RNnw×Nnw ,

Bp = Bp,N := EN ⊗ Inw
∈ RNnw×nw ,

Jα,N :=



α 1 0 · · · 0

0 α 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 α


∈ RN×N , EN :=


0
...
0
1

 ∈ RN
(22)

where α < 0. In this case, the input-output property of the
positive filter Gp in frequency domain is given by

Zp(s) =



1

(s− α)N
Inw

...
1

(s− α)
Inw

Inw

W (s).

By increasing the degree N of the positive filter Gp given
by (7) and (22), we can construct a sequence of COPs in
the form of (17) and SDPs in the form of (18). In the
following, we denote by γa,α,N and γa,α,N the optimal
values of these COPs and SDPs, respectively. In addition,
we denote by Aa,α,N , Ba,N , Ca,N , and Da,N (= D) the
coefficient matrices of the augmented system Ga given by
(8) corresponding to the filter of degree N . Then, regarding
the effectiveness of employing higher-degree positive filters
in improving upper bounds, we can obtain the next result.

Theorem 3: Let us consider the upper bounds of ‖G‖2+
given by γa,α,N and γa,α,N that are characterized respec-
tively by (17) and (18) with the positive filter Gp of the
form (7) and (22) of degree N . Then, for N1 ≤ N2, we
have
γa,α,N2

≤ γa,α,N1
, γa,α,N2

≤ γa,α,N1
. (23)

Proof of Theorem 3: In the following, we prove γa,α,N2
≤

γa,α,N1
. The proof for γa,α,N2

≤ γa,α,N1
follows similarly.

To prove γa,α,N2
≤ γa,α,N1

, it suffices to show that
γa,α,N+1 ≤ γa,α,N holds for any N . Furthermore, this can
be verified by proving that (10) corresponding to the filter
of degree N + 1 holds with γ = γa,α,N + ε for any ε > 0.

To this end, we first note from the definition of γa,α,N

that for any ε > 0 there exist Pa = Pa,α,N ∈ Sn+Nnw and
Qa = Qa,α,N ∈ COP(N+1)nw such that[
Pa,α,NAa,α,N +AT

a,α,NPa,α,N Pa,α,NBa,N

BT
a,NPa,α,N −(γ2

a,α,N + 2γa,α,Nε)Inw

]
+

[
CT

a,N

DT
a,N

] [
CT

a,N

DT
a,N

]T
+

[
0n,(N+1)nw

I(N+1)nw

]
Qa,α,N

[
0n,(N+1)nw

I(N+1)nw

]T
� 0.

(24)

To proceed, let us define

FN :=
[
Inw 0nw,nw · · · 0nw,nw

]
∈ Rnw×Nnw .

Then, there exist ε1, ε2 > 0 such that 0n,n 0 0

∗ −ε2INnw − ε1
2α

FT
NFN ε2PpBp

∗ ∗ −ε2Inw

 � 0

where Pp ∈ Snp

++ is the unique solution of the Lyapunov
equation (21). By summing up the above inequality with (24)
and applying the Schur complement argument, we obtain

P 11
a,α,NA+ATP 11

a,α,N 0
∗ 2ε1αInw

∗ ∗
∗ ∗

P 11
a,α,NB + P 12

a,α,NBp

ε1FN 0

P̂ 22
a,α,NAp,α,N +AT

p,α,N P̂ 22
a,α,N P 12T

a,α,NB + P̂ 22
a,α,NBp

∗ −(γa,α,N + ε)2Inw


+

[
CT

a,N+1

DT
a,N+1

] [
CT

a,N+1

DT
a,N+1

]T
+

[
0n,(N+2)nw

I(N+2)nw

] [
0nw,nw

0
0 Qa,α,N

] [
0n,(N+2)nw

I(N+2)nw

]T
� 0.

(25)

Here,[
P 11
a,α,N P 12

a,α,N

P 12T
a,α,N P 22

a,α,N

]
:= Pa,α,N , P 11

a,α,N ∈ Sn, P 22
a,α,N ∈ SNnw ,

P̂ 22
a,α,N := P 22

a,α,N + ε2Pp.

