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Reinforced Likelihood Box Particle Filter
Quoc Hung Lu, Soheib Fergani, Carine Jauberthie

Abstract—This paper is concerned with the development of
a general scheme for box particle filtering. It is based on the
likelihood computation, the most crucial step of the estimation
strategy. The proposed filter takes advantages from strong aspects
of various existing box particle filters and adds an interesting
reinforced likelihood computation method that enhances the
estimation results. An overview on Box Particle Filters and
discussions from assumptions used in the literature to the
filters performance evaluation approach are presented. Also,
comparative study of the obtained results by performing several
scenarios on the illustration example is provided to highlight the
efficiency of the proposed estimation strategy.

Index Terms—State filtering and Estimation, Nonlinear System,
Box Particle Filter, Interval Analysis.

I. INTRODUCTION

IN State Estimation or Filtering problems, when dealing
with a linear Gaussian state-space model, analytical ex-

pressions computing the state estimates according to posterior
distributions can be derived by the well known and widespread
Standard Kalman Filter (SKF) [1]. Many extension of SKF are
then provided by numerous researches in different contexts
[2]–[4]. For nonlinear model without Gaussian measurement
assumption, Particle Filters (PF) have been applied success-
fully to a variety of state estimation problems [5], [6]. The
PF efficiency and accuracy depend mostly on the number of
particles used in the estimation which may require a high
computation time.

One of the famous extensions of PF to set membership
approach is the Box Particle Filter (BPF) [7]. BPF handles
box (interval vector of) states and bounded errors by using in-
terval computation and constraint satisfaction techniques. This
method has been shown to control quite efficiently the number
of required particles, hence reducing the computational cost
and providing good results in several experiments.Therefore,
it has been applied in many applications, included aerial [8]
and ground vehicle [9] estimations.

Since then, numerous variants of BPF are developed to
deal with measurements bounded uncertainty, measurements
stochastic uncertainty or measurements mixed uncertainty.
Various techniques and theories have been proposed to address
the diversity of requirements in these contexts, e.g. weight
updating using Bayesian filtering technique extending to box
particle case [10] or belief function theory with different
methods [11], [12].

In the present work, regarding this large variety of BPF, a
scheme is proposed to give a generalized description that high-
lights the specificity of this class of filters. An analysis of the
likelihood computation methodology is investigated. Theory
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background is also provided to support the development of a
novel filter benefiting advantages of existing methods via a
numerous reinforcement techniques: score function, reduction
percentage, exponential weighting, backward estimate.

The paper is organized as follows. The problem formulation
is presented in Section II with discussions about assumptions
used in the literature. Section III presents the general scheme
of BPF. The likelihood computation methodology is analyzed
in Section IV which also provides the notion of likelihood dis-
tinguishability. The proposed method is developed in Section
V and simulations of the method are provided in Section VI.
Section VII is the paper conclusion.

II. PROBLEM FORMULATION

A. Notations and definitions

A real interval matrix [X] of dimension p×q is a matrix with
real interval components [xij ], i ∈ {1, ..., p}, j ∈ {1, ..., q}.
Write X ∈ [X] to indicate a point matrix X = (xij) belonging
element-wise to [X]. Define:

X ≡ sup([X])
M
= (sup([xij ])) ,

X ≡ inf([X])
M
= (inf([xij ])),

and then mid([X])
M
= (X + X)/2, rad([X])

M
= (X − X)/2,

width([X])
M
= X − X . Denote also X = sup([X]), X =

inf([X]), [X] = [X,X] and define the (convex) hull of
two interval matrices [X1], [X2] of the same dimension as
hull{[X1], [X2]} M

= [min{X1, X2},max{X1, X2}].
Basic interval operators � ∈ {+,−,×,÷} defined in [13]

can be used to compute directly all operations [u] � [v] and
α�[u], for real intervals [u], [v] and α ∈ R, without any further
approximation algorithm. Then, interval matrix computations
are defined similarly to matrix computations using the basic
operators while more general operators are constructed by
meant of inclusion function [13]. In practice, the package
Intlab developed for Matlab is used for these computations.

