
HAL Id: hal-03753556
https://laas.hal.science/hal-03753556

Submitted on 18 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning resource allocation algorithms for cellular
networks

Thi Thuy Nga Nguyen, Olivier Brun, Balakrishna Prabhu

To cite this version:
Thi Thuy Nga Nguyen, Olivier Brun, Balakrishna Prabhu. Learning resource allocation algorithms
for cellular networks. Machine Learning for Networking: Third International Conference (MLN 2020),
Nov 2020, Paris, France. �10.1007/978-3-030-70866-5_12�. �hal-03753556�

https://laas.hal.science/hal-03753556
https://hal.archives-ouvertes.fr


Learning resource allocation algorithms

for cellular networks

Thi Thuy Nga Nguyen †,?, Olivier Brun? and Balakrishna J. Prabhu?

† Continental Digital Service in France,Toulouse, France
? LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

August 18, 2022

Abstract

Resource allocation algorithms in wireless networks can require
solving complex optimization problems at every decision epoch. For
large scale networks, when decisions need to be taken on time scales of
milliseconds, using standard convex optimization solvers for computing
the optimum can be a time-consuming affair that may impair real-time
decision making. In this paper, we propose to use Deep Feedforward
Neural Networks (DFNN) for learning the relation between inputs and
the outputs of two such resource allocation algorithms that were pro-
posed in [18, 19]. On numerical examples with realistic mobility pat-
terns, we show that the learning algorithm yields an approximate yet
satisfactory solution with much less computation time.

1 Introduction

In cellular wireless networks, a central scheduling problem is to choose one
among several concurrent users (for example, mobile phones) to which the
scheduler (henceforth also referred to as the base station) must send data
to. This scheduling decision is taken every time-slot which is of the order of
2 ms [16] and is based on what are called as channel conditions of the users.
Roughly, the channel condition of a user determines the data rate at which
the base station can communicate with this user. In wireless networks, these
conditions can vary randomly on short as well as on long time scales. Also
called fading and shadowing, these random variations are a consequence of
the interference patterns induced by the different obstacles (building, trees,
etc.) in the path of the radio waves used for wireless communications [23].
However, the decision is not as easy as scheduling the user with the best
channel condition as such a policy could lead to unfairness between users.
Imagine a user with a direct line of sight path with the base station and

1



another who is inside a building or an underground metro station. Quite
possibly, the former user will always have a better channel which would
starve the latter user of any communication.

To avoid these unfair allocations, a typical solution is to define a utility
which is a usually a concave function of the throughput1 of the users and
then compute the scheduling decision as the one that maximizes the sum
of the utilities of the users. For example, the utility function could be the
logarithm of the average data rates of the users. These solutions fall under
the umbrella of the network utility maximization problem [27].

In an ideal scenario, the base station will solve this utility maximization
problem every 2 ms. However, there are two practical issues that make this
infeasible. First, the throughput of a user depends upon future channel con-
ditions which are unknown to the scheduler. Second, the integer scheduling
problem is known to be NP-complete [16]. Solving such an optimization
problem over a time horizon of seconds (thousands of time-slots) and with
hundreds of users can be unrealistic in time-slots of 2 ms (which are ac-
tually becoming shorter as the technology progresses). To overcome these
practical issues, several heuristics have been proposed that are based on an
estimation of the future data rates [16, 18, 19]. The heuristics (called STO1
and STO2) in [18, 19] use the estimated future data rates as an input to a
relaxed version of the original problem restricted to a shorter time horizon
thereby reducing the dimensionality of the problem. These heuristics are
thus much faster to solve than the original problem but they still require
solving rather frequently a large-scale concave optimization problem which
can be time consuming. It was shown numerically in [18, 19] that STO1
and STO2 performed better than the one in [16] as well as the popular
PF algorithm [13] that does not use future estimated rates. Therefore, in
this paper, we shall address the problem of improving the speed of these
heuristics without compromising on their superior total utility.

1.1 Contributions

We propose a machine learning based solution to speed up the operations
of STO12. The key idea is to use a Deep Feedforward Neural Network
(DFNN) to approximate the output of the relaxed optimization problem in
the heuristics. It will be shown on numerical examples that once the DFNN
is trained, it takes much less time to generate a reasonable accurate solution
compared to using the specialized Python package CVXPY [4] that uses

1We use data rate and the throughput to denote two different but related quantities.
The throughput only takes into account the data rate of the time-slots in which a user is
served. It is thus no more than the total data rate of this user.