Then, (25) shows that (10) corresponding to the filter of



degree N + 1 holds with γ = γa,α,N + ε and

Pa = Pa,α,N+1 =

P 11
a,α,N 0 P 12

a,α,N

0 ε1Inw
0

P 12T
a,α,N 0 P̂ 22

a,α,N

 ∈ Sn+(N+1)nw ,

Qa = Qa,α,N+1 =

[
0nw,nw 0

0 Qa,α,N

]
∈ COP(N+2)nw .

This completes the proof.
Remark 4: From Theorem 3, we see that we can construct
a monotonically non-increasing sequence of upper bounds
{γa,α,N} of ‖G‖2+ by increasing the degree N and solving
the corresponding SDP (18). Of course this is done at the
expense of increased computational burden.
Remark 5: As shown in the appendix section, we can prove
that the (primal) SDP (18) and its dual both have interior
point solutions (in the case where we employ the positive
filter Gp of the form (7) and (22)). Therefore, there is no
duality gap between the SDP (18) and its dual, and both
have optimal solutions, see [18].

VI. NUMERICAL EXAMPLES

In this section, we illustrate the effectiveness of the
proposed positive-filter-based method by numerical examples
on single- and multi-input systems. We use MOSEK [19]
to solve the SDP (18). As for the algorithm implemented
in MOSEK, we can expect the execution of reliable com-
putation if the SDP to be solved and its dual both have
interior point solutions. Since the SDP (18) and its dual
indeed both have interior solutions, we can conclude that we
have executed reliable numerical computation in this section.

A. Single-Input Case

Let us consider the case where the coefficient matrices of
the system (3) are randomly generated and given by

A =


−0.09 0.28 0.46 −0.48 −0.05
−0.34 −0.95 −0.42 0.37 −0.55
−0.24 0.04 −0.10 −0.47 −0.23
0.30 0.29 0.02 −1.59 0.57
0.26 0.25 0.40 −0.74 −0.95

 , B =


0.17
0.40
0.49
0.30
−0.69

 ,

C =
[
−0.14 −0.66 0.10 0.34 0.05

]
, D = 0.27.

In this case, it turned out that ‖G‖2 = 0.5033 (= γa,α,0).
Then, for α ∈ {−1,−1.2,−1.4}, we constructed positive
filters of degree N and then obtained upper bounds γa,α,N

by solving the SDP (18). The results are shown in Fig. 2.
We note that γa,α,N = γa,α,N holds up to N = 3 in this
case, since for the SDP (18) we have Qa ∈ PSDN+1 +
NNN+1 = COPN+1 (N ≤ 3).

From Fig. 2, the best (least) upper bound turned out to
be γa,α,N = 0.3914 with α = −1.4 and N = 15. For
each α, we see that γa,α,N is monotonically non-increasing
with respect to N and this result is surely consistent with
Theorem 3.

The Degree of Positive Filters

Fig. 2. The Values of γa,α,N : Upper Bounds of ∥G∥2+.

B. Multi-Input Case

We next consider the case where the coefficient matrices
of the system (3) are randomly generated and given by

A =


−0.11 −0.15 0.18 0.15 −0.10
0.18 −0.53 −0.35 0.37 −0.23
−0.64 −0.12 −0.75 0.23 0.59
0.34 −0.03 0.13 −0.47 −0.67
0.55 0.29 −0.08 0.53 −0.81

 , B =


−0.14 0.32
−0.76 −0.42
−0.30 −0.03
0.64 −0.38
−0.12 0.17

 ,

C =
[
−0.35 0.03 0.33 0.05 0.14

]
, D =

[
0.43 0.23

]
.

In this case, it turned out that ‖G‖2 = 0.6995. On the other
hand, by solving the SDP (6) shown in [5], we obtained
γ = 0.6611 (= γa,α,0). We note that γ = γ holds in this case
since for the SDP (6) we have Q ∈ PSD2+NN 2 = COP2.

Then, for α ∈ {−1,−1.2,−1.4}, we constructed positive
filters of degree N and then obtained upper bounds γa,α,N

by solving the SDP (18). The results are shown in Fig. 3. The
best (least) upper bound turned out to be γa,α,N = 0.4981
with α = −1.4 and N = 15. For each α, we see that γa,α,N

is monotonically non-increasing with respect to N and this
result is again consistent with Theorem 3.

The Degree of Positive Filters

Fig. 3. The Values of γa,α,N : Upper Bounds of ∥G∥2+.



