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Modern vehicles are expected to integrate a variety of connectivity features to enrich safety, entertainment, and driver comfort. This connectivity raises confidentiality and privacy concerns with the risk for the driver to lose control on his data. As vehicles are intended to be used for several years, a major challenge is also to design stable but flexible solutions that can withstand changes in legislation as well as advances in cryptography. Legal frameworks are currently being investigated and implemented to regulate the use of drivers' and vehicles' private information. However, the transcription of these regulations in practice remains an open problem. In this paper, the first formally proven security protocol for connected vehicles is proposed. It enforces a fined-grained access control policy while providing the flexibility to support recent schemes resistant to a quantum adversary. Its detailed security analysis is assessed using the ProVerif formal verification tool. In addition, a method to generate the access control policy in compliance with the laws is proposed along with an illustrating use case. The method supports both legislation and driver access control to data. Finally, a performance evaluation of the security protocol is provided.

Introduction

In the near future, vehicles are expected to include more and more connectivity features to improve safety and entertainment and to provide additional services to drivers such as real-time navigation and traffic monitoring. In such scenarios, vehicles are expected to communicate their data to various stakeholders and other vehicles through a data storage center, typically a cloud, that acts as an intermediary with stakeholders and can ease data processing and sharing. Outsourcing this data raises security concerns, as the storage center may have vulnerabilities that may be exploited by attackers to breach the confidentiality, integrity or availability of data. The storage center may also be honest-but-curious and try to read or take advantage of drivers' data. Therefore, it is essential to design security protocols based on suitable cryptographic schemes to protect the exchange and storage of messages in such a connected vehicle environment. Moreover, the access control to data emitted by the vehicles is, most of the time, managed by the vehicle manufacturers, who can freely decide which stakeholders can or cannot access specific data and under which conditions. However, it is fundamental that this access control management is performed in compliance with laws and regulations that aim to protect users privacy and allow drivers to keep some control over their data (such as the European General Data Protection Regulation 1 and some specific national laws such as the French Mobility Orientation Law2 for instance). Technical solutions must take into account the legislation and, as it is constantly changing, anticipate its evolution. To enforce fine-grained data access control, some cryptographic schemes have been proposed, among them Attribute-Based Encryption (ABE) seems particularly suitable to this context [START_REF] Domingo-Ferrer | Privacy-preserving cloud computing on sensitive data: A survey of methods, products and challenges[END_REF]. Relying on a notion of attributes and access trees, ABE schemes have been designed to integrate access control in the encrypted data such that only the authorized stakeholders (i.e., those who are able to decrypt the ciphertext) can access the data. On the other hand, since the lifespan of vehicles is quite long, about ten years or more, it is important to ensure that the cryptographic algorithms embedded in the vehicles remain secure during this period. In particular, they must be chosen so that they can be easily adapted to resist to upcoming quantum attacks. Although some papers have proposed the use of ABE schemes in the context of connected vehicles to control access to vehicle data, they suffer from the following limitations: 1) to the best of our knowledge, the propositions do not handle the emerging problem of quantum attackers and relies on vulnerable cryptographic schemes; 2) they do not properly handle the legislation in the access control policy; and 3) these papers are, most of the time, dedicated to the description of cryptographic primitives but do not propose a formally proven security protocol, relying on these primitives. The purpose of this paper is to handle these limitations. The first formally proven, post-quantum, and legislation friendly protocol for connected vehicles is proposed. It relies on the derivation of an access control policy from the law that allows the driver to have increased control on his data. The main contributions of the paper are summarized below:

a novel formally proven security protocol for connected vehicles:

which enforces a fine-grained access control; and is generic enough to include post-quantum algorithms. -a method to derive an access control policy from the legislation, that supports drivers service subscriptions and sharing preferences. This method also supports a transient data access for sworn stakeholders in specific situations and is compatible with the proposed protocol, illustrated by means of a typical use case; -a performance evaluation of the security protocol in terms of execution time, memory consumption, and messages size.

The paper is organized as follows. Section 2 specifies the context of this work and the challenges addressed, the entities and data flow, as well as the attacker model, the security properties, and the access control policy requirements that need to be considered. This section concludes with a summary of the proposal that is designed to fulfill these properties and requirements. Section 3 discusses related work addressing the security of connected vehicles communications. Section 4 recalls some important definitions about the cryptographic schemes on which the security protocol is built. In particular, the use of ABE cryptographic schemes is motivated and discussed in a post-quantum context. Section 5 presents in detail the security protocol and describes the enforcement of the security properties, as well as the different scenarios that compose the protocol. Section 6 presents the protocol formal verification using the ProVerif tool and describes the ProVerif syntax required to specify the properties, the simplification considered to model the protocol, and the protocol verification. Section 7 proposes a method to derive the ABE cryptographic components (attributes used to encrypt the messages as well as the access trees used to generate the decryption keys) according to the legislation, the driver's consent and contracts. This section ends with a use case illustrating this method. Section 8 presents the experiments carried out to assess the performances of the security protocol. Section 9 discusses some remaining challenges of the approach and Section 10 draws conclusions and outlines some directions for future work.

Context and problem statement

Currently investigated connected vehicle architectures with enhanced on-board capabilities are designed to regularly send data about the state of the vehicle or of its environment. Nevertheless, an efficient data management system is required to store this data. Conventional architectures (such as3 ) rely on a centralized architecture for the storage center. This data is expected to be used by many stakeholders who have to connect to the storage center to retrieve it. Such a centralized architecture is illustrated in Figure 1. Generally, during communication, data is encapsulated in a message before being sent. Then, each legitimate recipient can de-encapsulate the message to retrieve the data. In the remainder of this paper, an encapsulated data is called a message and a de-encapsulated message is called a data. This section presents the entities involved in the architecture, the data flow, the attacker model, the security properties, and the access control policy requirements to be verified. It concludes with a discussion of relevant security issues of current architectures and the proposal to deal with these issues.

Entities involved

Existing architectures typically involve four entities: the manufacturer, the vehicles, the storage center, and the stakeholders. The Manufacturer of the vehicles (bus, cars, trucks, etc.) is most often considered responsible of the storage center deployment and the access control policy. Vehicles are operated by drivers and regularly send data to the storage center, by means of messages.

The Storage Center stores the messages and delivers them through dedicated queries. It is usually deployed in clouds. Stakeholders are connected to the storage center to retrieve the relevant messages through dedicated queries. They can include public services (police, courthouse, etc.) or private companies (IT companies, insurance companies, etc.). (Scenario S1) A vehicle must be able to send messages to the storage center and the storage center has to store these messages. (S2) A stakeholder must be able to query the storage center to retrieve the messages it is authorized to read and the storage center has to deliver the corresponding messages. (S3) A vehicle must be able to query the storage center to retrieve its own messages and the storage center has to send the corresponding messages back to the vehicle.

Cloud

Attacker model

External attackers and honest-but-curious legitimate entities of the system are considered. An external attacker is an illegitimate participant in the communication. It is assumed that such an attacker has access to all messages exchanged on the network. This pessimistic scenario is purposely considered, though in real situations, an external attacker is unlikely to be able to successfully intercept all messages. The attacker is also supposed to know all the cryptographic schemes used during the communication and all the associated public information (i.e., public keys), but does not have access to secret information (i.e., master and secret keys). The operations that an attacker can perform are specified in the Dolev-Yao model [START_REF] Dolev | On the security of public key protocols[END_REF]. For instance, he can retrieve a message, modify a message, encrypt a message, inject a message, or perform a man-in-themiddle attack. An honest-but-curious legitimate participant is supposed to perform its operations correctly, but may try to obtain more information about the messages received legitimately without cooperating with other parties. For instance, a stakeholder or the storage center may try to decrypt a ciphertext it has received even though it is not supposed to be the legitimate recipient of this ciphertext. Such a situation is considered to be similar to an external attacker possessing the secret information of the honest-but-curious participant. The Dolev-Yao model is limited as it does not consider the leak of secret information. Since a secret information leak cannot be excluded, even if unintentional, the impact of such a leakage must be duly analyzed. The Canetti-Krawczyk model [START_REF] Canetti | Analysis of keyexchange protocols and their use for building secure channels[END_REF] extends the Dolev-Yao model by considering such leaks. In the attacker model of this paper, the Canetti-Krawczyk model is partially taken into account. Actually, the leak of secrets keys enabling to prove the identity of the emitter is not considered, but the leak of the secret keys of either the vehicle, the storage center, or the stakeholder, enabling the attacker to decrypt the corresponding encrypted messages, is considered and discussed in Section 6.

Security properties

Security properties are identified in the following, they take into account the attacker model previously described. These are high level properties, which do not consider the implementation details of the architecture. The first properties deal with integrity and authenticity. (P1) The legitimate recipient of a message sent by a vehicle must be able to check its integrity and thus detect its potential corruption by an attacker. (P2) The storage center must be able to identify whether the messages received come from a legitimate vehicle registered with the manufacturer or not. The following properties deal with permissions. (P3) A vehicle must have the right to access to the data in a message that it has previously sent. Such a property is all the more important as it relates to drivers privacy as stated in the European General Data Protection Regulation. (P4) A stakeholder must be able to access to the data in a message for which it has been authorized. The next properties deal with confidentiality. (P5) The storage center must not be able to recover the data contained in the messages. (P6) A recipient who retrieves a message must not be able to access the included data if it has not been authorized. This property is essential considering that many recent leaks of private information from storage centers have been reported4 .