2STO2 is similar to STO1 but solves the optimization problem less frequently. In this
paper we shall focus on STO1 but the ideas developed here can be applied to STO2 as
well.

2



the solver MOSEK [1] for solving of a concave optimization problem. We
compare different DFNN architectures and different loss functions to find the
most appropriate ones for our problem. We then compare the behavior of the
learning algorithm with STO1 and with other existing algorithms as well.
The comparison shall be done on scenarios created by SUMO [15] which
can generate realistic mobility patterns on road networks with vehicular
mobility. Based on numerical results, the learning algorithm is shown to
perform close to STO1 with much less computation time.

1.2 Related works

The theory of approximation for DFNN has been studied in many pa-
pers. Motivated by Komogorov’s superposition theorem [12] in 1957, many
approximation results have proven the approximation capabilities of feed-
forward neural networks for the class of continuous functions such as [3],[8],[17].
In his theorem, Komogorov proved that any continuous function can be rep-
resented as a superposition of continuous functions of one variable. In [3]
(1989), Cybenko proved that any multivariate continuous function with sup-
port in a hypercube can be uniformly approximated by a linear finite combi-
nations of compositions of a sigmoidal functions and a set of affine functions.
This representation is in fact a feed-forward neural networks with sigmoidal
activation functions. Independently with the work of Cybenko, Hornik [8]
(1989) also proved a similar result. Two years later, Hornik [7] showed
that multi-layer feed-forward neural networks with arbitrary bounded and
non-constant activation function can approximate arbitrary well real-valued
continuous functions on compact subsets of Rn as long as sufficiently many
hidden layers are available. The word ”deep” in ”deep learning” thus simply
means many layers.

Learning an algorithm to produce an approximate algorithm in order
to reduce computation time has been proposed in several recent research
papers [6], [21]. In [6], the authors consider a Sparse Coding problem which
is used for extracting features from raw data. The problem is that Sparse
Coding is often too slow for real-time processing in several applications such
as pattern recognition. The authors propose a method using a non linear,
feed-forward function to learn Sparse Coding to produce an approximate
algorithm with 10 times less computation.

Learning an algorithm for wireless resource management has been pro-
posed in [21]. In that work, the authors used DFNN to learn an algorithm
for the interference channel power control problem. They obtain an almost
real time algorithm, since passing the input through a DFNN to get the
output only requires a small number of simple operations as compared to an
iterative optimization algorithm. They show that, by choosing an appropri-
ate initialization, the initial power control algorithm performs a continuous
mapping which can be efficiently learnt.

3



In this paper, we use DFNNs for learning a channel allocation algorithm
maximizing the proportional fairness between vehicular users. The proposed
method is however potentially applicable to other convex optimization prob-
lems.

1.3 Organization

In Section 2, we recall the resource allocation problem in the case of a single
Base Station (BS). We also remind the reader of the STO1 algorithm and
state the learning problem we address in this paper. In Section 3, we formally
define the input-output relationship for the DFNN model. Numerical results
are presented in Section 4. We compare the computing times of the DFNN-
based prediction algorithm against those of the original algorithm in Section
5 to evaluate the reduction in computing times. Finally, in Section 6 we
discuss several research directions that can be followed in future work.

2 Problem Formulation

Consider the following downlink discrete-time channel allocation problem
for a single Base Station (BS) (see [13] and references therein):

maximize O(α) =

K∑
i=1

log

 T∑
j=1

αijrij


subject to ∑K

i=1 αij ≤ 1, j = 1, . . . , T ;
αij ∈ {0, 1}, j = 1, . . . , T, i = 1, . . . ,K.

(I)

Here rij ≥ 0 is the data rate of user i in time-slot j, and αij is the corre-
sponding allocation in this slot. The constraints impose that the BS can
choose at most one user in each time-slot. The objective of the BS is to
maximize the sum of the individual user utilities which are defined as the
logarithm of the total throughput of the user over a time horizon of T . As
mentioned in Section 1, solving this problem is not practical because the
data rates ri,j become known to the scheduler only in slot j. Further, users
arrive and leave and it is not possible to know in advance which users will
be present in the network in the future. Hence, the algorithms proposed use
either no information on the future rate (see [13] and references therein) or
an estimation of the future rates [16, 18].