B. Assumptions and discussions

Consider the following dynamical system:

(Σ) :

{
xk = f(xk−1, uk, wk) ,
yk = h(xk, uk, vk) ,

k ∈ N∗, (1)

where xk ∈ Rnx and yk ∈ Rny are respectively state and
measurement output, uk ∈ Rnu input, wk ∈ Rnw state
dynamic disturbance and vk ∈ Rny measurement noise.
Assumption (A): State Process Uncertainty
uk and wk are unknown and belong to known intervals [uk]
and [wk] respectively.
Assumption (B): Measurement Bounded Uncertainty
(B1) vk (unknown) belongs to known interval [vk].
(B2) The measurements are intervals [yk].



(B3) The measurements are assumed to be accurate in the
sense that [yk] 3 h(xk, uk) ≡ h(xk, uk, 0) (the zero noise
case), where xk is the real state.
Assumption (C): Measurement Stochastic Uncertainty
(C1) vk are additive noises with known density pv .
(C2) The measurements are point values yk.
Assumption (D): Measurement Mixed Uncertainty
(D1) vk are additive Gaussian noises with unknown mean µk ∈
Rny and covariance Σk ∈ Rny×ny .
(D2) µk, Σk belong to known intervals [µk], [Σk].
(D3) The measurements are point values yk.

Assumption (A) is used in [7], [10]–[12].
Assumptions (B) are under study in [7], [11]. In [7], the

BPF is introduced and becomes standard for many extensions
or variants with essential steps: initialization, box propagation,
contraction, likelihood (weight) computation, state estimation
and resampling. In [11], the Belief State Estimation algorithm
is developed using the belief function theory. It may require
some techniques for the construction and computation of
masses, but after being normalized, these masses become
likelihoods in the probability sense. Therefore, we also call
likelihood computation as an essential step of this method.

Assumptions (C) are used in [10]. The method proposed
therein includes a different approach to weight the box parti-
cles as well as a resampling procedure based on repartitioning
the box enclosing the propagated states. There is no contrac-
tion step in this method.

Assumptions (D) are used in [12], in which (D1) is a special
case of (C1) with a slight relaxation by adding bounded
uncertainties to Gaussian parameters µk and Σk. In [12], the
belief function theory is used with continuous mass functions
to represent these kinds of uncertainties and to compute box
particle likelihoods. The proposed approach therein leads to
the so-called Evidential Box Particle Filter (EBPF) including
all essential steps of the standard BPF.

Remark 1: (B3) is the implicit assumption deriving
the consistency between the predicted measurement boxes
[h]([xik], [uk]), i ∈ {1, ...,M} (M the number of partitioned
boxes), and the real measurement box [yk]. This consistency
is used in the contraction step and the likelihood computation
by penalizing all particle boxes with which the intersections
[h]([xik], [uk]) ∩ [yk] are empty. �

Remark 2: Assumptions (D3) and (C2) are coincided. They
can be transformed into (B2) with a slight relaxation of (B3).
That is, knowing the density of vk, we deduce its confidence
intervals [vk] with some significant level α and define [yk]

M
=

yk − [vk]. Then (B3) is relaxed in the sense that the observed
measurements [yk] do not contain h(xk, uk) with certainty but
with only a probability (1− α). �

III. GENERAL SCHEME OF BOX PARTICLE FILTER

In general, although applying different background theories,
the proposed methods in [7], [10]–[12] study State Estimation
in a framework of stochastic uncertainties and/or bounded
uncertainties with two main objectives :

Objective 1: Reduce the width of box particles to penalize
the conservatism due to interval computations.

Objective 2: Quantify (compute) box particle likelihoods,
as best as possible, to enhance the accuracy of the estimates.

The methods used in these references can be considered as
variants of BPF and be summarized by Scheme 1 which is
applied in a mostly similar manner across them.