Access control policy requirements

As previously stated, an important issue in such security architectures is the derivation of an access control policy complying with the legislation. For that purpose, the following five requirements must be satisfied. (R1) The security policy must be compliant with the article of the laws that define a set of permissions and prohibitions regarding some stakeholders. The article 32 of the French Mobility Orientation Law is an example of article that stipulates such rules. Nonetheless, the legislation does not explicitly refer to a member of a company but rather refers to functions or roles of stakeholders. Therefore, from our point of view, the compliance to the legislation seems to be naturally transposed to a role-based approach. (R2) Driver's consent must be handled by the access control policy. Each driver can consent to share his data with stakeholders, as long as this choice complies with the legislation. (R3) A driver may subscribe to a service by means of a contract that stipulates which type of data must be shared to the stakeholder. Such contracts must be included in the access control policy, as long as they comply with the law. (R4) A stakeholder may delegate different permissions to several branch of its internal organization (e.g., departments of an insurance company). This is not explicitly stated in the laws but fundamental from a practical perspective. As such, a delegation mechanism must be included in the access control enforcement. (R5) In specific cases, data that were already sent must be accessed by a sworn stakeholder. For instance, in case of an investigation from the police after an accident, the police may require access to the position data of the vehicle before the accident. The access control policy must take into account such sworn stakeholders.

Discussion and proposal

In traditional architectures (such as 3 ) security mechanisms are typically implemented 1) to ensure data confidentiality during communication, against a passive listener on the network; 2) to authenticate a sender (a vehicle) to ensure that a message was sent by a legitimate sender; and 3) to authenticate a reader (a stakeholder) to ensure that it has the rights to access the data. Thus, this architecture covers properties P1, P2, and P4. However, since data confidentiality is ensured through encrypted communications while the data is stored in plaintext in the storage center, the property P5 is not satisfied. The storage center is a key component that is responsible for enforcing access control. As the storage center has full control over the plaintext data, a leak or a misbehavior on its part can expose the data to an unintended recipient: the property P6 is also violated. Finally, conventional architectures do not make the possibility for drivers to be able to access to their own data as a primary objective. Thus, it is necessary to give this possibility to the drivers to ensure property P3. To deal with these issues, this paper proposes a secure protocol aiming to improve conventional architectures and thus ensures the missing properties P3, P5, and P6. This protocol relies on Attribute-Based Encryption and Symmetric Encryption to ensure the confidentiality of data against unintended recipients (including the honest-but-curious storage center) and on Group Signature to authenticate vehicles. The underlying cryptographic schemes are sufficiently generic to adapt to postquantum algorithms. The security protocol has been formally proven using the ProVerif tool and satisfies the security properties. The paper also proposes a method to generate the access control policy in compliance with the law, enabling to satisfy R1 to R5 requirements. For that purpose, a trusted authority is included in the architecture, that is in charge of the permissions management for the different stakeholders, in compliance with the law. In traditional architectures, such permissions are generally managed by the manufacturer, who can freely grant access rights to any stakeholders while possibly not respecting the privacy of the driver.

Related work

Many papers deal with security and privacy issues due to data outsourcing in Cloud infrastructures and propose suitable cryptographic schemes and protocols. The recent survey from Domingo-Ferrer et al. [START_REF] Domingo-Ferrer | Privacy-preserving cloud computing on sensitive data: A survey of methods, products and challenges[END_REF] summarizes these different proposals. In this survey, Identity-Based Encryption (IBE) and Attribute-Based Encryption cryptographic schemes are considered relevant in this context. While IBE represents the authorized recipients using an identity, ABE specifies a set of authorized recipients using attributes. ABE is preferred over IBE in the following as it seems more suitable to enforce a fined-grained access control policy. This section focuses on papers that specifically deal with data security in connected vehicles communication scenarios. A classification of these papers is presented in Table 1, according to several criteria: 1) communication: are the messages emitted from a vehicle to other vehicles (Vehicle-to-Vehicle: v2v) or from a vehicle to stakeholders (Vehicle-to-Stakeholder: v2s)? 2) scheme: does the paper rely on ABE or IBE? 3) genericity: can the proposed solution be adapted to other cryptographic schemes in the literature? 4) protocol: does the paper propose a new cryptographic scheme or a protocol that uses existing schemes? 5) post-quantum: does the contribution hold with a quantum adversary? 6) legislation: does the paper consider legal constraints from the law? and 7) automatic protocol verification: does the paper provide formally verified security guaranties with automatic verification tools? Note that the communication column refers to the message recipient, in particular the communication direction is considered v2v if the destination is a vehicle, even if for some papers the data is temporarily stored on a cloud before reaching its final destination. Similarly, some papers deal with secure communications between a vehicle and a cloud, and only mention the existence of a stakeholder that will process the data to provide a service. These papers are classified in the v2s category. Most of papers in Table 1 focus on v2v communications security [START_REF] Feng | Attribute-based encryption with parallel outsourced decryption for edge intelligent iov[END_REF][START_REF] Zhao | A verifiable hidden policy cp-abe with decryption testing scheme and its application in vanet[END_REF][START_REF] Pan | Secure data sharing scheme for vanets based on edge computing[END_REF][START_REF] Huang | Secure and privacy-preserving warning message dissemination in cloud-assisted internet of vehicles[END_REF][START_REF] Huang | Smartveh: Secure and efficient message access control and authentication for vehicular cloud computing[END_REF][START_REF] Liu | Semd: Secure and efficient message dissemination with policy enforcement in vanet[END_REF][START_REF] Ruj | Improved access control mechanism in vehicular ad hoc networks[END_REF][START_REF] Huang | Aspe: Attribute-based secure policy enforcement in vehicular ad hoc networks[END_REF][START_REF] Xiong | Secure message classification services through identitybased signcryption with equality test towards the internet of vehicles[END_REF] and mainly deal with the security of messages sent to the vehicles to improve driving, for instance, by anticipating collisions or by warning the driver of traffic jams. Since the legislation establishes rules specifying allowed or prohibited accesses to specific data for specific stakeholders, the approaches focusing on v2v communication security are not appropriate as they do not consider the access control of data sent by the vehicles and consumed by different stakeholders.

Only few papers focus on v2s communications [START_REF] Zhao | An efficient certificateless public key encryption with equality test toward internet of vehicles[END_REF][START_REF] Vaanchig | Constructing secure-channel free identitybased encryption with equality test for vehicle-data shar-ing in cloud computing[END_REF][START_REF] Shi-Jinn | An identity-based and revocable data-sharing scheme in vanets[END_REF][START_REF] Luo | Efficient and secure access control scheme in the standard model for vehicular cloud computing[END_REF] and have some connections with our proposal. The proposals of Zhao et al. [START_REF] Zhao | An efficient certificateless public key encryption with equality test toward internet of vehicles[END_REF] and Vaanchig et al. [START_REF] Vaanchig | Constructing secure-channel free identitybased encryption with equality test for vehicle-data shar-ing in cloud computing[END_REF] are based on IBE schemes and the protocols proposed by Horng et al. [START_REF] Shi-Jinn | An identity-based and revocable data-sharing scheme in vanets[END_REF] and Luo and Ma [START_REF] Luo | Efficient and secure access control scheme in the standard model for vehicular cloud computing[END_REF] [START_REF] Shi-Jinn | An identity-based and revocable data-sharing scheme in vanets[END_REF] propose an ABE scheme and a protocol based on this scheme. In addition to addressing data confidentiality, their proposal includes computing nodes located in the Cloud that are used by vehicles to outsource a part of the encryption and decryption process.

Their proposal also includes a revocation mechanism and a multi-authority mechanism.

Similarly, Luo and Ma [START_REF] Luo | Efficient and secure access control scheme in the standard model for vehicular cloud computing[END_REF] propose an ABE scheme and a protocol with decryption outsourcing and revocation. Additionally, their proposal is multi-authority and the central authority cannot decrypt all ciphertexts without the master secret key of multiple authorities.

Overall, even if these four papers assess the security of their scheme or protocol using manual proofs, the security properties are discussed but not formally proven by means of a formal verification tool. Moreover, these proposals rely on schemes that can be reduced to the discrete logarithm problem and thus are vulnerable to a quantum attacker. Hence, none of the proposals were designed to be post-quantum compliant. In addition, they do not verify whether the emitter of an encrypted data is a legitimate vehicle or not and the authors do not allow a legitimate vehicle to later access some data that it has previously sent to the storage center. Finally, the authors do not explain how the access control management can be enforced, especially to be compliant with the law, which is, from our viewpoint, essential as the communication considers stakeholders supposed to consume the data. The secure protocol and the method to derive the ABE attributes and access trees proposed in this paper aim at tackling these issues.

Mathematical background

In this section, the mathematical background needed to introduce the protocol is provided. Three cryptographic primitives are presented: Attribute-Based Encryption, Symmetric Encryption, and Group Signature. [START_REF] Bethencourt | Ciphertextpolicy attribute-based encryption[END_REF][START_REF] Zhang | phertext policy attributebased encryption from lattices[END_REF][START_REF] Waters | Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization[END_REF][START_REF] Deng | Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization[END_REF][START_REF] Zavattoni | Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization[END_REF] when the access tree is set during encryption. ABE is generally constructed from bilinear pairings [START_REF] Boneh | Identity-based encryption from the weil pairing[END_REF] or lattices [START_REF] Zhang | phertext policy attributebased encryption from lattices[END_REF]. While bilinear pairings-based ABE are subject to strong vulnerabilities against quantum machines, lattice-based ones are considered quantum resistant [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF][START_REF] Micciancio | Hardness of sis and lwe with small parameters[END_REF][START_REF] Micciancio | Worst-case to averagecase reductions based on gaussian measures[END_REF][START_REF] Peikert | Public-key cryptosystems from the worst-case shortest vector problem: extended abstract[END_REF][START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptogra-phy[END_REF]. Historically, ABE is split into two security notions: selective security and adaptive security (also called full security). For a typical adversary/challenger security game, selective security requires access trees (or attributes) to be known before public parameters are generated. This limitation typically restricts the type of access trees achievable by the scheme (or the number of attributes), which limits the expressiveness of the access control policy. Due to a fairly mature literature on ABE based on bilinear pairings, adaptive security is assumed for all recent schemes with support for the NC 1 class of problems. For lattices, the landscape is more contrasting [START_REF] Boneh | Fully key-homomorphic encryption, arithmetic circuit abe and compact garbled circuits[END_REF][START_REF] Zhang | A ciphertext policy attributebased encryption scheme without pairings[END_REF]. Achieving adaptive security has been an open problem for many years, and although some recent constructions have achieved the adaptive security, they still have some limitations. In [START_REF] Tsabary | Fully secure attribute-based encryption for t-cnf from lwe[END_REF] 

ABE algorithms definition

ABE schemes typically consist of four algorithms (identified with the prefix abe). In the following, a slight modification of the usual definition of ABE is realized to facilitate the understanding of the protocol. In par-ticular, KP-ABE is presented as it is the construction used in the protocol:

-abe setup(1 λ ): Given a security parameter λ, generates the master key MK. This key will be used to derive both public and secret keys; -abe pkgen(MK): Using MK, generates the public key PK; -abe skgen(T, MK): Given an access tree T, generates the secret decryption key SK associated to T using MK; -abe enc(µ, X, PK): For attributes X, encrypts message µ using PK, outputs the ciphertext C; -abe dec(C, SK): For a ciphertext C, decrypts C using SK, outputs µ only and only if the attributes chosen during encryption match the access tree chosen during SK generation.