A more fine-grained scheduling problem on the downlink involves joint
power control and channel allocation which allows the BS to vary the trans-
mit power in addition to choosing how much of the channel (or bandwidth)
it can allocate to the users [9], and is defined as:

4



past slots 

current
small-slot

remain 
current big-slot

Future big-slots

Figure 1: The different types of time slots in the STO1 algorithm.



maximize
K∑
i=1

log

 T∑
j=1

xij log

(
1 +

pijγij
xij

)
subject to

K∑
i=1

xij ≤ 1, ∀j; xij ≥ 0,∀i, j

1

T

∑
j

∑
i

pij ≤ P̄ ;
∑
i

pij ≤ Pmax, ∀j.

(P)

Here pij (resp. xij) is the power (resp. fraction of bandwidth) allocated by
the BS to user i in slot j. The parameter γij represents the channel condition

of the user i in slot j and xij log
(

1 +
pijγij
xij

)
is the Shannon rate obtained

by this user when it is allocated power pij and fraction of bandwidth xij .
The utility of the user is again the logarithm of its total throughput and
the objective of the BS is to maximize the sum utility. Note that there are
constraints on the power allocation which involve both the maximum power
that can be expended in a time slot as well as the average power spend over
the whole horizon. For this joint power and channel allocation problem, an
adapted version of STO1 was proposed in [19].

Remark 1 (Joint power control and channel allocation). For brevity, we
shall explain the STO1 algorithm and its associated machine learning solu-
tion only for the channel allocation problem (I). A remark shall be made
wherever the treatment of this problem differs from that of the joint power
control and channel allocation problem (P).

2.1 The STO1 algorithm

STO1 is a sequential algorithm which computes the allocation on time-slot j
based on the current and the past data rates, and the estimated future data
rates. It operates on two time-scales (shown in Figure 1) in order to reduce
its complexity. Define big-slots as a certain number (order of hundreds) of
time-slots (or small-slots) that reflect the duration over which the distance
of each user to the BS does not change much, from that the data rate of
each user in each time-slot can change a certain amount but the sum of
its data rate over big-slot does not change much by law of large number.

5



For example, while the scheduling time-slots are 2 ms in length, one big
slot can be equal to 100 time-slots, and one user can move at most by a
few meters in a big slot. Big slots is defined to reduce dimension of the
original optimization problem as explained below. It shall be assumed that
estimations are available for users’ future positions at the granularity of big-
slots, and that the mean of future rates based on the future positions are
estimated.

Before giving a formal definition of the STO1 algorithm, we give an
intuitive explanation. In each small-slot j, STO1 does two steps. In the
first step, it solves the problem (I) but with several restrictions: (i) the
horizon is shortened to J big-slots; (ii) the future allocations are computed
only on the aggregated level of big-slots; and (iii) the integer constraints on
αij are relaxed. In the second step, the fractional allocation for the current
small-slot is projected onto the set of the feasible integral allocations. The
first step reduces the number of variables and hence the dimensionality of
the problem as the future allocations are computed only for big-slots. Note
that the second step is optional and is relevant only to problems with integral
constraints.

A more formal definition is as follows. Let δ be the size of the small-slot,
and let ∆ be the size of the big-slot in absolute time units. Let m = ∆/δ be
the number of small slots in a big-slot (see Figure 1). Denote by r̄ij the mean
rate in slot j for user i. At each small-slot t, with a slight abuse of notation,

we shall denote by ρ̄i,0 =
∑(m−(t mod m))+t

j=t+1 r̄ij the total rate for user i in
the remaining channel allocation slots of the current big-slot τ = 0, where t
mod m denotes the remainder when dividing t by m. We also define ᾱi,0 as
the corresponding allocation for the current big-slot τ = 0.

Denote by ρ̄iτ =
∑τm+A

j=(τ−1)m+A+1 r̄ij where A =
(
b tmc+ 1

)
m, is the

total average data rate that user i will get in the future big-slot τ (τ =
1, 2, ..., J − 1), where big slot τ starts after the current big-slot, and J is the
short time horizon in term of big slots over which we can estimate the mean
future rate. We also define ᾱiτ as the corresponding allocation for user i in
future big slot τ . These allocations ᾱiτ can be interpreted as the fraction of
small slots that user i will be allocated in the big-slot τ .

Note that this definition is slightly different from the definition in [18].
The differences are as follows: in [18], there is no current big slot and the
future big-slot starts just after the current small slots, but it does not change
much. The above definition of two time slot types corresponds in fact to the
ones introduced in [19].

Denote by ai(t) =
∑t

j=1 αijrij the total throughput allocated to user i
up to time slot t, and let K(t) be the number of users inside the coverage
range of the BS at time t.