Scheme 1 General Scheme of Box Particle Filtering
STEP 1 : Initialization. At a time instance k0 ≥
0, (re)partition the interval [xk0 ] or resample the set
{[xjk0 ], wj}j=1:Nk0

into M disjoints equal-volume sub-
boxes with the same weights: {[xik0 ], wi = 1/M}i=1:M .
while a predetermined Condition C is still satisfied do

STEP 2 : Propagation. Get a new set of box particles
{[xik0+1] = [f ]([xik0 ], [uk0 ])}i=1,...,M estimating the box
containing the real state xk0+1 = f(xk0 , uk0) with or
without a contraction step.
STEP 3 : Likelihood computation
a) Compute (and normalize) the likelihoods of box par-
ticles {[xik0+1]}i=1:M being the box containing the real
state xk0+1. This computation bases on the consistency
between the estimated measurement [h]([xik0+1], [uk0 ])’s
and the obtained measurement [yk0+1] using different
criteria and methods.
By this step, the following set of box particles with
updated weights is obtained : {[xik0+1], wi}i=1:M .

b) Some techniques can be applied at this step to get
a more ”efficient” set of box particles, e.g. discarding
the boxes with small weights (smaller than some prede-
termined threshold) and with/without replicating the box
associated with the greatest weight,...
From this, the set of box particles becomes
{[xik0+1], wi}i=1:Nk0+1

, 1 ≤ Nk0+1 ≤M .

STEP 4 : Estimation

Interval estimate : [xk0+1] =

Nk0+1∑
i=1

wi.[x
i
k0+1] (2)

Point estimate : xk0+1 =

Nk0+1∑
i=1

wi.mid([xik0+1]) (3)

STEP 5 : k0 = k0 + 1
end while
STEP 6 : Restarting at STEP 1.

Remark 3: In this Scheme, for a general presentation, the
observed measurements are denoted as intervals since the point
values are considered as special cases of intervals. Nk0 in the
initialization step takes value in {1, ...,M}. It is the number of
box particles obtained at the end of the likelihood computation
step at the previous time instant (k0 − 1). For k0 = 0, the
initialization concerns only the partition of [x0] and not the
resampling. The Condition C of the while loop in the Scheme
may differ depending on the used method, e.g. in [7], this
condition is Nk0 ≥ Neff where Neff is a threshold calculated
at each iteration of the loop. �

IV. LIKELIHOOD COMPUTATION ANALYSIS

A. Likelihood computation methodology
The diagram in Fig.1 is provided to explain the methodology



of LCMs used in Scheme 1.

Criteria to
decide how a box
particle be chosen

as preferable
than others

Likelihood
Computation

Method
(LCM)

Information issued
from assumptions

Fig. 1. Likelihood computation methodology diagram

The assumptions of the system under consideration supply
the information, or Info for short, needed to build the likeli-
hood. The information can be, for instance:
• Info (a): The intersection between [yk] and the box

[h]([xik], [uk]) containing the real value yk must be non
empty, ([h]([xik], [uk]) ∩ [yk] 6= ∅).

• Info (b): The distribution of vk and hence of rk = yk −
h(xk, uk) is Gaussian (for additive noise vk).

The information can be directly an assumption or a deduc-
tion of the later. In bounded-error context, only Info (a) is
treated [7] while in the mixed uncertainty case, both Info
(a) and Info (b) are taken into account [12]. Criteria and
methods are then chosen to exploit the information. Once a
criterion is chosen, different methods can be used to calculate
the likelihood. Inversely, a calculation method may correspond
to many criteria. More precisely, a likelihood computation
criterion is an application of the supplied information to
establish an order of preferability of related events/objects
that we want to compute their likelihoods, while a LCM
is a method using mathematical formulae to represent and
quantify the preferability by giving scores and normalizing
them. Definition 1 formalizes these concepts.

Definition 1: Any set {si > 0}i=1:n can be a set of scores.
This set has an increasing (decreasing) order of preferability if
the greater (smaller) score is preferable. The set {Li}i=1:n is a
set of likelihoods if Li ∈ [0, 1], i ∈ {1, ..., n} and

∑n
i=1 L

i =
1. A normalizing function is a function Φ : Rn → [0, 1]n

transforming scores to likelihoods so that a preferable score
corresponds to the greater likelihood.