VII. CONCLUSION AND FUTURE WORKS

In this paper, we considered the (upper bond) computation
of the L2+ induced norm for continuous-time LTI systems.
To obtain better (smaller) upper bounds, we introduced
positive filters and reduced the upper bound computation
problem into a COP. Then, by applying inner approximation
to the COP cone, we derived a numerically tractable SDP
for the upper bound computation. By numerical examples,
we showed the effectiveness of the proposed positive-filter-
based method to obtain better (smaller) upper bounds.

In this paper we just focused on the upper bound compu-
tation of the L2+ induced norm. It is nonetheless true that
we cannot say anything on the conservatism of the obtained
upper bounds if we merely rely on upper bound computation.
Therefore it is desirable to compute lower bounds of L2+

induced norm efficiently. Our upcoming results on such
lower bound computation will be reported elsewhere in a
near future.

APPENDIX

BASICS ABOUT COPOSITIVE PROGRAMMING

We first review the definitions and the properties of convex
cones related to the COP.
Definition 3: [20] The definitions of proper cones PSDn,
COPn, CPn, NNn, and DNNn in Sn are as follows.

1) PSDn := {P ∈ Sn : ∀x ∈ Rn, xTPx ≥ 0} =
{P ∈ Sn : ∃B s.t. P = BBT } is called the positive
semidefinite cone.

2) COPn := {P ∈ Sn : ∀x ∈ Rn
+, xTPx ≥ 0} is called

the copositive cone.
3) CPn := {P ∈ Sn : ∃B ≥ 0 s.t. P = BBT } is called

the completely positive cone.
4) NNn := {P ∈ Sn : P ≥ 0} is called the nonnegative

cone.
5) PSDn + NNn := {P + Q : P ∈ PSDn, Q ∈

NNn}．This is the Minkowski sum of the positive
semidefinite cone and the nonnegative cone.

6) DNNn := PSDn ∩ NNn is called the doubly
nonnegative cone.

From Definition 3, we clearly see that the following
inclusion relationships hold:

CPn ⊂ DNNn ⊂ PSDn ⊂ PSDn+NNn ⊂ COPn,(26)

CPn ⊂ DNNn ⊂ NNn ⊂ PSDn +NNn ⊂ COPn. (27)

In particular, when n ≤ 4, it is known that COPn =
PSDn + NNn and CPn = DNNn hold [20]．On the
other hand, as for the duality of these cones, COPn and
CPn are dual to each other, PSDn+NNn and DNNn are
dual to each other, and PSDn and NNn are self-dual. It is
also well known that the interiors of the cones PSDn and
NNncan be characterized by

(PSDn)◦ = {P ∈ Sn : ∀x ∈ Rn\{0}, xTPx > 0},
(NNn)◦ = {P ∈ Sn : P > 0}.

As noted, the COP is a convex optimization problem on
the copositive cone, and its dual is a convex optimization

problem on the completely positive cone. As mentioned in
[12], the problem to determine whether a given symmetric
matrix is copositive or not is a co-NP complete problem,
and the problem to determine whether a given symmetric
matrix is completely positive or not is an NP-hard problem.
Therefore, it is hard to solve COP numerically in general.
However, since the problem to determine whether a given
matrix is in PSD+NN or in DNN can readily be reduced
to SDPs, we can numerically solve the convex optimization
problems on the cones PSD+NN and DNN easily. More-
over, when n ≤ 4, it is known that COPn = PSDn+NNn

and CPn = DNNn as stated above, and hence those COPs
with n ≤ 4 can be reduced to SDPs.

ON THE EXISTENCE OF INTERIOR POINT SOLUTIONS FOR
THE SDP (18) AND ITS DUAL

We first note that the dual of the SDP (18) is given by

sup
Z

trace

([
CT

a,N

DT
a,N

]T
Z

[
CT

a,N

DT
a,N

])
subject to

Z =

Z11 Z12 Z13

∗ Z22 Z23

∗ ∗ Z33

 ∈ PSDn+np+nw , (28a)

trace(Z33) = 1, (28b)

AaZa +BaZ
T
b + (AaZa +BaZ

T
b )

T = 0, (28c)

Zc ≥ 0, (28d)

where

Za :=

[
Z11 Z12

∗ Z22

]
∈ PSDn+np ,

Zb :=

[
Z13

Z23

]
∈ R(n+np)×nw ,

Zc :=

[
Z22 Z23

∗ Z33

]
∈ PSDnp+nw .