The algorithm STO1 contains two steps which are as follows:

• Step 1– solve the following optimization problem over a short-term

6



horizon of J big-slots:

maximize

K(t)∑
i=1

log

(
ai(t− 1) + αitrit +

J∑
τ=1

ᾱiτ ρ̄iτ

)
subject to ∑K(t)

i=1 αit = 1,∑K(t)
i=1 ᾱiτ = 1, τ = 0, . . . , J − 1,

αit, ᾱiτ ∈ [0, 1], , τ = 0, . . . , J − 1, i = 1, . . . ,K(t).
(STO1-Opt)

The decision variables in Problem (STO1-Opt) are the channel alloca-
tions in the current small slot, αit, and the channel allocations in the
current and future big-slots, ᾱiτ . Since the future allocations are only
computed on the time-scale of big-slots, there is a reduction by factor
m in the number of variables in (STO1-Opt).

• Step 2 – obtain a feasible integral allocation from the fractional one.
For example, set αi∗j = 1 with i∗ = argmaxi αij and set it to 0 for the
other users.

Remark 2. (STO1-Opt) is solved thanks to the python package CVXPY
[4] and the solver MOSEK [1]. In [18], this optimization problem was solved
using a projected gradient algorithm, since it allows to iteratively solve a
convex optimization problem when the feasible set is a simplex or a Cartesian
product of simplices, no matter how complex the objective function is as long
as it is smooth and convex. The advantage of CVXPY [4] is that it can
be used to generalize this idea to other convex optimization problems, with
more complex constraints such as power control constraints or others QoS
constraints (e.g. delay constraints).

2.2 Learning STO1 with DFNN

As presented in [18] and [19], STO1 and STO2 are better than the other
existing algorithms. However they have to solve an optimization problem
with a large number of variables and constraints frequently (every small
slot for STO1 or every big slot for STO2), so even if their performance is
good, their computations are heavy. When the system is large and requires
many more QoS contraints, they may not be able to run in real time. In
addition, even when they are able to run in real time, it is good to reduce the
computation time without reducing too much the quality of the allocation.

Therefore in this paper, our objective is to learn the STO1 algorithm
using Deep Feedforward Neural Networks to obtain a new algorithm that
behaves like STO1 but with a significantly reduced computation time. In
other words, we want to learn the input-output relationship of STO1, by
approximating the input-output mapping of STO1 with a DFNN (see [5] for

7



background material on supervised learning with DFNN). After getting the
approximation function (that is, the DFNN), the output can be computed by
feeding the DFNN with the input value, instead of solving an optimization
problem. This simpler method is expected to work faster than the original
algorithm.

The main idea is to train a DFNN to predict an approximate solution
to (STO1-Opt) instead of using a specialized convex optimization package.
Obviously, the same idea could be used for other problems in order to ob-
tain an approximate method which performs almost as well as the original
algorithm but requires much less computing time. In short, the approach is
as follows:

1. Design a well-performing algorithm based on the best available infor-
mation;

2. Learn it by an approximate algorithm which behaves closely to the
original one and has less computation.

The basic idea can be summarized as follows. Supervised learning is a
learning task that amounts to learning an input-output relationship from a
bunch of examples of input-output pairs which is called training data. The
relationship can be derived from those examples by analyzing the training
data and an inferred function will then be produced. A learning algorithm
is considered as good if it can generalize the input-output relationship, i.e,
it is able to determine outputs of unseen inputs with small error. So the
objective here is to find the function representing as well as possible the
input-output relationship.

Mathematically, let F be the true function that represents the relation
between input and output. However, if the true function is unknown, our
task is to find an approximate function F̂ that is inferred from examples
taken from training data (xn, yn)Nn=1. The STO1 algorithm can be seen as
a function F that maps an input xn ∈ X (a problem instance) to an output
yn ∈ Y (a channel allocation), where X and Y denote the input and output
spaces of STO1, respectively. Unfortunately, STO1 is too complicated to
get the exact formula of F . Therefore here we want to approximate it by
another function F̂ : X → Y which is in the form of a DFNN (an example
of DFNN is illustrated in Figure. 2). Our objective is thus to find F̂ such
that it minimizes the empirical risk

Rerm(F ) =
1

N

N∑
n=1

l(yn, F (xn)),

where l(·) is a loss function which measures how far yn is from F (xn). Note
that l(·) is not necessarily a mathematical distance but it is similar to a
distance in the sense that it is small if the difference between yn and f(xn)
is small.

8



Output:
Allocation

 

Input: state 
of the system

a

b
c

Hidden layers

Figure 2: An example of Deep Feed-forward Neural Network.