Let’s illustrate the above ideas via Example 1.
Example 1: To exploit Info (a), one can use either:
• Criterion 1: The particle [xik] giving a “bigger” intersec-

tion determined by [ẑik] = [h]([xik], [uk]) ∩ [yk] must be
preferable,

• Criterion 2: The particle [xik] making [ŷik] =
[h]([xik], [uk]) ”closer” to [yk] must be preferable.

How to represent “bigger” (size) or “closer” (closeness) no-
tions and to calculate the corresponding likelihoods depend
on the choice of LCMs. Criterion 1 is used in [7]. The
corresponding LCM uses the volume Vol(.) determined by

Vol([x])
M
=

nx∏
j=1

width([xj ]), [x] = ([x1], ..., [xnx
])
T
, (4)

to represent the box size and computes the likelihoods L1 =
(L1

1, ..., L
M
1 ) by :

si1 =
Vol([zik])

Vol([ŷik])
, i ∈ {1, ...,M} , Li1 =

si1∑M
i=1 s

i
1

, (5)

where {si1} are scores with increasing order of preferability.
However, other methods can be used to calculate the likeli-
hoods, e.g. with scores sj = (s1

j , ..., s
M
j ), j ∈ {2, 3, 4}:

si2 = Vol([zik]), si3 = ‖width([zik])‖∞, si4 = ‖width([zik])‖2,

in which s3 and s4 use distances between the two bounds
of the intersection to represent its size. Criterion 2 can be
applied with different LCMs using a distance between [ŷik]
and [yk] to represent their closeness. Criterion 2 can also be
used to exploit Info (b) as in [12] via the central tendency
of the Gaussian vector [rik] = yk − [ŷik] along with the belief
function theory. A more detail analysis of the method used in
[12] is found in section IV-A. �

It is worth to note that, in some cases, it is difficult to
distinguish clearly between criterion and LCM as illustrated
by Fig.1, e.g. in [10] with Interval Bayes filtering approach or
in [11] and [12] with the belief theory. The reason is that the
criteria are implied under complexes theories.

B. Distinguishability of computed likelihoods

In order to deal with Objective 1, in the literature, contrac-
tors are usually applied based on the Constraint Satisfaction
Problem technique. However, this is not the most crucial step
of BPFs using Scheme 1, e.g. this step is skipped in [10].
Furthermore, partition a box into M disjoint equal-volume
sub-boxes and then compute the expected interval by (2) also
help to reduce the conservatism due to interval computations.
The most crucial step that differs one method from another in
this class of BPFs is the Likelihood computation focusing on
Objective 2. This is thus the main discussion of this section.
Let’s begin by introducing the definition of distinguishability
of likelihoods (Definition 2).

Definition 2: Let {Li}i=1:n be a set of likelihoods, define
the distinguishability of two likelihoods of the set by δi,j ≡
δj,i

M
= |Li−Lj |, 1 ≤ i 6= j ≤ n, and the total distinguishability

of the set by δT
M
=
∑n−1
i=1

∑n
j=i+1 δi,j ≡

∑
i<j δi,j .

In general, the box likelihoods are computed at every time
instance k. The more they can represent the ability of a box
containing the real value, the better estimate is obtained by
Estimation step. A weak distinguishability means that most of
the computed likelihoods are quasi equal and hence not useful
for distinguishing between box particles. In the remainder
of this section, two representative groups of criteria and
LCMs used in the literature are analyzed to show their major
disadvantage which is the weak distinguishability.

Group I : Apply Criterion 1 with LCMs using the box
volume for the box size representation.

This criterion is used implicitly in the Contraction step of
all BPF algorithms including it and applied in [7] with the
LCM L1 defined by (5).

Consider real interval vector [yk] = [y
k
, yk] and real point

vector δ such that 0 ≤ δ ≤ yk (element-wise), δ ∈ Rp. Let



T = diag{t1, ..., tp} be a diagonal matrix with diagonal entries
{tr ≥ 0}r=1:p. Then, all boxes [ŷik]’s with forms:[

y
k
− Tδ, y

k
+ δ
]

or [yk − δ, yk + Tδ]

have the same likelihoods Li1 = 1/
∏p
r=1(1 + tr) (using (5)).