Let us note that an abstract definition of KP-ABE is purposely provided since the protocol is designed to support current and future ABE schemes as much as possible (including post-quantum ones). As long as the ABE scheme securely supports all previously defined algorithms, it can be used in the protocol.

Symmetric encryption

A Symmetric (S) encryption scheme uses the same symmetric key to encrypt and decrypt messages. A scheme S is composed of a set of three algorithms (identified with the prefix s) and the most common standard implementation is AES [START_REF] Daemen | Aes proposal: Rijndael, aes algorithm submission[END_REF]. An abstraction of this scheme is presented in the following. In a similar way, this abstraction is generic enough to include all S schemes:

-s setup(1 λ ): Given a security parameter λ, generates a secret key SK; -s enc(µ, SK): Using SK, encrypts message µ, outputs ciphertext C; -s dec(C, SK): Using SK, decrypts ciphertext C, outputs message µ only and only if the same key SK has been used during encryption and decryption.

Group signature

A Group Signature (GS) scheme [START_REF] Chaum | Group signatures[END_REF] allows a member of a group to anonymously generate a signature on behalf of the group. A key issuer is generally defined as the entity responsible for generating and distributing signing keys to legitimate members of the group. A GS is a set of five algorithms (identified with the prefix gs). The first post-quantum group signature scheme was proposed in 2010 by Gordon et al. [START_REF] Gordon | A group signature scheme from lattice assumptions[END_REF]. Most of existing proposals are based on lattices [START_REF] Laguillaumie | Lattice-based group signatures with logarithmic signature size[END_REF][START_REF] Langlois | Latticebased group signature scheme with verifier-local revocation[END_REF][START_REF] Ling | Group signatures from lattices: simpler, tighter, shorter, ring-based[END_REF], but some proposals exist for codes [START_REF] Ezerman | A provably secure group signature scheme from code-based assumptions[END_REF] and hashes [START_REF] Shafieinejad | A scalable postquantum hash-based group signature[END_REF]. An abstraction of this scheme is presented in the following and is generic enough to include all GS schemes:

-gs setup(1 λ ): Given a security parameter λ, generates a signature master key MK; -gs pkgen(MK): Using MK, generates the signature public key PK used to verify signatures; -gs skgen(ID, MK): Using MK, generates the signature secret key SK associated to identity ID; -gs sign(µ, SK): Using SK, generates the signature s for message µ; -gs verif((µ,s), PK): Using PK, verifies if the signature s is a valid signature of message µ. Outputs ⊤ if the signature is valid, ⊥ otherwise.

Secure protocol

This section is dedicated to the detailed presentation of the secure protocol. An overview of the architecture that supports this protocol is first presented, then the security properties enforcement is explained, and finally the protocol scenarios are detailed.

Architecture overview

The implementation of a secure and trusted control of data from different types of parties (users, legislation, stakeholders, ...) requires a modification of the classical architecture presented in Section 2. In particular, an independent trusted authority is required to define the specific attributes that must be set during data encryption using ABE, with respect to the law, and to manage the different access trees for the stakeholders, also in compliance with the law. Detailed information is provided in Section 7. In this section, the existence of two functions provided by the trusted authority is assumed: the get attrs function and the get access tree function.

The get attrs function takes as input either the storage center identity (ID sc ) or a vehicle identity (ID v ) and a context (C), it provides the attributes used during the ABE encryption. The get access tree function takes as input an entity identity (either a vehicle, the storage center or a stakeholder), it provides the access tree used during ABE key generation.

Security properties enforcement

This subsection describes how the security protocol proposed in this paper has been purposely designed so that the P1 to P6 security properties are enforced. A signature mechanism is used to enable message integrity verification (P1) and to allow the storage center to verify that a message was issued by an authorized vehicle (P2). However, a group signature mechanism is used to avoid overloading the storage center with as many verification keys as legitimate vehicles. To handle this authentication, the trusted authority executes the gs setup and gs pkgen algorithms. Then, it generates the signature secret key noted SIG SK, using the gs skgen algorithm, for each legitimate sender. A legitimate sender must sign its messages using its secret key. This way, each legitimate receiver can verify the signature using the public key generated by the trusted authority. This secret key provision is assumed to be realized in a secure manner. The signature secret key of a vehicle is embedded in the vehicle, together with associated functions and algorithms, during the manufacturing process. The trusted authority has to provide to each stakeholder the means to allow the access to messages, in accordance with the law (P4). The use of KP-ABE is particularly suited as it allows to enforce a fine-grained access control by encrypting the data over a set of attributes that can be only decrypted by the stakeholders possessing the corresponding access trees in their decryption key. Moreover, in this context, KP-ABE schemes are preferable to CP-ABE schemes as they do not require the generation of access trees in the vehicle which would be too costly in such an embedded system with limited resources. This approach also allows the vehicle to have access to its data, as long as it has the appropriate cryptographic materials (P3).

To generate the corresponding materials, the trusted authority executes the abe setup and abe pkgen algorithms to generate the master key and the public key and the get access tree function to generate the access tree for an authorized message reader, in compliance with the law. When sending a message, a vehicle must use the get attrs function to get the list of attributes to be set. This function is provided to the vehicle by the trusted authority during the manufacturing process. When no context is given as input, this function simply outputs the identity given as input. The derivation of the access trees according to the law both prevents the storage center (P5) and unauthorized recipients (P6) from having access to the data in a message.

Protocol scenarios

Keys generation and distribution

The goal is to generate and to securely deploy the keys for the legitimate entities (vehicles, stakeholders, and storage center). Thus, in a first step, the trusted authority creates the master and public keys for encryption and signature. The public keys are released publicly while the master keys are kept secret. The following notation is used:

MK = abe setup(1 λ ) (1) PK = abe pkgen(MK) (2) 
SIG MK = gs setup(1 λ ) (3) 
SIG PK = gs pkgen(SIG MK)

The trusted authority proceeds in the same way for all legitimate entities. For an entity e, it defines its identity ID e . Then, it generates the access tree A e using get access tree, the secret key SK e , and the signature secret key SIG SK e for this entity. For this generation, it applies the following operations:

A e = get access tree(ID e ) ( 5)

SK e = abe skgen(A e , MK) (6) 
SIG SK e = gs skgen(ID e , SIG MK) [START_REF] Blanchet | ProVerif 2.00: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial[END_REF] These keys are assumed to be sent to the corresponding entity through a secure channel. In particular, for a vehicle, the keys can be deployed in a Hardware Security Module during the manufacturing process. A stakeholder can register to the trusted authority at any time. Obviously, it is assumed that the trusted authority verifies that this stakeholder has the right to register with this identity. Let us note that the stakeholder has the same cryptographic materials as a vehicle because he also needs to verify if the entity it is communicating with is registered in the system.

Secure vehicle data send scenario (S1)

This scenario depicts a data sending by a vehicle to the storage center. The exchanges are signed so that the vehicle and the storage center can authenticate each other. A symmetric encryption key is chosen by the vehicle to avoid the systematic use of ABE. The data to be stored is encrypted using the set of attributes L2. Moreover, nonces are also used to prevent replay attacks. The details of this scenario are presented in the following and depicted in Figure 2.

① A vehicle initiates a connection request. This request contains a symmetric key K and a nonce N v (generated using the random function). It is encrypted as C1 using a set of attributes L1 that only allows the storage center to decrypt C1 (i.e., the generation of L1 using get attrs with an empty context). This encrypted request is signed as S1 using the vehicle signature secret key SIG SK v . Then, C1 and S1 are sent to the storage center as the message M1. ② The storage center receives message M1. First, it verifies the signature S1 using the signature public key SIG PK. If the signature is wrong, the storage center resets the communication. Otherwise, after extracting the encrypted request C1 from the message M1 (using the get msg function), it decrypts C1 using its secret key SK sc . It obtains the symmetric key K and the nonce N v sent by the vehicle. The storage center generates a connection response that contains the nonce N v and a new nonce N sc . This response is encrypted as C2 using K which is signed as S2 using the signature secret key SIG SK sc . Then, C2 and S2 are sent back to the vehicle as the message M2. ③ The vehicle receives message M2. First, it verifies the signature using the signature public key SIG PK. If the signature is wrong, the vehicle resets the communication.

Otherwise, it extracts the encrypted response C2 and decrypts it using the symmetric key K. It obtains the two nonces and verifies that the nonce N v has been returned correctly. Then, it gets the data D and the context C (using the retreive data function). The context and the identifier of the vehicle are used to derive the set of attributes L2. The data is encrypted as C3 using this set and then encrypted again, together with N sc , using K. This way, the storage center will be able to decrypt and retrieve the encrypted data. The vehicle signs the ciphertext as S3 using its signature secret key. At this point, the vehicle successfully sent the data. Finally, C3 and S3 are sent to the storage center as message M3.