A DFNN is composed of many linear functions (sum of matrix multipli-
cations and bias vectors) and non-linear functions (relu, sigmoid, softmax,
etc.), and inside linear functions there are many parameters. So finding a
good DFNN function means finding a good architecture, that is: the way
the linear and non-linear functions are combined, the linear and non-linear
functions in each layer, the size (number of units in each hidden layer) and
then their parameters. Finding a good architecture is in general not an easy
task [22]. In this paper, we shall empirically compare some architectures
through experiments presented in Section 4.2. After fixing the architecture,
we have to find appropriate parameters by minimizing the empirical risk
defined above.

3 System Setup for learning

Recall that, in STO1, we have two types of time scales: one is the big
slot ∆ and the other one is the small slot δ. In STO1, we solve problem
(STO1-Opt) with variables of size (1 + J) ∗K every small slot, where J is
the time horizon in terms of big slots and K is the number of users in the
system. The size of the allocation vector for each user is equal to 1+J since
it contains the allocation for the current small slot, αit, and the average
allocation ᾱiτ for the subsequent J big slots (including the current big slot).
The input of STO1 is a data rate vector of size (1 + J) ∗ K and the total
allocated throughput for the K users. The output of STO1 is the current
allocation vector (αit)i=1,...,K which is of size K, since we shall only use
current allocation for making decision.

As it is defined at the moment, STO1 is not well suited to be modelled
as a learning problem for the two reasons stated below.

Firstly, since K can vary over time, the dimension of the input vector
will also vary. To circumvent this problem and to properly define STO1 as

9



a function, we have to fix the size of the state. To do that, we extend the
real state of the system by adding some pseudo users. Let us assume that
there are at most KM users inside the system. We will then add KM −K
pseudo users, where K is the number of real users in the system at time t.
We will actually learn an extended version of STO1 which is STO1 when
we restrict it to K users. There are many ways to extend STO1, but here
we try to define an extended version that preserves as much as possible the
continuity of STO1. When we mention ”learning STO1”, it means ”learning
the extended function” of STO1.

Secondly, the output of STO1 as defined above is the solution of an
optimization problem. So in fact STO1 is a set-valued mapping since the
solution need not be unique. But by using the CVXPY package to solve
the convex optimization problem (STO1-Opt), we agree with the way it
determines one of the solutions. This makes STO1 becomes a function
(instead of set-valued mapping).

Remark 3 (Joint power control and channel allocation). For the joint power
control and channel allocation problem, the state needs to be augmented by
the remaining total power. The output of the DFNN will now give the trans-
mit power to each user as well as the fraction of the channel it gets allocated.

3.1 State

We define a state as a matrix of size (2+J)×KM , where KM is the maximum
number of users in the system. There are thus 2 +J rows, and each row has
KM elements. The interpretation is as follows:

• The first row gives the current rates of the K users. We fill in the
K positions on the left hand side with these current rates, and the
remaining KM −K positions are filled with −1.

• The next J rows (from 2, .., J + 1) give the average rates of the users
in the next J big slots. For pseudo users (the KM −K columns on the
right hand side), we use the value (−1) · (∆/δ− (t mod ∆/δ)) for the
current big slot and the value (−1) ·∆/δ for the other big slots.

• The last row gives the total allocated throughput of the K users. For
pseudo users, we use a large enough value which is significantly greater
than the total allocated throughput of real users.

By observing how STO1 works, we remark, as expected, that STO1 gives
priority to users with a low allocated throughput and a high current rate.
Therefore, the way we define the state (that is, by using negative values for
the current and future rates of pseudo users, and extremely large values for
their allocated throughput) is intended to help the model ignore quickly the
pseudo users.

10



Current Rate

Cumulative

F (STO1)
Future Rate in next 

J big-slots
Allocation 

Figure 3: Input and output of the DFNN model.

Remark 4. Remark that there are K real users in the system at present
time. Therefore, the K places of the real users in the first row which give
the current rates of those users have to be strictly positive. The future rates
(from the second row to the (J + 1)-th row) can be zero.

3.2 Target

We remind the reader that we want to learn only the current allocation,
not the future allocation. Therefore, the target will be a vector of size KM ,
where the first K positions represent the fractional allocation αit of the
K users as computed by STO1, and the last positions are filled with zero.
Since in the optimization problem, the sum of allocation should be equal to
1, when there is no user in the system (all positions correspond to pseudo
users), the allocation vector will be set to (1/KM , ..., 1/KM ) by convention.

Figure 3 illustrates the input and output of the DFNN model as described
above.

