
HAL Id: hal-03747747
https://laas.hal.science/hal-03747747v1

Submitted on 8 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data transfer scheduling for deep space exploration
Emmanuel Hébrard, Christian Artigues, Pierre Lopez, Arnaud Lusson, Steve

A. Chien, Gregg R. Rabideau, Adrien Maillard

To cite this version:
Emmanuel Hébrard, Christian Artigues, Pierre Lopez, Arnaud Lusson, Steve A. Chien, et al.. Data
transfer scheduling for deep space exploration. The 15th Workshop on Models and Algorithms for
Planning and Scheduling 2022 (MAPSP 2022), Jun 2022, Oropa (Biella), Italy. �hal-03747747�

https://laas.hal.science/hal-03747747v1
https://hal.archives-ouvertes.fr

Data transfer scheduling for deep space exploration

Emmanuel Hebrard∗ Christian Artigues∗ Pierre Lopez∗

Arnaud Lusson∗ Steve Chien† Adrien Maillard† Gregg Rabideau†

1 The overlapping memory dumping problem

Scientific instruments for deep space exploration spacecrafts become more and more so-
phisticated and consequently produce more and more data that must be sent to Earth. Data
management is highly critical as the onboard memory is limited and communication with
Earth is often a bottleneck. In this paper we consider the same case as in [2] in the context
of the Rosetta/Philae mission, where the data production plan is known and the problem
consists in planning memory dumps. Data is produced into several memory buffers and
the goal is to avoid data loss, which occurs when data are produced into a full buffer. More
precisely, we want to maximize the minimum margin of buffer, where the margin is the
percentage of its capacity left free. This objective aims at designing robust plans where
unexpected changes of the dump or fill rates can be absorbed by the margins. Under this
assumption, the fill rate of each memory buffer over the planning horizon is part of the
input. Data can only be dumped when the spacecraft is visible from Earth. This is mate-
rialized by consecutive disjoint downlink windows. Data dumping is a semi-automatized
process. For each downlink window a priority has to be assigned to each buffer, then, the
transfers follow this priority ordering. We therefore consider the problem of computing a
priority assignment that maximizes the minimum margin.

In the overlapping Memory Dumping Problem (oMDP), we are given m downlink win-
dows, where [sj , ej [stands for the time interval in which the downlink j is available, and
δj for the dump rate for transfers of downlink j. Moreover, there are n memory buffers,
where Ci stands for the capacity of buffer i; ri(j) for the maximum handover (residual)
usage of buffer i at the end of downlink window j; and fi : R 7→ R+ for the piece-wise
constant fill rate function of buffer i over time. Let ν be the number of inflection points
over all fill rate functions.

The transfers can be controlled by setting a priority function over the buffers defining a
ranking. At every step, one of the buffers of highest priority among those who have a
packet in memory is selected via round-robin to transfer a packet.

∗{hebrard,artigues,lopez}@laas.fr. LAAS-CNRS, Université de Toulouse, CNRS, France
†{steve.a.chien,adrien.maillard,gregg.r.rabideau}@jpl.nasa.gov. Jet Propul-

sion Laboratory, California Institute of Technology, CA, USA

B3

B2

B1

t = 0 t = 1 t = 3 t = 4 t = 6

1 − 1
6

− 2
5

1
2

1
3

1
2

1
2

2
5

1
3

1
6 3

4
1
2

2
3

margin = 1
6

Figure 1: Example with 3 buffers. White areas indicate visibility.

Let Ui : R 7→ R be the quantity of data on buffer i over time and gi : R 7→ R be the
transfer rate out of buffer i over time.

In between downlink window, all transfer rates are null and the memory usage growth is
the fill function, for every buffer i. In particular, for any time t preceding the start of the
first downlink s1, we have gi(t) = 0 and Ui(t) =

∫ t
0 fi(x) dx.

During a downlink window with dump rate δ, however, the effective transfer rate at time
t depends on the priority function P, and on the usages and fill rates at time t.

We consider the decision problem of finding a priority ranking for every downlink, such
that the peak usage of any buffer (given its fill rate functions, and the data transfer system
described above) is less than its capacity, i.e., without data loss. The objective function is
actually to maximize the minimum margin, min{M(i) | i ∈ B}, where M(i) is defined
as one minus the ratio between the peak usage and the capacity of buffer i. However, it
can be achieved by dichotomic search using an algorithm for the decision problem above.

Example 1. Figure 1 shows a plan with two downlinks, both with dump rate 1, and 3
buffers all of capacity 1. Fill rates are figured by colored rectangles, e.g., f1(t) = 1

2 for
t ∈ [0, 1]. In the first downlink, all buffers have equal priority P1(1) = P1(2) = P1(3) =
1, in the second, buffer 3 has the highest priority then buffer 2 then buffer 1. The black
curves stand for the resulting buffer usage over time Ui(t). The minimum margin is 1

6 .

2 Complexity and algorithms

The software used for the real mission (DALLOC) is described in [2] and relies on a
heuristic called DOWNLINKCOUNT. In a nutshell, this method assigns priorities based
on when each buffer would exceed a given target margin. More precisely, it counts how
many downlink windows would occur before exceeding the target if no data could be
dumped. At each downlink window j ∈ [1,m], the transfers are computed starting from
the current usage, and with a dump rate equal to 0. Then a priority assignment is extracted
as defined above, and window j is simulated using the same procedure but with dump

rate δj . It is important to notice that the choice of target margin can change the priority
assignment. Therefore, in DALLOC, this heuristic is used within a binary search. The
resulting algorithm is denoted ITERATEDLEVELING.