On the existence of the interior point solutions for the
(primal) SDP (18) and its dual (28), we can establish the
following two theorems.
Theorem 4: The SDP (18) has an interior point solution.
Proof of Theorem 4: Let us denote by P0 ∈ Sn+np

++ the
unique solution of the Lyapunov equation

P0Aa +AT
a P0 + CT

a Ca + 2In+np = 0.

In addition, with sufficiently small ε > 0 we let

Q0 = Inp+nw
+ ε1np+nw

1T
np+nw

.

Then, it is clear that

P0 ∈ Sn+np , Q0 ∈ (PSDnp+nw)◦ + (NNnp+nw)◦.

Furthermore, if we let γ > 0 sufficiently large, we can
confirm that (10) with � being replaced by ≺ holds with
Pa = P0 and Q = Q0. This clearly shows that the SDP (18)
has an interior point solution.
Theorem 5: The dual SDP (28) has an interior point solu-
tion.
We need the next lemma for the proof of Theorem 5.



Lemma 3: For Ap ∈ RNnw×Nnw and Bp ∈ RNnw×nw

given by (22), the unique solution Ẑp to the following
Lyapunov equation satisfies Ẑp > 0.
ApẐp + ẐpA

T
p +Bp1nw

1T
nw

BT
p = 0. (29)

Proof of Lemma 3: From the well-known analytic expres-
sion for the solution of Lyapunov equation, we have

Ẑp =

∫ ∞

0

exp(Apt)Bp1nw
1T
nw

BT
p exp(AT

p t)dt

=

∫ ∞

0


tN−1

(N − 1)!
exp(αt)Inw

...
exp(αt)Inw

1nw
1T
nw


tN−1

(N − 1)!
exp(αt)Inw

...
exp(αt)Inw


T

dt.

This clearly shows that Ẑp > 0.
We are now ready to prove Theorem 5.

Proof of Theorem 5: We first denote by Za,0 ∈ Sn+np

+ the
unique solution to the Lyapunov equation given below that
is obtained by substituting Zb = Ba in (28c):

AaZa,0 + Za,0A
T
a + 2BaB

T
a = 0.

Then, since the pair (Aa, Ba) is controllable, we see Za,0 �
0. With this fact in mind, we next substitute

Zb = Ba +

[
0n,nw

ε1np
1T
nw

]
=: Zb,ε

(
=:

[
Ẑ13

Ẑ23

])
(30)

in (28c) with sufficiently small ε > 0 and consider the
resulting Lyapunov equation:

AaZa,ε + Za,εA
T
a +BaZ

T
b,ε + Zb,εB

T
a = 0. (31)

Then, for the unique solution Za,ε ∈ Sn+np to this Lyapunov
equation, we see that Za,ε � 0 holds for sufficiently small
ε > 0 since Za,0 � 0. If we partition Za,ε � 0 as

Za,ε =:

[
Ẑ11 Ẑ12

∗ Ẑ22

]
� 0, Ẑ22 ∈ PSDnp , (32)

we see that the (2, 2)-block of (31) can be written as

ApẐ22 + Ẑ22Ap

+Bp(Bp + ε1np
1T
nw

)T + (Bp + ε1np
1T
nw

)BT
p = 0.

If we compare the above equation with (29) in Lemma 3,
we see

Bp(Bp + ε1np
1T
nw

)T + (Bp + ε1np
1T
nw

)BT
p

≥ ε(Bp1nw
1T
np

+ 1np
1T
nw

BT
p )

≥ ε(Bp1nw1
T
nw

BT
p +Bp1nw1

T
nw

BT
p )

= 2εBp1nw1
T
nw

BT
p .

It follows that

Ẑ22 ≥ 2εẐp > 0. (33)

Finally, if we let

Zν,33 := νInw
+ 1nw

1T
nw

(= Ẑ33) (34)

with sufficiently large ν > 0, we see from (32) that

Ẑ =

Ẑ11 Ẑ12 Ẑ13

∗ Ẑ22 Ẑ23

∗ ∗ Ẑ33

 � 0.

In addition, if we define

Z :=
1

trace(Ẑ33)
Ẑ,

we can conclude that this Z satisfies Z � 0, (28b), (28c),
and Zc > 0. To summarize, the dual SDP (28) has an interior
point solution.
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