3.3 Loss, DFNN architecture, initial parameters and opti-
mizer

We will try several different loss functions and architectures and compare
them in the numerical section. The initial parameters (weights) of the DFNN
will be chosen as proposed in [14], which allows the initial parameters to be
not too big and not too small. The optimizer is Adam, which was first
introduced in [11] and is a stochastic first-order gradient-based algorithm.
The convergence of Adam is proven in [20].

4 Numerical Comparisons

In this section, we do simulations to evaluate the influence of many factors
on the behavior of the DFNN model (loss functions, architecture of the
DFNN). We use the keras library [2] to implement our code.

There are actually a lot of factors that can have an impact on the behav-
ior of the learning procedure such as the initial learning rate, the learning
rate decay, the optimizer, the initial weight, the number of parameters, the

11



activation functions in layers... Here we are not able to justify all our choices,
but we focus on the factors which have the most significant impact on the
learning algorithm in our opinion. The initial learning rate is chosen equal
to 0.0015 and after each epoch, this learning rate decays by a factor 0.998.

4.1 An Unified Data Generator for Comparison

To support the comparisons in this section, the data (both for training
and validation) is generated as follows. The number of users is generated
randomly from 0 to KM = 10. The sojourn time of each user is generated
in (0, 400) seconds. This value could of course be increased, but here in
order to reduce the learning time and be able to make many comparisons,
we consider only small scenarios. At each learning epoch, the model will go
through 1600 samples (that is, input-output pairs). The transmission rate
in each small slot is generated randomly between 0 and 5 ∗ δ/∆. The rate
we use for evaluating in SUMO scenarios are given by

r(x) = η
(

1 + κ e−d(x,BS)/σ
)
, (1)

where d(x,BS) is the distance from position x to the BS, and η represents
the noise level. For the SUMO scenarios in Section 4.4, we use κ = 3,
σ = 100 and η ∼ Uniform(0.7, 1.3). The others parameters are equal to
J = 10,∆ = 1 s, δ = 2 ms.

4.2 Comparison of different DFNN architectures

In this part, we will consider 4 different architectures of the DFNN model
and compare their performances. For the 4 models, the activation function
used in hidden layers is the relu function, whereas the output layer uses the
softmax function since we want the sum of the allocations to be equal to 1.
In this comparison, we use the same loss function for all models, the huber
loss [26].

4.2.1 Model 1

The first model used in this section contains 2 layers which are 1 hidden layer
and 1 output layer. The hidden layer contains 500 units, and in total the
model has 67, 510 parameters. The architecture of this model is illustrated
in Figure 4.

4.2.2 Model 2

As the first model, the second model contains 2 layers: 1 hidden layer and
1 output layer. However, the hidden layer contains 1000 units, and in total
the model has 135, 010 parameters. We take the same number of layers as in

12



Figure 4: Model 1 architecture.

model 1 (but with more units in hidden layers) in order to compare whether
it is better to have more parameters.

4.2.3 Model 3

As the two previous models, the third model contains 2 layers (1 hidden
layer and 1 output layer). The hidden layer contains 100 units, and we have
13, 510 parameters in total. We take the same number of layers as in model
1 (but fewer units in the hidden layer) to compare whether it is better to
have fewer parameters.

4.2.4 Model 4

The last model contains 10 layers which are 9 hidden layers and 1 output
layer. Each hidden layer contains 82 units, and in total the model contains
67, 496 parameters. We take a model that has almost the same number of
parameters as Model 1, to compare whether it is better to have more layers
or fewer layers.

Remark 5 (Joint power control and channel allocation). For the joint power
control and channel allocation problem, we still compare the four above mod-
els except that the output layer of each model will be modified since it includes
not only the channel allocation but also the power.

Figure 5a illustrates the loss of the 4 models on training and validation
data. Figure 5b plots loss and absolute error of the 4 models on the same
axis on validation set. The same quantities but for the problem of joint
power control and channel allocation are shown in 6.

From these figures, we observe that for the model without power control:

• Having almost the same number of parameters, Model 1 with fewer
layers is better than Model 4.

13



(a) Loss on training set and validation set of each model

(b) Plot on same axis for loss and absolute error on validation set of all the four
models

Figure 5: Comparison of the 4 DFNN models.14



Figure 6: Comparison of the 4 DFNN models for the joint power control
and channel allocation problem.

• Having the same layers, Model 1 and Model 2 with more parameters
are better than Model 3.