In this case, these likelihoods have null distiguishability.
There are many other cases in which likelihoods are quasi

equal and thus making the corresponding boxes [ŷik] weakly
distinguishable. For instance, M boxes [ŷik]’s may have like-
lihoods Li = 1/M + δi, δi ∈ (−ε, ε) with a small ε > 0. In
this case, the benefit of the likelihood computation step could
be insignificant.

Group II : Use Criterion 2 to exploit Info (b).
The LCM used in [12] is investigated as the representative

method of this group to deal with stochastic or mixed uncer-
tainties and with additive Gaussian measurement noises. In this
method, the innovation term rk = yk − h(xk, uk) is Gaussian
with µk ∈ [µk] and Σk ∈ [Σk]. It belongs to some of intervals
[rik] = yk − [ŷik], i ∈ {1, ...,M}. One defines:

[HVα] =

[
µ
k
−
√
αDiag(Σk), µk +

√
αDiag(Σk)

]
,

where α ≥ 0,
√

(.) is an element-wise operator and Diag(X)
returns the diagonal of matrix X as a vector. Then, the
belief bel(.) and plausibility pl(.) of [rik] are computed and
considered as lower and upper bound of the probability of
[rik] containing the real value rk as follows:

bel([rik]) = Fny+2(αibel) and pl([rik]) = 1− Fny+2(αipl),

αibel = max{α : [HVα] ⊆ [rik]},
αipl = min{α : [HVα] ∩ [rik] 6= ∅},

bel([rik]) ≤ Probability
(
[rik] 3 rk

)
≤ pl([rik]),

where Fny+2 is the cumulative distribution function of the χ2

distribution with ny + 2 degrees of freedom. At this stage,
Criterion 2 is applied based on the central tendency of the
Gaussian vector rk: the more [ŷik] is close to yk (equivalently
[rik] is close to [µk]), the greater belief and plausibility the
box particles [xik] (that yield [ŷik] via the function h) attains.
Finally, the likelihood of each particle [xik] is computed
thanks to the Generalized Bayes theorem (GBT) and Pignistic
transformation [12].

The weak distinguishability of the method is shown via the
following critical point. All boxes [rik] intersecting [µk] have
the plausibility 1. So, these boxes are not distinctive regarding
their plausibilities. They are distinguished only by their beliefs,
in which:
• For the boxes that intersect [µk] but do not contain it,

their beliefs are 0. A zero information can be issued about
these boxes.

• For the ones containing [µk], their beliefs are character-
ized by the greatest focal element [HVαi

bel
] they contain.

The greater [HVαi
bel

] a box can contain, the more belief it
gets. It is quite similar to apply the rule: ”the more [rik] is
centralized (having a bigger intersection with [µk]) and
has a bigger volume, the greater likelihood it gets”. Other
LCMs can be applied using that rule with a lightened
calculation strategy and background theory.

Therefore, the likelihoods computed in the next step using
GBT and Pignistic transformation are weakly distinguishable.
The computation formulae are as follows [12]:

Li
k =

∑
A⊂Ω,A6=∅

m(A|yk)

|A| · 1([xik] ∈ A), ∀[xiK ] ∈ Ω, (6)

m(A|yk) = η
∏

[xi
k

]∈A

pl
(

[rik]
) ∏

[x
j
k

]/∈A

[
1− pl

(
[rjk]
)]
, (7)

where A is a subset of Ω = {[xik], i = 1 : M} with cardinality
|A|, [rik] = yk − [h]

(
[xik], [uk]

)
, 1(x) = 1 if x holds true and

vanishes otherwise and η = 1−
∏

[xi
k]∈Ω

[
1− pl

(
[rik]
)]

.
Example 2: Let Ω = {[x1

k], [x2
k], [x3

k] ∈ IR2} and put [rik] =
yk− [h]([xik], [uk]), i = 1, 2, 3. Assume that vk ∼ N (µk,Σk),
µk ∈ [µk], Σk ∈ [Σk], [rik] ∩ [µk] 6= ∅, i = 1, 3, and [r2

k] ∩
[µk] = ∅. Then, we get pl([rik]) = 1 for i = 1, 3 and 0 <
pl([r2

k]) < 1. Using (6) and (7), we obtain :

L1
k = L3

k =
1− pl([r2

k])

2
+
pl([r2

k])

3
, L2

k =
pl([r2

k])

3
.