④ The storage center receives message M3. In a similar manner, it verifies the signature. It extracts the message and uses K for decryption. It obtains the encrypted data and a nonce. If the nonce has the same value as the one it has generated during ② then it is able to store the encrypted data in its database (using the db store function). The scenarios S2 and S3 differ only regarding the entity that wants to read the data: either a stakeholder or a vehicle. Thus, in the following, only the scenario S2 is considered, this scenario depicts a data retrieved by a stakeholder from the storage center. Note that the query language used to retrieve data is out of the scope of this paper. The details of the S2 scenario are presented in the following and depicted in Figure 3. As this scenario uses the same method as S1 to prevent replay attacks and to ensure authentication, steps ①, ②, and the beginning of step ③ are similar to the ones in scenario S1. In the end of the step ③, the stakeholder generates its query R (using the gen query function), encrypts this query with the key K and sends the encrypted query to the storage center together with its signature. Let us note again that nonces are used to prevent replay attacks. ④ The storage center receives the message M3. It verifies the signature, extracts the message and uses K for decryption. It obtains the query and a nonce. It checks the value of the nonce, which must be identical to the one it has generated during ②. Then it queries its database (using the db read function). The result is sent to the stakeholder together with its signature. ⑤ The stakeholder receives the message M4. It verifies the signature, extracts the message, and uses SK st for decryption. It obtains the result of its query. At this moment, the stakeholder can successfully read the data.

Formal verification

Several studies have shown the existence of weaknesses in formally defined protocols (for instance [START_REF] Kremer | Analysing the vulnerability of protocols to produce known-pair and chosen-text attacks[END_REF] and [START_REF] Chen | Attack, solution and verification for shared authorisation data in tcg tpm[END_REF]), thus a formal description of a protocol is a first good step but not sufficient by itself. As connected vehicles have a long lifespan, it is necessary to formally verify the security properties to ensure the viability of the proposed protocol in the long term. This section presents the ProVerif tool used to verify the properties, the simplification realized to model the protocol, and the presentation of the security properties along with their verification.

ProVerif

Several tools can be used to formally verify the security properties of a protocol (AVISPA [START_REF] Armando | The avispa tool for the automated validation of internet security protocols and applications[END_REF], ProVerif [START_REF] Boichut | Improvements on the genet and klay technique to automatically verify security protocols[END_REF][START_REF] Blanchet | ProVerif 2.00: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial[END_REF], YAPA [START_REF] Baudet | Yapa: A generic tool for computing intruder knowledge[END_REF], TAMARIN [START_REF] Meier | The tamarin prover for the symbolic analysis of security protocols[END_REF]). ProVerif was chosen as it is stable, mature, still maintained, successful [START_REF] Blanchet | Symbolic and computational mechanized verification of the arinc823 avionic protocols[END_REF][START_REF] Blanchet | Automated formal analysis of a protocol for secure file sharing on untrusted storage[END_REF], and it supports any number of sessions (which is useful to avoid imposing a number of vehicles and stakeholders). In addition, as cryptographic primitives can be represented by an equational theory or rewrite rules, this allows the proof to be established for families of primitives (i.e., as long as the chosen primitive respects the equations).

Considering the attacker model discussed in Section 2.3, ProVerif is well suited as it allows to represent a public channel and it uses the Dolev-Yao attack model [START_REF] Dolev | On the security of public key protocols[END_REF].

The representation of the protocol in ProVerif is not complex as long as the sequence diagrams are provided (see Figures 2 and3). This representation is available in the appendix, together with the table explaining the syntax of ProVerif. However, it is worth explaining the events and syntax of the queries themselves, which represent the properties to be checked. The ProVerif code can be enriched with events that can occur several times. In the model, events correspond to a particular step in the protocol. To distinguish them, if necessary, an event can have parameters. For example, an event generated during the execution of the vehicle part of the protocol can have as a parameter the identity of this vehicle. These events correspond to the comments in green in Figures 2 and3.

During the protocol verification, a key leak is also simulated to analyze the attacker's possibilities and events are also generated when a key leak is forced. The list of considered events is as follows:

-The vehicle send event occurs just before a vehicle sends, on the public channel, a message that contains data (see step ③ in Figure 2); -The storage write event occurs just before the storage center stores a message in its database (see step ④ in Figure 2); -The storage send event occurs just before the storage center sends, on the public channel, a message that contains data (see step ④ in Figure 3); -The stakeholder read event occurs just after a stakeholder retrieves and successfully decrypts a message that contains data (see step ⑤ in Figure 3); -The vehicle read event occurs just after a vehicle retrieves and successfully decrypts a message that contains data (see step ⑤ in Figure 3); -The vehicle leak event occurs when the secret key of a vehicle leaks; -The storage leak event occurs when the secret key of the storage center leaks; -The stakeholder leak occurs when the secret key of a stakeholder leaks.

The queries used to prove security properties rely on five main constructions:

not (event X): the result of this query is true if the event X is never generated with the protocol. Otherwise, it may be generated and ProVerif provides a trace of its execution. This kind of query is useful to check that all interesting parts of the protocol are reachable; not attacker.pN(V): the result of this query is true if the attacker does not have the possibility to know the value V. N is used to indicate a phase in the protocol. Phases are used only to simplify the representation of the protocol (the first phase corresponds to the keys generation and distribution); secret V1(,Vi)*: the result of this query is true if all Vi values are kept secret. This query is close to the previous one. It is used when the values Vi are inner values of a ProVerif process; inj-event(X1) ==> inj-event(X2): the result of this query is true if each event X1 corresponds to a distinct and previous event X2; -S1 (&& Si)* ==> C1 (|| Ci)*: the result of this query is true if all the sub-queries Si are verified, then one of the conditions Ci is true.

Simplification of the protocol

When integrating the technical details of the protocol into ProVerif, a slight modification of the protocol needs to be realized for the sake of the verification process. First, the implementation of attributes in ProVerif needs to be adapted. The naive method would be to implement unbounded list of attributes directly, but this would lead to an infinite loop during verification. In practice, the number of lists of attributes used for a finite trace is necessarily finite. Thus, the list of attributes that the vehicles can use during the trace is chosen randomly for encryption. This set (of lists of attributes) is selected at the key generation and distribution phase. Then, a distinct lock is associated to each attributes and entities are randomly associated to the locks. In this way, entities that are associated to the same lock can decrypt all messages encrypted with the corresponding list of attribute. Second, some details are omitted in the model: the authentication part during the query of the storage center is not described in ProVerif. In other words, the nonces and the symmetric key are not used during the query scenario. This choice results in a stronger attacker, but it does not affect the security as it will be shown in Section 6.3.

Security properties and verification

This subsection first presents the considered queries and their link with the properties, followed by the considered leak scenarios and the results of the assessments.

The verification of properties relies on the set of queries from Table 3. The queries Q1 to Q5 are used to verify that the protocol is functional by ensuring that all events can occur. Queries Q6 to Q10 ensure the secrecy of master keys (for the trusted authority) and secret keys (for vehicles, the storage center, and stakeholders). Query Q11 ensures that the attacker cannot read the data contained in a message. true

The properties P5 and P6 are deduced from the query Q17. If the attacker is able to read a message, then the secret key of the corresponding vehicle or the secret key of a stakeholder able to read the message has leaked. Moreover, if the secret key of the storage center has leaked, the attacker has the same privileges as the storage center. Thus, considering the Dolev-Yao model [START_REF] Dolev | On the security of public key protocols[END_REF], if the attacker is not able to read the data, then the storage center is not able to read the data either and the property P5 is checked.

Four campaigns have been carried out: one with no leaks and one for each type of leak (a stakeholder secret key, a vehicle secret key, and the storage center secret key). The results are shown in Table 3. The first column indicates the identifier of the query, the second column details the queries and the third column indicates the expected result of the queries evaluation. The last columns correspond to the queries evaluation for the different campaigns: a full circle indicates that the query is valid (corresponds to the expectations) otherwise the symbol is an empty circle.

This table shows that, first of all, without any leak, all queries are validated. Thus, all properties are satisfied and the minimum expected for such an architecture is provided. Moreover, it is formally verified that the storage center is not able to read the data contained in a massage and the attacker cannot either. In case of a leak, five queries are invalidated. In case of a leak of a stakeholder secret key, the first empty circle is obvious as it indicates that the attacker has obtained this secret key. The second empty circle indicates that the attacker is able to read the messages but the last query guarantees that these messages are those that the stakeholder was already able to read. In case of a vehicle secret key leak, the empty circles have a similar meaning as the previous campaign. In case of a storage center secret key leak, the only information the attacker is able to obtain is its secret key and the attacker is not able to read any messages. Thus, this last campaign gives us the guarantee that the storage center is not able to read data.

7 Legislation-compliant access control

In the previously described protocol, messages sent by vehicles are encrypted over a set of attributes and the stakeholders secret keys used to decrypt these messages are produced using an access tree. These attributes and access trees must be generated with respect to the law, thus this section describes a method for generating them in compliance with the legislation. This method satisfies the R1 to R5 requirements presented in Section 2.5 and this section also presents how these requirements are actually satisfied.

Overview

To cover the different aspects of the legislation, an attribute can be a role or an identity, (so-called role/identity in the rest of the paper), a contextual information or a stakeholder-defined string:

a role/identity attribute identifies stakeholders or vehicles authorized to read the content of a message either by their identity or, for a stakeholder, by their role; a contextual attribute identifies either the vehicle position, or the data sending date, or the data type (e.g., engine temperature), or additional contextual information for specific situations (e.g., accident). Such attributes are used to authorize stakeholders to access to the data under context related conditions (i.e., at a precise time, in a specific location, or in case of an accident); a stakeholder-defined attribute is an attribute defined by a stakeholder during delegation.