As the complexity of the problem was not established, we first consider the decision
problem PRIORITYALLOC: “Is there a priority assignment for each downlink window
such that there is no data loss?”.

First, we show that the problem is in NP because, given a priority assignment, simulating
the transfers and therefore verifying a certificate, can be done in polynomial time, using
similar arguments as in [1]. This is not trivial to see that not every packet of data need to
be tracked individually, and the number of packets can be exponential in the size of the
instance. Moreover, to compute the usage over time of a given buffer, we only need to
know the set of buffers of strictly higher priority and the set of buffers of equal priority
(Property 1). In other words, the exact priority assignment within the set with higher pri-
ority is irrelevant. We define a procedure (denoted Algorithm 1 from now on) to compute
the memory usages (and so the minimum margin) in O((ν+m)(log(ν+m) +n2 log n))
time, given a priority assignment P on each downlink window. Then we use a reduction
from partition to show that PRIORITYALLOC is NP-complete.

Next we consider the single-window problem (m = 1). Thanks to Property 1 and Algo-
rithm 1, it is possible to compute the marginMΓ≺Ω(i, j) of buffer i in window j when the
buffers in the set Γ have a strictly higher priority than i, and the buffers in the set Ω have
the same priority as i. We propose a method (Algorithm 2) to solve PRIORITYALLOC on
a single downlink window with O(n2) calls to Algorithm 1.

Finally, for the general case, we propose a heuristic (REPAIRDESCENT) which imple-
ments a greedy “descent”: a seed priority assignment is computed using the heuristic
DOWNLINKCOUNT and iteratively “repaired” to achieve a strictly higher target margin.

The repair procedure runs the current priority assignment using Algorithm 1 until reaching
downlink j at which the target margin is exceeded. Then, it calls Algorithm 2 to check
whether there exists a priority assignment Pj that achieves the expected margin. If there
is such an assignment, it is run by Algorithm 1 and we advance to downlink window
j + 1. If the last window is reached, an improving solution has been found. Otherwise,
if downlink j does not have a priority assignment without data loss, Algorithm 2 returns
a set B of buffers guaranteed to exceed their target margin given the current usage at the
end of downlink j − 1, even if they are given (globally) the highest priority. Therefore,
the only way to avoid data loss in this downlink is to reduce the residual load for at least
one of these buffers at the end the previous downlink. In order to avoid branching on
the possible ways of reducing this load, we instead add one randomly chosen handover
constraint. We pick a random buffer i in the set B, and we set its maximum handover
value ri(j − 1) to the current usage Ui(j − 1) to which we subtract the gap we need to
achieve the expected margin: the margin we obtain when buffer i is given highest priority
with all other buffers in B (that is, M∅≺B(i, j)) minus the expected margin obj. Then the
previous window is solved again with this new constraint: it “backtracks” by decreasing
the current downlink window j. If the current downlink window is the first (j = 1), then
no such constraint can be posted and we fail.

3 Experimental Evaluation

We used the same data set as in [2], constituted of four scenarios (MTP1, MTP2, MTP3 and
MTP4), corresponding to the whole activity sequence of Rosetta divided in four quarters.
The whole sequence has over 40,000 data production events for 16 memory buffers and
324 downlink windows. Its duration is about three months and a half with a precision of
one second. Table 1 give the margin value DOWNLINKCOUNT incorporating Algorithm
1 and DALLOC’s published results [2], as well as average CPU times for both algorithms.
We observe that our reimplementation is much faster than the original one.1

Margin
Avg. CPU

MTP1 MTP2 MTP3 MTP4

DALLOC’s 40.4 46.5 17.8 29.8 14.6
Ours 46.4 68.1 17.8 30.8 0.018

Table 1: New and old implementations of DOWNLINKCOUNT.

Moreover, REPAIRDESCENT finds a more robust download plan for the hardest real sce-
nario (MTP4). Both methods match an upper bound on MTP1, MTP2, and MTP3.

Margin
Avg. CPU

MTP1 MTP2 MTP3 MTP4

Upper Bound 46.4 72.5 54.8 53.4
ITERATEDLEVELING 46.4 72.5 54.8 48.5 0.116
REPAIRDESCENT 46.4 72.5 54.8 52.8 0.088

Table 2: Comparison with the state of the art on real scenarios.

Finally, on a much larger randomly generated data set, REPAIRDESCENT is consistently
faster than ITERATEDLEVELING to find solutions of similar quality and is able to signifi-
cantly improve the minimum margin when given more CPU time.

References

[1] G. SIMONIN, C. ARTIGUES, E. HEBRARD AND P. LOPEZ (2015). Scheduling sci-
entific experiments for comet exploration. Constraints: An International Journal
20(1), 77–99.

[2] G. RABIDEAU, S. CHIEN, M. GALER, F. NESPOLI AND M. COSTA SITJÀ (2017).
Managing Spacecraft Memory Buffers with Concurrent Data Collection and Down-
link. Journal of Aerospace Information Systems 14 (12), 637–651.

1The slight difference in margin values is because DALLOC’s results include pre-assigned priorities. We
did not have the data to reproduce it.

	The overlapping memory dumping problem
	Complexity and algorithms
	Experimental Evaluation