Having the same likelihood, [x1
k] and [x3

k] are thus indistin-
guishable. If furthermore pl([x2

k]) is close to 1 then all the
three likelihoods are quasi equal. �

V. REINFORCED LIKELIHOOD BOX PARTICLE FILTER

A. Assumptions

Consider system (Σ) with Assumptions (A), (B2), (D1)
and (D2). Under these assumptions, Info (a) and Info (b) are
concerned for likelihood computation.

Remark 4: The above measurement assumptions concern
sensor errors (B2) and model (stochastic) uncertainties (D1).
By (B2), the measurements are intervals [yk]. Regarding
Remark 2, it is necessary to replace [yk]← [yk]− [vk] where
[vk] is the 99.7% confidence interval of vk determined by

[vk] =

[
µ
k
− 3

√
diag(Σk), µk + 3

√
diag(Σk)

]
, (8)

as proposed in [12]. This treatment generalizes Remark 2. �

B. Method and Algorithm

The proposed method is named by Reinforced Likelihood
Box Particle Filter (RLBPF) aiming to benefit advantages
of existing criteria and LCMs and also attaining a gain in
computation time. The method is based on the following two
Propositions.

Proposition 1: Let {si}i=1:n be a set of scores so that
1 ≤ s1 ≤ s2 ≤ ... ≤ sn and having an increasing order
of preferability. Let Φ, Φ̃ be normalizing functions so that
(L1, ..., Ln) = Φ(s1, ..., sn) = (s1, ..., sn)/

∑n
k=1 sk and

(L̃1, ..., L̃n) = Φ̃(s1, ..., sn) = (es1 , ..., es2)/
∑n
k=1 e

sk . Then
the total distinguishability of the set {L̃i}i=1:n is greater than
the total distinguishability of the set {Li}i=1:n.

Proof 1: One must prove∑
i<j(sj − si)∑n

k=1 sk
<

∑
i<j(e

sj − esi)∑n
k=1 e

sk
.



One can expresses:

LHS =

∑n
k=2 sk − (n− 1)s1 +

∑n
k=3 sk − (n− 2)s2+∑n

k=1 sk

+
... + sn − sn−1∑n

k=1 sk

= (n− 1)− 2

n−1∑
i=1

(n− i) si∑n
k=1 sk

and the RHS has a similar expression form with replacing si
by esi , i = 1, ..., n. So :

RHS − LHS = 2

n−1∑
i=1

(n− i)
(

si∑n
k=1 sk

− esi∑n
k=1 e

sk

)

= 2

n−1∑
i=1

(n− i)
∑
k 6=i (esksi − esisk)∑n

k=1 sk
∑n
k=1 e

sk

=
2
∑n−1
i=1

∑n
k=i+1(k − i) (esksi − esisk)∑n
k=1 sk

∑n
k=1 e

sk

For k > i, put ∆ik = sk − si, then

esksi − esisk = esisi(e
∆ik − 1)− esi∆ik

> esi∆ik(si − 1) ≥ 0

since e∆ik − 1 > ∆ik and using the assumption si ≥ 1,
∀i = 1, ..., n. The proposition is proved.

Proposition 2: Let Φ be a normalizing function so that
Φ(a1, ..., am) = (a1, ..., am)/

∑m
k=1 ak, ∀{ai}i=1:m. Let

{si}i=1:n be a set of scores with an increasing order of
preferability so that s1 ≤ ... ≤ sn and {si}i=k:n its trun-
cated set with k ≥ 1. Let (L1, ..., Ln) = Φ(s1, ..., sn) and
(L̃1, ..., L̃n−k+1) = Φ(sk, ..., sn). Then

Li ≤ L̃i−k+1 , k ≤ i ≤ n, (9)
and the distinguishability of the truncated set is so that

Lj − Li ≤ L̃j−k+1 − L̃i−k+1, k ≤ i < j ≤ n. (10)

Proof 2: The proposition is proved by applying directly
related definitions.