Access trees are provided by the trusted authority, or can be delegated by a stakeholder to another stakeholder (R4). The trusted authority uses the get access tree function to produce the access tree associated to the storage center, or a stakeholder, or a vehicle. Vehicles access trees are provided into the vehicle during their manufacturing and only include the vehicle identity.

Similarly, the storage center access tree includes only its identity. Stakeholders access trees embed role/identity attributes and contextual attributes, and in case of delegation, they also embed stakeholder-defined attributes.

The choice of role/identity attributes and contextual attributes is realized in accordance with the law (R1).

In specific situation, a stakeholder can be sworn in by a legal organization to access to data previously sent through the use of a transient access tree, as explained in Section 7.3 (R5). The remaining of this section focuses on stakeholders access trees.

The algorithm that identifies the attributes for every data transmitted by the vehicle must be designed in compliance with the law and must not be under the control of the vehicle manufacturer (R1). As such, the trusted authority derives the so-called law attributes and each manufacturer has to embed this set during the implementation of its vehicles. For instance, if the law stipulates in case of an accident, the data recorded in the vehicle at the time of the accident must be available to the police, then the corresponding attributes must be set during the encryption process so that the police can decipher the corresponding messages using the access tree embedded in their secret key, and this decision does not belong to the manufacturer, nor the driver (see Section 7.4.1). Additionally, the driver may also set attributes during the encryption process as long as these attributes (so-called driver attributes) comply with the law. The two situations in which the driver may add these attributes are described in details in Section 7.4.2: 1) the driver consents to share its data with a stakeholder (R2); 2) the driver has signed a contract with a stakeholder (R3). In both situations, the added attributes may target a stakeholder with a delegated key (R4). During encryption, the vehicle automatically extracts the law attributes and driver attributes matching the current context and type of the data that is to be sent and also sets the contextual attributes. In these figures, a rectangle corresponds to an entity (either a vehicle, a stakeholder, the storage center, or the trusted authority); an ellipse corresponds to a data; a rounded rectangle corresponds to the execution of a process; an arrow corresponds to the transfer of a data; an hexagon corresponds to the execution of a specific function; a diamond corresponds to an exclusive choice over its input arrow; a fully rounded rectangle corresponds to the internal parameter of a function; and a dash arrow corresponds to a transfer of data used as an internal parameter of a function. 

From articles of the law to OrBAC security rules

The derivation of access trees and attributes from the law is a two step process. The first step consists in generating access control rules in a specific formalism from the different articles of the law that are written in natural language. The formalism proposed in this paper to express these rules is taken from the Organization-Based Access Control (OrBAC) model. This step is quite difficult to automate and it is considered to be done manually only once by a competent person, such as a lawyer. In case the laws exhibit some conflicts, such as two different rules authorizing and preventing a stakeholder to access to a same data, the lawyer is considered able to solve these conflicts during this step. The conflict solving process is out of the scope of this article. The second step consists in obtaining the attributes and access trees from the OrBAC security rules. This step can easily be automated by parsing the OrBAC rules. This two step approach is proposed as generating in one step the ABE access trees and attributes would require specific skills that a lawyer is not supposed to have. The generation of OrBAC rules seems to be an acceptable tradeoff as this formalism is quite simple to understand. This subsection describes the first step of the process which corresponds to the OrBAC generation process in Figure 4 and 5.

OrBAC formalism

Role-Based Access Control (RBAC) [START_REF] Ravi | Role-based access control[END_REF] is a flexible access control model in which roles are assigned to users, permissions are assigned to roles, and users acquire permissions by playing roles. The OrBAC [START_REF] Abou | Organization based access control[END_REF] model is an extension of RBAC that details permissions while remaining implementation independent. The main idea is to express the security policy with abstract entities only, and thus to completely separate the representation of the security policy from its implementation. Indeed, OrBAC is based on roles, views, activities to structure subjects, objects, and actions. In OrBAC, an organization is a structured group of active entities, in which subjects play specific roles. An activity is a group of one or more actions, a view is a group of one or more objects, and a context is a specific situation that condition the validity of a rule. Actually, the role entity is used to structure the link between subjects and organizations. Similarly, objects that satisfy a common property are specified through views, and activities are used to abstract actions. OrBAC includes four relationships to express the relations between organizations, roles, views, activities, and contexts: the Obligation, Permission, Prohibition, and Recommendation relationships. Security rules in the OrBAC formalism are expressed as follows:

-Obligation(O, R, V, A, C); -Permission(O, R, V, A, C); -Prohibition(O, R, V, A, C); -Recommendation(O, R, V, A, C).
These expressions mean that, in the context C, organization O grants role R the obligation (or the permission, the prohibition, the recommendation) to perform activity A on view V.

Extracting meaningful information from the law

The objective is thus to generate such OrBAC security rules from the articles of the law. For this purpose, each article of the law is manually parsed and the relevant information to generate OrBAC security rules is retrieved. The articles of the law stipulate situations (which are used to define the OrBAC context C), in which data of a certain type (which is used to define the OrBAC view V), can or cannot (which is used to define the type of OrBAC rules, either Permission or Prohibition) be accessed by any stakeholder fulfilling a certain role (which is used to define the OrBAC role R). When no context is provided, the symbol * is used to represent any context. Each OrBAC rule also defines an organization O and an activity A. In our case, the O corresponds to the unique organization considered in this paper which is the trusted authority (TA), and the activity A corresponds to the unique activity considered, which is the read activity. Let us note that, as the law identifies possible or prohibited access to data, only the Permission and Prohibition relationships are considered in the following (the Obligation and Recommendation relationships are not used in this method). Let us illustrate this step with the article 32 of the French Mobility Orientation Law. Paragraph 32(I)(2), translated in English, states:

In the event of a road accident, make data from accident data recording devices and driving delegation data recorded in the period preceding the accident accessible to officers and agents of the judicial police for the purpose of determining liability, as well as to the bodies responsible for the technical and safety investigations provided in Article L. 1621-2 of the Transport Code.

Using this example, the following OrBAC rule is generated:

Permission ( TA , police_force , accident , read , accident )

Access trees generation

Access trees generation from OrBAC security rules

This step corresponds to the execution of the get access tree function in Figure 4. This function takes an identity as input and behaves as follows. If the identity given as input is a vehicle or the storage center identity, the resulting access tree contains only one node which is the input identity. Otherwise, the identity given as input is a stakeholder identity. In such a case, the OrBAC rules are filtered to retrieve only the Permission rules that match the role of the stakeholder (i.e., the rules for which the R field matches the role of the stakeholder). For each rule, the trusted authority extracts the data type (V field of the OrBAC rule) and the contextual information (C field of the OrBAC rule) and generates a so-called role-string resulting from the logical AND of this information and the role considered: C AND V AND R. The final access tree associated to a stakeholder is the logical OR of his role-strings and his identity: (C1 AND V1 AND R) OR ... OR (Cn AND Vn AND R) OR IDst.

Transient access trees for sworn stakeholders

Trusted Authority Stakeholder Access

Tree generation Transient Access tree Fig. 6 Transient access tree generation method Some specific stakeholders can be sworn in by legal organizations. When a stakeholder is sworn in, it receives an order from a legal organization specifying which data it can access. The sworn stakeholder can ask the trusted authority a secret key to access to the information specified in the order. This access tree is a logical AND linking contextual information such as, for instance, a start date, an end date, a data type, and a position. The trusted authority generates the corresponding secret keys and grants it to the sworn stakeholder (as summarized in Figure 6). A stakeholder may desire to delegate its access to some specific data to another stakeholder. During delegation, the resulting secret key is produced with a more restrictive access tree than the original one and may include stakeholder-defined attributes. Such attributes are used to characterize the stakeholders who benefit from a delegated key. Stakeholders are assumed to be able to delegate a key to other stakeholders with whom they have a legal relationship such as a subsidiary, a subcontractor, an association, etc. All steps are summarized in Figure 7. Two cases of a more restrictive key delegation are considered: 1. Adding a child to an AND node. In this case, more attributes are required to satisfy the node. The additional child is a sub-tree containing stakeholderdefined attributes; 2. Removing a child of an OR node. In this case, less combination of attributes enable to satisfy the node.

Access tree delegation

Attributes generation

The attributes used to encrypt the messages to be sent are selected using the get attrs function (represented in Figure 5). This function takes as input an identity and the context of the data. In case of a vehicle identity, the context is used to 1) select attributes from two attribute sets (law attributes and driver attributes) and 2) to generate the contextual attributes. An attribute corresponding to the vehicle identity is also generated to enable the sending vehicle to access to the data it has sent. In case of the storage center identity, an empty context is given as input, and only one attribute corresponding to the storage center identity is forwarded as output. The following subsections describe in details the processes aiming at generating the attributes.

From OrBAC Permission rules to law attributes

This step corresponds to the Law Attrs extraction process in Figure 5. The trusted authority relies on the Permission rules to generate the law attributes. Generating this set is quite easy once the OrBAC security rules are established. The extraction of these attributes can be informally described as follows. For each rule, the data type (V), the context (C), and the role (R) are extracted and a couple ({V,C},R) is generated. The set of all couples is the law attribute set. This set is included in the vehicle during its manufacturing and must be updated when the laws are themselves modified. During a data encryption, the role is extracted from each law attribute that matches the type and the context of the data currently sent. The set of attributes used for encryption is simply the set of extracted roles from the law attributes.