• Model 1 and Model 2 behave similarly and have the same number of
layers. However Model 1 has less parameters than Model 2 so it is less
costly from a computational point of view. Therefore from now on we
shall use Model 1 for other comparisons in the sequel.

For the model with power control:

• Having almost the same number of parameters, Model 1 with few
layers is slightly better than Model 4, but the difference is quite small
in this case.

• Having the same layers, models 1, 2 and 3 are almost the same but
Model 3 has fewer parameters.

4.3 Comparisons of different loss functions

To compare the quality of the learning model obtained using different loss
functions, we use the same model, that is Model 1. Figure 7 presents the re-
sults obtained with the huber loss [26], with the sum of binary cross-entropy
[24] and dice loss (which equals to 1− dice coefficient [25]). The second
loss function is denoted by bce dice loss. From the figures, the bce dice loss
function is better in this case. So for the next comparisons, we shall use
Model 1 and bce dice loss.

15



(a) Absolute error on training and validation set of the two losses

(b) Plot on same axis of the absolute error on validation of the two losses

Figure 7: Comparison of Loss functions.

16



Figure 8: The Carmes borough in Toulouse, with one BS (Free Mobile type
LTE1800). The actual size is 200m× 400m.

4.4 Performance Evaluation on SUMO scenarios

In this section, we shall use a mobility simulation software for comparisons
of the algorithms, that is Simulation of Urban Mobility application (SUMO)
[15]. SUMO is an open source software designed for simulating mobility of
moving users (vehicles, bus, truck, bicycle, pedestrian, ...) in large road
traffic networks. It allows to import maps of different cities and simulate
realistic mobility traces. This application is used to simulate the complex
moving dynamic systems in several specific regions of Toulouse city to com-
pare our heuristics against existing algorithms in realistic scenarios. The
performance evaluation of the heuristic is done in two steps: firstly, SUMO
is used for generating the mobility traces of vehicles; finally, these traces are
then fed to a Python script which implements the algorithms and computes
the value of the objective function of those algorithms.

We shall compare the learning-based allocation scheme with STO1 and
other existing algorithms on two different scenarios created with SUMO.
The first scenario contains 244 users and lasts 61.7 minutes. The map of
this scenario is shown in Figure 8. The results obtained with the different
learning schemes on this scenario are shown in Figure 10. The second sce-
nario contains 214 users and lasts 62.4 minutes. The map of this scenario is
shown in Figure 9. The data for BS location can be found on the website3 of
the French Frequency Agency (ANFR), which manages all radio frequencies
in France. The results obtained with the different learning schemes on this
scenario are shown in Figure 11. We also simulate two existing algorithms,
(PS)2S [16] and PF [10] (which are also used in [18] for comparisons) in
order to show that the approximation algorithm performs better than the
existing algorithms. As mentioned above, for the learning algorithm, we use
Model 1 and bce dice loss.

When the number of learning epochs is large enough, the learning-based
scheme performs well compared to STO1 and other algorithms.

3https://data.anfr.fr/anfr/portail

17



Figure 9: Duroux, one BS type LTE1800, operator SFR. The actual size is
around 350× 500m.

250 500 750 1000 1250 1500 1750 2000
number of learning epochs 

6.90

6.85

6.80

6.75

6.70

6.65

av
er

ag
e 

to
ta

l u
til

ity

STO1
Learning STO1
(PF)2S
PF

Figure 10: Comparisons of evaluated on Carmes scenario created by SUMO.

18



250 500 750 1000 1250 1500 1750 2000
number of learning epochs 

7.7

7.6

7.5

7.4

7.3
av

er
ag

e 
to

ta
l u

til
ity

STO1
Learning STO1
(PF)2S
PF

Figure 11: Comparisons of evaluated on Duroux scenario created by SUMO.

5 Computing times

The computing time of STO1 depends on the convex optimization solver
used, whereas the learning algorithm has only to feed the DFNN model with
the input matrix. We consider the same setting as in Section 4.2, that is K =
10 (there are 10 users in the system) and the short term horizon is J = 10
seconds. For these values, the average computing time of Mosek is around
43.7 ms, whereas the prediction with the DFNN model (Model 1, which
contains 67,510 parameters) takes only 0.65 ms on average. When adding
power control, Mosek solves the optimization problem in around 113.4 ms,
while the prediction of the DFNN model (almost the same with Model 1 but
the output layer contains power vector in addition, which contains 73,020
parameters) takes 0.68 ms on average. These computing times are averaged
over 10000 samples, all are measured on a machine using GPU (graphics
processing unit) which allows computing many calculations in parallel.