Principle: The scores {J1
k , ..., J

M
k } are associated to M

considered particles as follows:

J ik =
(
dik,1 + dik,2

)
V ik , i ∈ {1, ...,M}, (11)

where
• di1 = dH([yk], [ŷik]) (Hausdorff distance),
• di2 = ‖mid([yk])−mid([ŷik])‖2 (Euclidean norm),

• V ik =
Vol([ŷik] \ [yk])

Vol([ŷik])
= 1− Vol([ŷik] ∩ [yk])

Vol([ŷik])
,

where Vol(.) is defined by (4). Thereby, J ik’s measure the
closeness between [ŷik]’s and [yk] via both a kind of maximum
distance dik,1 and a kind of concentric tendency measure dik,2.
J ik’s also take into account the size of intersections [ŷik]∩ [yk]
via the volume proportions V ik ’s. Consequently, J ik’s exploit at
the same time Info (a) and Info (b) and meets both Criterion
1 and Criterion 2. The particles having small scores are
preferable, or equivalently the set {J ik}i=1:M has a decreasing
order of preferability.

Then, the following strategy is applied:
+ {J ik}i=1:M is sorted in an ascending direction and

a reduction percentage R% is applied, i.e. Nh =

b(100 − R)%Mc particles corresponding to the scores
{J ik}i=1:Nh

of the sorted set {J ik}i=1:M are retained.
+ the likelihoods (or weights) are computed as:

W i
k =

exp{−J ik + c}∑Nh

p=1 exp{−J ik + c}
, i = 1 : Nh, (12)

where c ≥ JNh

k + 1 to let −J ik + c ≥ 1, i = 1 : Nh.
This strategy ensures an increasing of the distinguishability of
the computed likelihoods thanks to Proposition 1 and 2.

After computing estimate [xk+1] according to (2), a back-
ward estimate is added as follows:

[xk] = hull{[xik]}, (13)
for those [xik]’s correspond to W i

k’s just computed to reduce
the conservatism due to interval computation.

Algorithm 1 Reinforced Likelihood Box Particle Filter
1: Initialization: [x0] ≡ [x̂0], R%, M , [uk], [wk], [yk], [µk],

[Σk], k = 1, ..., N , Nh = b(100−R)%Mc.
2: for k = 1, 2, 3, ...N do
3: Partition [x̂k−1] to M disjoint boxes {[x̂ik−1]}i=1:M

4: [x̂ik] = [f ]([x̂ik−1], [uk], [wk]) , i = 1, ...,M
5: [ŷik] = [h]([x̂ik], [uk]) , i = 1, ...,M
6: Compute Jk = (J1

k , ..., J
M
k ) using (11).

7: Sort Jk in ascending direction: Jk = sort(Jk)
8: Hold Nh first values: Jk = Jk(1 : Nh)
9: Compute W i

k, i = 1 : Nh, using (12).
10: [x̂k] =

∑Nh

i=1W
i
k.[x̂

i
k]; [x̂k−1] = hull({[x̂ik]}i=1:Nh

)
11: end for

Remark 5: BPFs often use a non large number of particles
to gain computation time and reduce the loss of a guaran-
teed estimation. Consequently, the resampling/repartition step
happens at every or only after a few iterations. Thus, the
fact that we hold previous weights and update them has no
significant effect while this effect might not be quantified
easily. Furthermore, conditions under which this procedure
is implemented base usually on some heuristic choice of a
threshold. It is also an issue of discussion but out of the scope
of the present paper. Therefore, the RLBPF uses a reasonable
small number of particles, performs the repartition at each
iteration and strengthens the likelihood computation and the
estimation by more efficient strategies. �

VI. SIMULATION

Consider the following nonlinear system which was used as
an illustration example in [12]. It is used in the present work
to compare the proposed method (RLBPF) to the one (EBPF)
in the reference, for the system states estimation.