Driver control on the attributes

At any time, the driver may add attributes for the ABE encryption of data, as long as they do not violate an OrBAC Prohibition rule. This may happen in two situations. First, the driver may consent to open his data to additional stakeholders and may decide to add roles/identities attributes corresponding to stakeholders of his choice. He may also add stakeholder-defined attributes to share his data with a stakeholder having a delegated key. Second, when a driver signed a contract with a particular stakeholder, the attributes corresponding to this contract must be added at encryption time. Such attributes may simply be the identity of the corresponding stakeholder or some stakeholder-defined attributes that are stipulated in the contract. In both cases, couples are formed specifying a context and data type that must be satisfied to generate the corresponding attributes. In the first case, the context and data type are specified by the driver and in the second case they are specified in the contract. During a data encryption, either the role/identity or the stakeholder-defined attribute is extracted from each couple that matches the type and the context of the data currently sent. The set of attributes used for encryption is simply the set of extracted roles/identities or stakeholder-defined attributes from the couples. This process corresponds to the Driver Attrs selection process in Figure 5.

Role/identity attributes When a driver wants to add role/identity attributes or when a contract specifies an identity attribute, this must be done in compliance with the law. If the considered data are not covered by any article of the law and thus by any OrBAC rule, then the driver may use any role/identity attribute. Otherwise, the considered data are covered by a matching OrBAC Prohibition rule (i.e., matching the role, the data type, and context), the driver/contract may only add attributes that do not conflict with such rules. Two situations can be considered:

1. The additional attribute is a stakeholder role, this role must not appear in any OrBAC matching Prohibition rules; 2. The additional attribute is a stakeholder identity, the role associated to the stakeholder must not be included in any OrBAC matching Prohibition rules.

For that purpose, a function that is able, from a stakeholder identity, to provide its role, is also embedded in the vehicle and regularly updated.

Stakeholder-defined attributes They may be freely added by a driver or through a contract. These attributes only concern delegated stakeholders and the drivers are assumed to know the attributes required to grant access to a delegated stakeholder.

Requirements satisfaction

This subsection summarizes how the method described in this section satisfies the R1 to R5 requirements. The R1 requirement is satisfied through the generation of access trees and attributes using the OrBAC Permission rules extracted from the legislation. The R2 requirement is satisfied through the use of driver's consent attributes during the Driver Attrs selection process and through the respect of OrBAC Prohibition rules while providing these attributes. The R3 requirement is satisfied by taking into account driver's contracts in the Driver Attrs selection process and OrBAC Prohibition rules while providing these attributes. The R4 requirement is satisfied through the Delegate process generating delegated access trees and the Driver Attrs selection process taking into account driver's consent attributes and driver's contracts. Finally, the R5 requirement is satisfied through the Transient Access Tree generation process generating transient access tree and the generation of contextual attributes in the vehicle.

Use case

This subsection presents a simple use case illustrating the previously described method (i.e., access trees and attributes generation and access control enforcement).

Context

The stakeholders considered are: a meteorological service (meteo), two police forces (policeA and policeB), a road infrastructure manager (infra) with three agencies, two in regionA (infraA1 and infraA2), and one in regionB (infraB1), an insurance (insur) employing a subcontractor (sc1) processing speed data only and a subcontractor (sc2) processing position data only. The roles of the different stakeholders are as follows:

id : meteo , role : meteo_service id : policeA , role : police_force id : policeB , role : police_force id : infra , role : road_infra id : insur , role : insurance id : sc1 , role : subcontractor id : sc2 , role : subcontractor Each stakeholder is considered as a legal entity. If a stakeholder has multiple agencies, each agency legally depends on the parent company. This applies to the three agencies (i.e. infraA1, infraA2, and infraB1) which depend on infra.

One vehicle called veh is considered. It is equipped with sensors generating data which types are: speed, pollution, position, temperature, road damage, and accident. To simplify the position representation, the world map is considered to be divided into tiles and a position corresponds to a specific tile, e.g., tile5. An accident data is emitted when the vehicle itself has an accident and is able to detect it. Six messages are considered which are sent by veh on 07-22-2021, they are presented in Table 4. 

Access control specification

As the articles of the law are still in draft form, the proposed articles are inspired from the article 32 of the French Mobility Orientation Law:

L1 Road infrastructure managers can access to the road damage data; L2 Police forces cannot access to the speed data; L3 In case of an accident, police forces can access to the accident data; L4 In case of an accident, a police force can be sworn in and then can access to the position data before the accident.

It is considered that:

using L4, policeA obtains an order to be sworn in to access to the position data before the accident in M6 (i.e., the position data in M2); the driver has signed a pay-as-you-drive contract with insur which stipulates that the speed data must be accessible by insur and sc1; the driver consents to share the position data with the road infra role and its agencies in regionA, the temperature data with meteo, the speed data with the police force role and with policeB.

To summarize in term of access control objectives: 1. the pollution data from M1 must be accessible by nobody, excepts veh, as no access control specification identifies the stakeholder that can access a pollution data; 2. the position data from M2 must be accessible by policeA since it has been sworn in, and by infra, infraA1, and infraA2 as the driver consents to share its position data with infra and its agencies in regionA; 3. the temperature data from M3 must be accessible only by meteo as the driver consents to share it with meteo only; 4. the road damage data from M4 must be accessible by infra, infraA1, infraA2, and infraB1 as L1 specifies that each road infrastructure manager can access to the road damage data; 5. the speed data from M5 must be accessible by insur and sc1 as it is specified in the pay-as-you-drive contract; 6. the accident data from M6 must be accessible by policeA and policeB as L3 specifies that the accident data is available to the police forces; 7. all data must be accessible by veh.

Let us note that, even if the driver consents to share its speed data with policeA and policeB, as L2 prevents him to share this data, they must not have the right to access to it. The corresponding access control matrix is represented in Table 5.

Access control enforcement

Attributes list

Each attribute is defined with a prefix and a value. Stakeholder roles/identities attributes:

stakeholder roles prefixed with st role:, possible values are meteo service, police force, road infra, insurance, and subcontractor; stakeholder identities prefixed with st id:, the possible values are meteo, policeA, policeB, infra, insur, sc1, and sc2.

Contextual attributes:

the date prefixed with date: (e.g., date:07-22-2021);

the hour prefixed with hour: (e.g., hour:08-31); the position prefixed with position: (e.g., position:tile10); the data type prefixed with type:, the possible values are pollution, position, temperature, road damage, speed, and accident; a contextual label prefixed with label:, the value accident is the only value considered, i.e., label:accident.

Stakeholder-defined attributes are prefixed with st attr:, the values considered in this use case are regionA, regionB, speed, and position. Finally, the vehicle identity is also an attribute that is prefixed with v id: (i.e., v id:veh).

Vehicle Access tree

The trusted authority generates the vehicle access tree which solely contains the vehicle identity:

veh : v_id : veh

Access trees from the articles of the law Three OrBAC rules are generated from the articles L1, L2, and L3:

Permission ( TA , road_infra , road_damage , read , *) Prohibition ( TA , police_force , speed , read , *) Permission ( TA , police_force , accident , read , accident )

Let us note that the L4 rule cannot be used to generate OrBAC rules as this rule is dedicated to the sworn in process and is used by the trusted authority when generating transient access trees.

From the OrBAC rules, the following access trees are generated by the trusted authority: Let us note that, the access tree for stakeholders with no matching OrBAC rules is only composed or their role and identity. Access trees from delegation Two cases of delegation are considered: infra delegates its secret key to its agencies by adding an AND with the region of its agency and insur delegates its secret key to its subcontractors with an AND for each type of data:

infraA1 / infraA2 ( delegated ):

( st_role : road_infra AND type : road_damage ) OR ( st_id : infra AND st_attr : regionA ) infraB1 ( delegated ):

( st_role : road_infra AND type : road_damage ) OR ( st_id : infra AND st_attr : regionB ) sc1 ( delegated ): st_role : insurance OR ( st_id : insur AND st_attr : speed ) sc2 ( delegated ): st_role : insurance OR ( st_id : insur AND st_attr : position )

Transient access tree

As policeA is sworn (L4 rule), it obtains a transient key from the trusted authority, due to the occurrence of an accident, containing the following access tree: Attributes from the articles of the law In the vehicle, using the OrBAC rules, the following law attributes are generated:

(( type : accident , label : accident ) , st_role : police_force ) (( type : road_damage ) , st_role : road_infra )

Attributes from driver's contract

From the pay-as-you-drive contract, two attributes are added when a speed data is emitted, one specifying the identity insur and one specifying the stakeholderdefined attribute speed:

(( type : speed ) , st_id : insur ) (( type : speed ) , st_attr : speed )

Attributes from driver's consent From driver's consent, meteo can access the temperature data using its identity and the infrastructure managers in regionA can access the position data using the infra identity and the regionA stakeholder-defined attribute:

(( type : temperature ) , st_id : meteo ) (( type : position ) , st_id : infra ) (( type : position ) , st_attr : regionA )

Let us note that no attributes are selected from driver's consent for the access of the police force role and the policeB identity to the speed data as the vehicle filters the role and identity using the OrBAC Prohibition rule.

Attributes generation for the data sending events For the six data sending events, from M1 to M6, the following attributes are selected: 

Access control evaluation

Taken into account the attributes associated to the six events and the access trees of the different stakeholders described above, the access control objectives are verified:

1. the pollution data emitted at M1 cannot be accessed by any stakeholder; 2. the position data from M2 is accessible by policeA through its transient key, by infra through the attribute st role:road infra, and by infraA1 and infraA2 through the attributes st role:road infra and st attr:regionA;

3. the temperature data from M3 is only accessible by meteo through the attribute st id:meteo; 4. the road damage data from M4 is accessible by infra, infraA1, infraA2, and infraB1 through the attribute st role:road infra; 5. the speed data from M5 is accessible by insur through the attribute st id:insur and by sc1 through the attributes st id:insur and st attr:speed; 6. the accident data from M6 is accessible by policeA and policeB through the attributes st role:police force, type:accident, and label:accident; 7. all data are accessible by veh through the attribute v id:veh.

These results are consistent with the access matrix in Table 5 and show that the attribute and access tree generation method is relevant to enforce the access rights described in the matrix.