From the above measurements, we can conclude that the computing time
with a solver can vary widely with the number of QoS constraints for the
same network (number of users, time horizon). In contrast, the prediction
time of the learning-based algorithm with DFNN is almost insensitive to
such changes.

6 Summary and Discussion

We have proposed to use DFNN for learning the channel allocation obtained
with one of the heuristics (STO1) introduced in [18] and [19]. Numerical

19



results on SUMO scenarios show that the learning-based method yields ap-
proximate yet satisfactory channel allocations with much less computation
time as long as there are enough learning epochs. The state of the DFNN
is defined in such a way that the model is not restricted to a particular
scenario, that is, it can learn the channel allocation for a general network.

There are several directions of research that can be investigated to im-
prove the learning algorithm, such as a better generator of data, a better
loss function, a better architecture of the DFNN model, and other things
such as the optimizer, the learning rate, etc.

7 Acknowledgements

This work was partially funded by a contract with Continental Digital Ser-
vices France.

References

[1] M. ApS. MOSEK Optimizer API for Python manual. Version 9.2.21,
2019.

[2] F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[3] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[4] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling lan-
guage for convex optimization. Journal of Machine Learning Research,
17(83):1–5, 2016.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[6] K. Gregor and Y. LeCun. Learning fast approximations of sparse cod-
ing. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, ICML’10, page 399–406, Madi-
son, WI, USA, 2010. Omnipress.

[7] K. Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural Networks, 4(2):251 – 257, 1991.

[8] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359 –
366, 1989.

[9] J. Huang, V. Subramanian, R. Agrawal, and R. Berry. Downlink
scheduling and resource allocation for ofdm systems. IEEE Transac-
tions on Wireless Communications, 8:288–296, 01 2009.

20



[10] F. Kelly. Charging and rate control for elastic traffic. European Trans-
actions on Telecommunications, 8(1):33–37, 1997.

[11] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014.

[12] A. Kolmogorov. On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and
addition. Dokl. Akad. Nauk SSSR, 114(5):953–956, 1957.

[13] H. J. Kushner and P. A. Whiting. Convergence of proportional-fair
sharing algorithms under general conditions. IEEE Transactions on
Wireless Communications, 3(4):1250–1259, July 2004.

[14] Y. Lecun, L. Bottou, G. Orr, and K.-R. Müller. Efficient backprop. 08
2000.

[15] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner. Micro-
scopic traffic simulation using sumo. In The 21st IEEE International
Conference on Intelligent Transportation Systems. IEEE, 2018.

[16] R. Margolies, A. Sridharan, V. Aggarwal, R. Jana, N. K. Shankara-
narayanan, V. A. Vaishampayan, and G. Zussman. Exploiting mobility
in proportional fair cellular scheduling: Measurements and algorithms.
IEEE/ACM Trans. Netw., 24(1):355–367, Feb. 2016.

[17] H. Montanelli and H. Yang. Error bounds for deep relu networks using
the kolmogorov–arnold superposition theorem, 2019.

[18] N. Nguyen, O. Brun, and B. Prabhu. An algorithm for improved
proportional-fair utility for vehicular users. The 25th International
Conference on Analytical and Stochastic Modelling Techniques and Ap-
plications ASMTA-2019, May 2019.

[19] N. Nguyen, O. Brun, and B. Prabhu. Joint downlink power control
and channel allocation based on a partial view of future channel con-
ditions. The 15th Workshop on Resource Allocation, Cooperation and
Competition in Wireless Networks, June 2020.

[20] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and
beyond. CoRR, abs/1904.09237, 2019.

[21] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos.
Learning to optimize: Training deep neural networks for wireless re-
source management. CoRR, abs/1705.09412, 2017.

21



[22] S. Sun, W. Chen, L. Wang, X. Liu, and T.-Y. Liu. On the depth of deep
neural networks: A theoretical view. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI’16, page 2066–2072.
AAAI Press, 2016.

[23] D. Tse and P. Viswanath. Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[24] Wikipedia. Cross entropy. 20 June 2020. https://en.wikipedia.org/
wiki/Cross_entropy.

[25] Wikipedia. Sorensen dice coefficient. 28 July 2020. https://en.

wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient.

[26] Wikipedia. Huber loss. 29 May 2020. https://en.wikipedia.org/

wiki/Huber_loss.

[27] Y. Yi and M. Chiang. Stochastic network utility maximisation—a trib-
ute to kelly’s paper published in this journal a decade ago. European
Transactions on Telecommunications, 19(4):421–442, 2008.

22