xk+1 =

(
αk,1 1

1− αk,1 αk,2

)
xk + diag{βk,1, βk,2}uk

+ diag{20, 10}wk,
yk = xk,2xk/10 + vk, (14)

with xk = (xk,1, xk,2)T , uk ∈ [uk] = 5([15, 17], [−7,−5])T ,
wk ∈ [wk] = ([−1, 1], [−1, 1])T /102 and for i ∈ {1, 2}:
βk,i = 0.5 + eTi xk/202, αk,i = (0.2 + eTi δk/20)(2βk,i− 0.5),
e1 = (−1, 1)T , e2 = (1, 2)T , δk ∈ [δk] = 10[wk]. The initial



state is x0 = [90, 80]T with [x0] = ([85, 103], [75, 91])T ,
the number of iteration N = 104 and vk ∼ N (µk,Σk)
where µk ∈ [µk] = ([−1, 1], [−1, 1])T and Σk ∈ [Σk] =
[90, 200].diag{1, 1}.

In order to evaluate how a LCM of a filter (e.g. RLBPF
or EBPF) sharing Scheme 1 improves the efficiency of the
estimation, we propose to compare the result of the filter with
those of the following basic scenarios of Scheme 1:
• Scenario 1: Use the contraction step without partition (1

box);
• Scenario 2: Use equi-likelihood 1

M without contraction
step (M boxes);

• Scenario 3: Use equi-likelihood 1
M with contraction step

(M boxes).
These basic scenarios can be considered as simple BPFs. The
reason of this proposition is that, in some applications, using
solely the contraction step, the algorithm performance has been
rather good and the efficiency brought by the LCM might be
insignificant. The same manner might happen for the other
scenarios. In addition, following indexes, proposed in [12],
are used for performance evaluations:

RMSEj = sup
(∑N

k=1(xk,j − [x̂k,j ])
2/N

)1/2

,

Ej =
∑N

k=1 width([x̂k,j ])/N ,
Oj =

(∑N
k=1 1(xk,j ∈ [x̂k,j ])/N

)
100%, j = 1, ..., nx,

where RMSE is the root mean squared error upper bound.
Let’s consider the three basic scenarios previously defined.

Table I shows that using only the contraction step gives no
good performance results in terms of RMSE and E indexes
(Scenario 1). Comparing Scenarios 2 and 3, it is shown that
the contraction step brings a poor efficiency to the use of equi-
likelihood.

TABLE I
THE THREE BASIC SCENARIOS

Scenario 1 Scenario 2 Scenario 3
j 1 2 1 2 1 2

RMSEj 11.04 19.22 4.72 8.06 4.70 7.85
Oj(%) 100 100 99.80 99.92 99.80 99.80
Ej 18.86 31.27 6.88 11.92 6.86 11.68

Time(s) 46.93 49.12 81.98

TABLE II
RLBPF VERSUS EBPF

RLBPF EBPF
j = 1 j = 2 j = 1 j = 2

RMSEj 4.67 7.43 5.62 8.90
Oj (%) 99.76 99.97 99.99 99.92
Ej 6.85 11.81 8.72 14.41

Time (s) 67.49 190.06

Next, the simulation of RLBPF and EBPF applied to system
(14) is considered. Since, in [12], the point value measure-
ments yk are given, in this simulation we also use such an
assumption and get [yk] = yk − [vk] where [vk] is given by
(8). The reduction percentage R = 20% is applied for RLBPF
and the particle number M = 9 is applied for both methods.
Table II shows the better performance of RLBPF versus EBPF
in terms of RMSE, E indexes and the computation time
(reduced more than 60%). In addition, EBPF performance

is not better than those of Scenarios 2 and 3 in all indexes
and computation time. In contrast, the RMSE and E indexes
provided by RLBPF are better than those of Scenario 2 and
3, while its computation time is a compromise between those
of the two Scenarios.
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Fig. 2. RLBPF versus EBPF

VII. CONCLUSION

A general scheme is provided to generalize the specificity
of BPFs. The likelihood computation methodology is inves-
tigated. This analysis point out the disadvantages of existing
filters and opens a way to improve the computed likelihoods
by making them more reliable using a reinforcement method.
A strategy is proposed to evaluate the performance of this
class of filters. The simulation highlights the efficiency of the
RLBPF in gain of computation time and evaluation indexes.
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