Performance evaluation

This section is dedicated to the evaluation of the protocol performances with a presentation of the prototype developed to conduct these experiments, the experimental protocol, and the experimentation results regarding the execution time, the memory consumption, and the message size.

Implementation details

The security protocol is implemented in C language 5 , using the KP-ABE algorithms provided by the Open-ABE library [START_REF] Waters | Openabe[END_REF]. This library, developed by Zeutro in C++, relies on the RELIC library [START_REF] Aranha | RELIC is an Efficient LIbrary for Cryptography[END_REF] to perform the low level cryptographic operations and provides an adapted implementation of KP-ABE large universe construction of [START_REF] Goyal | Attributebased encryption for fine-grained access control of encrypted data[END_REF], which is a pairing based implementation. The symmetric encryption algorithms are implemented using AES in CTR mode from OpenSSL libcrypto library. This mode was chosen as a stream encryption was needed to not expand the size of the ciphertext, others AES modes offering various properties can be used instead of the CTR mode. As a suitable group signature implementation was not available, the signature implementation relies on a classic asymmetric signature from OpenSSL libcrypto library. The signature performs a digest using SHA256 and outputs the signature using ECDSA on the brainpoolP512r1 curve. 

Experimental protocol

The benchmarks were performed on a Raspberry Pi 3 B+ chosen for its similarity with the resources of a vehicle ECU. It has a 1.4GHz 64-bit quad-core processor (ARMv8) and a 1GB RAM. Three benchmarks were performed: a time benchmark, a size benchmark, and a memory benchmark.

Time benchmark

The execution time in millisecond of the steps 1 and 3 is evaluated. The measurements were performed using the processor performance counter and then converted to milliseconds. To reduce the counter variation, the processor was set to its maximum frequency and the benchmark process was isolated on a single core using cset shield. This benchmark was performed with a number of attributes varying from 1 to 31 per step of 2. For each number of attributes, the size of the data to be sent in step 3 varies from 1 byte to 4096 bytes per power of 2. Finally, for each combination of number of attributes and message size, 1024 iterations were performed.

Size benchmark

The size in bytes of the message produced after the execution of the step 3 is evaluated. It was performed with a number of attributes varying from 1 to 31 per step of 2. For each number of attributes, the size of the data to be sent in step 3 varies from 1 byte to 4096 bytes per power of 2. Finally, for each combination of number of attributes and message size, 16 iterations were performed. 

Memory benchmark

The maximum size in kilobytes of the heap and stack memory regions of step 1 and step 3 is evaluated. The measurements were performed using the Massif tool of Valgrind which profiles the heap and stack size. It was performed with a number of attributes varying from 1 to 31 per step of 2. For each number of attributes, the size of the data to be sent in step 3 varies from 1 byte to 4096 bytes per power of 2. Finally, for each combination of number of attributes and message size, 16 iterations were performed.

Experimentation results

In the following graphs, the dots represent the data and the curves represent the corresponding linear regression.

Time benchmark

The execution time of step 3 is first evaluated as step 3 regularly performs ABE encryptions and is definitely the most time consuming primitive. Figure 8 represents the average execution time of step 3 for different sizes of data in the case of 1, 3, 7, 15, and 31 attributes. As illustrated in this figure, the execution time is a nearly constant function of the size of the data to be sent. This demonstrates that the size of the data does not have any significant impact on the execution time of step 3. In fact, the OpenABE library implements the ABE encryption algorithm as a Key Encapsulation Mechanism. This algorithm first generates a key that is encrypted with ABE, then the key is used to encrypt the data using AES. As the AES encryption time is low in comparison with the remaining of the operation performed in step 3, the increase in the size of the data has not a significant impact on the total execution time of step 3. In the following, we chose to focus on a 64 bytes data, which is realistic in the context of a data that may be regularly sent by connected vehicles, and on a 4096 bytes data, which represents a worst case scenario.

The impact of the number of ABE attributes on the execution time of step 1 and 3 is evaluated. ments show that the execution time of the encryption process is acceptable and may not significantly impede the performances of the ECU embedded in the vehicle.

Size benchmark

This benchmark was dedicated to the evaluation of the size of the messages produced by step 3 (M3 in Figure 2), and, as a direct consequence, the network bandwidth required to send the messages. To finalize the evaluation of the message size, a worst case is considered in which the vehicle outputs the whole messages that are exchanged on the CAN Bus. The bandwith of the CAN Bus is 1 Mbps [START_REF]Road vehicles -controller area network (can)part 2: High-speed medium access unit[END_REF], so it is considered that a message of 1 Mb with 31 ABE attributes must be sent each second. The required bandwidth for the network connection is then 1.4 Mbps which should not be supported by a 3G connection, but can be supported by 4G or 5G connections.

Memory benchmark

Finally, the maximum heap and stack size required for the execution of step 1 and step 3 is evaluated. Figure 12 represents the average maximum size of the heap and stack of step 1 and step 3, for different number of attributes, in the case of a 64 bytes data. This figure shows that 1) for step 1 and step 3, the maximum stack size is nearly constant with less than 20 kB; 2) for step 1, the maximum heap size is nearly constant and does not exceed 220 kB; and 3) for step 3, the maximum heap size linearly increases w.r.t to the number of attributes and does not exceed 240 kB for attributes between 1 and 31. This size represents less than 0.1% of the whole Overall, these benchmarks show that the resource consumption, in terms of memory occupation, execution time and bandwidth, is acceptable in the context of an ECU embedded in a vehicle.

Discussions and Future works

From a theoretical viewpoint, this solution provides a sufficiently generic approach to handle the main challenges raised by the integration of the legislation in connected vehicles. However, several rooms of improvement are required to maintain the effectiveness of the approach in the following years. Three main challenges still need to be tackled:

1. the efficient integration of post-quantum compliance; 2. the vehicles' anonymity; 3. the inference attacks through queries.

For the first point, existing post-quantum ABE schemes are sufficiently expressive to construct the access trees required for the legislation enforcement. Nevertheless, they still require theoretical improvements before their adoption in practice. As presented in Section 4, to achieve adaptive security, constraints must be applied to the access tree. For instance, construction from Tsabary et al. [START_REF] Tsabary | Fully secure attribute-based encryption for t-cnf from lwe[END_REF] requires access trees to be represented in Conjunctive Normal Form (CNF), which differs from the natural derivation of access trees from the law. The transformation to CNF is possible, but increases the span of the tree, impacting both ciphertext and key sizes, and computation times. The same discussion stands for concurrent post-quantum ABE schemes. Another point is the lack of large universe constructions. Basically, to support the access of uploaded data by the vehicle itself, the identity is encoded as an attribute. Current post-quantum ABE schemes do not scale well when the universe of attributes is large. Once again, such limitation impacts both ciphertext and key sizes, and computation times. The protocol remains fully compatible with pairing-based ABE schemes, which are considered mature but are vulnerable to a quantum adversary.

For the second point, the anonymity of the vehicle cannot be guaranteed because the identity of the vehicle is included in the list of attributes. In the ABE cryptographic scheme currently used in the protocol, the attributes are sent in plaintext and as a consequence, the identity of the vehicle that sends data is not confidential. Some other ABE cryptographic schemes enable to hide the attributes (these schemes are so-called hiddenpolicy) but they may not necessarily be post-quantum compliant and we still have to investigate these issues.

For the last point, in the current version of the protocol, the inference attacks that may be possible through the observation of the different queries are not considered. Such attacks are still possible and would allow the storage center and possible attackers observing the communications to infer some information about the vehicle and, as a consequence, to the driver himself. Some suited countermeasures are still to be investigated to overcome these issues.

A last future work can be considered to improve the protocol performances. When a data needs to be sent by the vehicle, the S key K in the step 3 of the Secure vehicle data send scenario (Subsection 5.3.2) can be reused as a short-lived session key. This improvement would reduce the time between two emissions of messages, nevertheless, as previously stated in the Performance Evaluation section (Section 8), without this optimization the performances of the protocol are still acceptable.

Conclusion

In this article, a security protocol allowing to implement fine-grained access control mechanisms on the data emitted by connected vehicles is presented. This protocol mainly relies on an ABE cryptographic scheme, satisfies suited security properties formally proven with the ProVerif tool, and is designed to be post-quantum compliant. Furthermore, this protocol takes into account the legislation to generate the adequate access trees for the different stakeholders and the attributes used during data encryption. For that purpose, this article also describes a semi-automated process based on the OrBAC formalism and a specific use case illustrating the process. Finally, the performances of the protocol have been evaluated in terms of computation time, memory consumed, and message size, and show that the performances of the protocol are acceptable in a connected vehicle context. Future work is directly connected to the challenges identified in Section 9. We plan to investigate the size of the attribute universe and identify, if necessary, a suited compromise to satisfy current postquantum constraints. Finally, we also plan to study solutions to grant anonymity to vehicles and to prevent the possible inference attacks. 
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  abe_pkgen(abe_mk)) ;

Table 1

 1 Feature comparison of the proposal with other related works, represents a satisfied property and represents an unsatisfied property

	Automatic

Table 2

 2 Protocol symbols

	Description	Symbol
	Vehicle Nonce	Nv, Xv
	Storage center Nonce	Nsc, Xsc
	Stakeholder Nonce	Nst, Xst
	Data	D
	Context	C
	Message	M1, M2, M3, M4
	Attribute List	L, L1, L2
	Query	R
	S Ciphertext	C2, C3
	S Key	K
	ABE Master Key	MK
	ABE Public Key	PK
	Vehicle ABE SK	SKv
	Storage center ABE SK SKsc
	Stakeholder ABE SK	SKst
	ABE Ciphertext	C1, CD
	GS Master Key	SIG MK
	GS Public Key	SIG PK
	Vehicle GS SK	SIG SKv
	Storage center GS SK	SIG SKsc
	Stakeholder GS SK	SIG SKst
	GS Signature	S1, S2, S3, SD

  The queries Q12 and Q13 (resp. Q14 and Q15) ensure that, if a vehicle (resp. a stakeholder) is able to read a data from a message, then this message is necessarily stored within the storage center and this message has been sent by a registered vehicle. Query Q16 ensures that, if a storage center stores a message, this message has been sent by a registered vehicle. Query Q17 verifies that, if an attacker is able to read a data, this necessarily implies that a secret key has been leaked and that the attacker cannot read more data than this key allows. These queries together participate in the verification of the properties presented in Section 2.4. The verification of the property P1 is deduced from queries Q12 to Q15. The verification of the property P2 is deduced from the query Q16. The property P3 is deduced from queries Q12 and Q13. The vehicle can read messages but only those it has sent. The verification of the property P4 is deduced from queries Q14 and Q15. The stakeholder can read messages but only those stored within the storage center.

Table 3

 3 Security properties and verification results, represents a satisfied property and represents an unsatisfied property

	Query id Security property

&& event(storage write(abe enc(msg 3,ext attrs(a 3,va 2),abe pkgen(abe mk[])))) ==> event(vehicle leak(va 2,abe skgen(vap 2,abe mk[]))) || (event(stakeholder leak(sap 2,abe skgen(sap 2,abe mk[]))) && event(stakeholder conj(sap 2,a 3)))

Table 4

 4 Messages on 07-22-2021

	ID	Time	Tile	Data type
	M1	09:55:20	tile5	pollution
	M2	09:55:30	tile5	position
	M3	09:55:40	tile6	temperature
	M4	09:58:05	tile6	road damage
	M5	09:59:00	tile6	speed
	M6	10:00:00	tile7	accident

Table 5

 5 Access rights matrix representing the access control objectives, represents an authorized access and represents

	a forbidden access
	M1 M2 M3 M4 M5 M6
	meteo
	policeA
	policeB
	infra
	infraA1
	infraA2
	infraB1
	insur
	sc1
	sc2
	veh

Table 6

 6 

	and 7 represent the execution time of step 1 and step 3,
	respectively in case of a 64 bytes and 4096 bytes data for
	different number of attributes, and Figure 9 represents
	the execution time of step 1 and step 3 in case of a
	64 bytes data for different number of attributes. These
	tables and figure show that 1) the execution time of step
	1 is nearly constant, which is not surprising as this step
	is a connection step with only one ABE attribute; 2)
	the execution time of step 3 linearly increases w.r.t to
	the number of attributes; and 3) the absolute execution
	time of step 1 (21.45-27.36 ms) and step 3 (32.06-122.44
	ms) remains reasonable in a connected vehicle scenario.
	Even with 31 attributes, the execution time of step 3 is
	in average 114.71 ms for a 64 bytes data, which enables
	approximately 8 step 3 per second, this is perfectly re-
	alistic in a real context. Extrapolating on these data, to
	reach an execution time of one second, the number of at-
	tributes should be set to 361. This number of attributes
	is large enough to include complex scenarios of a real
	case implementation of the legislation. Furthermore, let
	us note that the experiments have been carried out on
	a Raspberry Pi and that the implementation as well as
	the OpenABE library were not optimized. The execu-
	tion time would reduce if an optimized implementation
	and optimized library were used. Overall, these experi-

Table 6

 6 Execution time w.r.t the number of attribute for a 64 bytes data

	attribute		step 1 (ms)			step 3 (ms)	step 3 (Hz)
		min	max	avg	med	min	max	avg	med
	1	21.74 25.94 23.43	23.4	32.06	37.46	34.1	34.08	29
	3	21.8	26.87 23.44 23.42	37.65	42.47	39.49	39.45	25
	5	21.98 25.89 23.43 23.41	42.65	50.73	44.89	44.81	22
	7	21.91 25.62 23.45 23.41	47.81	54.26	50.26	50.19	19
	9	21.76 25.63 23.41 23.38	52.83	59.37	55.62	55.5	17
	11	21.55 25.35 23.43 23.41	58.1	64.72	60.96	60.89	16
	13	21.87 25.89 23.46 23.43	63.18	72.17	66.35	66.26	15
	15	21.77 25.84 23.44	23.4	68.02	77.87	71.67	71.55	13
	17	21.77 25.59 23.46 23.44	72.44	81.76	77.0	76.88	12
	19	21.53 25.92 23.46 23.44	78.43	88.51	82.41	82.28	12
	21	21.65 26.47 23.42	23.4	83.82	94.78	87.86	87.83	11
	23	21.91 25.79 23.44	23.4	88.98	100.28	93.14	93.03	10
	25	21.94 25.11 23.45 23.43	93.93	105.05	98.42	98.32	10
	27	22.05 26.06 23.44	23.4	98.88	110.83 103.93 103.87	9
	29	21.93 26.64 23.44 23.41	103.97 116.63 109.18 109.06	9
	31	21.53 26.24 23.45 23.43	108.85 121.43 114.71 114.59	8

Table 7

 7 Execution time w.r.t the number of attribute for a 4096 bytes data

	attribute		step 1 (ms)			step 3 (ms)	step 3 (Hz)
		min	max	avg	med	min	max	avg	med
	1	21.67 26.49 23.47 23.41	33.61	38.37	35.21	35.18	28
	3	21.79 25.49 23.45 23.45	38.9	43.38	40.58	40.52	24
	5	21.97 27.36 23.41 23.38	43.68	50.16	45.89	45.8	21
	7	22.06 25.33 23.45	23.4	48.76	56.74	51.29	51.26	19
	9	21.62 25.32 23.44 23.42	54.07	60.93	56.67	56.59	17
	11	21.93 26.65 23.46 23.43	58.81	66.43	62.02	61.94	16
	13	21.88 25.59 23.46 23.42	64.15	72.35	67.37	67.29	14
	15	21.85 25.83 23.48 23.45	69.55	79.16	72.78	72.73	13
	17	21.54 25.64 23.42	23.4	74.63	83.01	78.14	78.05	12
	19	21.45 25.93 23.43	23.4	79.26	88.62	83.49	83.31	11
	21	21.99 25.57 23.45 23.43	84.67	94.17	88.88	88.77	11
	23	21.97 26.52 23.47 23.45	89.07	102.84	94.26	94.2	10
	25	21.72 26.13 23.44 23.42	95.15	106.38	99.64	99.57	10
	27	22.06 25.87 23.45 23.43	100.72 111.85 105.11	105	9
	29	21.9	27.18 23.46 23.44	105.11 118.26 110.39 110.36	9
	31	21.86 25.34 23.45 23.41	109.34 122.44	115.8	115.73	8

Table 8

 8 

	and Figure 10

in case of 1, 3, 7, 15, and 31 attributes. These table and figures show that 1) the message size linearly increases w.r.t to the number of attributes; 2) the message size linearly increases w.r.t to the data size; and 3) for a 64

Table 8

 8 

					9,000	31 attributes
					8,000	15 attributes 7 attributes
					7,000	3 attributes
				Message Size (B)	3,000 4,000 5,000 6,000	1 attribute
					2,000			
					1,000			
					0			
						500	1,000	1,500	2,000	2,500	3,000	3,500	4,000
								Data Size (B)
				Fig. 11 M3 size w.r.t the data size for 1, 3, 7, 15, and 31
				attributes			
	M3 size w.r.t the number of attribute for a 64 bytes					
	and 4096 bytes data			kbps network bandwidth, which should not be supported
	attribute 64 (B) 4096 (B)	by a 3G connection. This estimation was realized by considering that the data are sent at the maximum rate,
	1	723	6104	which may not probably be the case for data of 4096
	3	867	6244	bytes. Such messages may rather correspond to batch
	5	1007	6388	data that are sent less frequently. If a lower sending rate
	7	1149	6527	is considered, for example executing step 3 each second
	9	1292	6667	with a 4096 bytes data and 31 attributes, the required
	11	1431	6811	bandwidth becomes 65.79 kpbs which is compliant with
	13	1573	6951	any 3G or 4G or 5G vehicle connection.
	15	1716	7091					
	17	1856	7235					
	19	1995	7377					
	21	2140	7516					
	23	2279	7659					
	25	2420	7799					
	27	2563	7939					
	29	2703	8083					
	31	2843	8224					
	bytes data, the cipher expansion is 11.3 for 1 attribute,					
	and 44.4 for 31 attributes. Considering a 64 bytes data					
	with 31 attributes, and, according to the previous ex-					
	periments, 8 executions of the step 3 per second, the					
	sending of the messages requires approximately 181.95					
	kbps network bandwidth. The website of the Interna-					
	tional Telecommunication Union [28] specifies that the					
	3G provides a minimum speed of 348 kbps for a moving					
	vehicle, which means that the required bandwidth for					
	the protocol can be supported by 3G/4G/5G vehicle					
	connections.							
	However, with a 4096 bytes data with 31 attributes, the					
	same sending of messages requires approximately 526.34					

  5 fun gs_sign(bitstring, gs_skey): bitstring. 6 7 reduc forall m: bitstring, mk: gs_mkey, i: attrs ; 8 gs_msg(gs_sign(m, gs_skgen(i, mk)), gs_pkgen(mk)) = m. table list_stakeholders_sk(accessp, abe_skey). 4 table list_vehicles_sk(accessp, attrs, abe_skey). 5 table list_bolts(accessp, attrs, bitstring).

	I Global tables
	J Attribute creation process
	1 let create_list_conjs() =

1 table list_conjs(attrs). 2 table list_msg(bitstring). 3 2 !( new a: attrs ; 3 insert list_conjs(a) ;

https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000

https://www.bmwgroup.com/en/innovation/technologiesand-mobility/cardata.html

https://support.parkmobile.io/hc/en-us/articles/ 360058639032-Update-Security-Notification-March-2021, https://support.wattpad.com/hc/en-us/articles/3600461413 92-FAQs-on-the-Recent-Wattpad-Security-Incident

1 https://eur-lex.europa.eu/legal-content/EN/TXT/