
Facing Emerging Challenges in Connected Vehicles: A Formally Proven,
Legislation Compliant, and Post-Quantum Ready Security Protocol

Rémi Adelin · Cyrius Nugier · Éric Alata · Vincent Nicomette ·
Vincent Migliore · Mohamed Kaâniche

Abstract Modern vehicles are expected to integrate a

variety of connectivity features to enrich safety, enter-

tainment, and driver comfort. This connectivity raises
confidentiality and privacy concerns with the risk for

the driver to lose control on his data. As vehicles are

intended to be used for several years, a major challenge

is also to design stable but flexible solutions that can

withstand changes in legislation as well as advances
in cryptography. Legal frameworks are currently being

investigated and implemented to regulate the use of

drivers’ and vehicles’ private information. However, the

transcription of these regulations in practice remains an

open problem.

In this paper, the first formally proven security pro-

tocol for connected vehicles is proposed. It enforces a

fined-grained access control policy while providing the

flexibility to support recent schemes resistant to a quan-

tum adversary. Its detailed security analysis is assessed

using the ProVerif formal verification tool. In addition,

a method to generate the access control policy in com-

pliance with the laws is proposed along with an illus-

trating use case. The method supports both legislation

and driver access control to data. Finally, a performance

evaluation of the security protocol is provided.

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse,
France E-mail: {remi.adelin, cyrius.nugier, eric.alata, vin-
cent.nicomette, vincent.migliore}@laas.fr
LAAS-CNRS, CNRS, Toulouse, France E-mail:
{mohamed.kaaniche}@laas.fr

This version of the article has been accepted for publication,
after peer review (when applicable) but is not the Version of
Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online
at: http://dx.doi.org/10.1007/s11416-022-00426-1. Use of
this Accepted Version is subject to the publisher’s Accepted
Manuscript terms of use https://www.springernature.com/g

p/open-research/policies/accepted-manuscript-terms

Keywords Vehicle data protection · Formally proven

security protocol · Attribute-Based Encryption ·
ProVerif · Legislation compliant · Post-quantum ready

1 Introduction

In the near future, vehicles are expected to include more

and more connectivity features to improve safety and en-

tertainment and to provide additional services to drivers

such as real-time navigation and traffic monitoring. In
such scenarios, vehicles are expected to communicate

their data to various stakeholders and other vehicles

through a data storage center, typically a cloud, that

acts as an intermediary with stakeholders and can ease

data processing and sharing.

Outsourcing this data raises security concerns, as the

storage center may have vulnerabilities that may be
exploited by attackers to breach the confidentiality, in-

tegrity or availability of data. The storage center may

also be honest-but-curious and try to read or take ad-

vantage of drivers’ data. Therefore, it is essential to de-

sign security protocols based on suitable cryptographic

schemes to protect the exchange and storage of messages

in such a connected vehicle environment.

Moreover, the access control to data emitted by the

vehicles is, most of the time, managed by the vehicle

manufacturers, who can freely decide which stakehold-

ers can or cannot access specific data and under which

conditions. However, it is fundamental that this access

control management is performed in compliance with

laws and regulations that aim to protect users privacy

and allow drivers to keep some control over their data

(such as the European General Data Protection Regula-

tion1 and some specific national laws such as the French

1https://eur-lex.europa.eu/legal-content/EN/TXT/PDF

/?uri=CELEX:32016R0679

http://dx.doi.org/10.1007/s11416-022-00426-1
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

2 Rémi Adelin et al.

Mobility Orientation Law2 for instance). Technical solu-

tions must take into account the legislation and, as it is

constantly changing, anticipate its evolution.

To enforce fine-grained data access control, some cryp-

tographic schemes have been proposed, among them

Attribute-Based Encryption (ABE) seems particularly

suitable to this context [17]. Relying on a notion of

attributes and access trees, ABE schemes have been de-

signed to integrate access control in the encrypted data

such that only the authorized stakeholders (i.e., those

who are able to decrypt the ciphertext) can access the
data. On the other hand, since the lifespan of vehicles

is quite long, about ten years or more, it is important

to ensure that the cryptographic algorithms embedded

in the vehicles remain secure during this period. In par-

ticular, they must be chosen so that they can be easily

adapted to resist to upcoming quantum attacks.

Although some papers have proposed the use of ABE

schemes in the context of connected vehicles to control

access to vehicle data, they suffer from the following

limitations: 1) to the best of our knowledge, the propo-

sitions do not handle the emerging problem of quantum

attackers and relies on vulnerable cryptographic schemes;

2) they do not properly handle the legislation in the

access control policy; and 3) these papers are, most of

the time, dedicated to the description of cryptographic

primitives but do not propose a formally proven security

protocol, relying on these primitives.

The purpose of this paper is to handle these limitations.

The first formally proven, post-quantum, and legislation

friendly protocol for connected vehicles is proposed. It

relies on the derivation of an access control policy from

the law that allows the driver to have increased control
on his data.

The main contributions of the paper are summarized

below:

– a novel formally proven security protocol for con-

nected vehicles:

– which enforces a fine-grained access control;

– and is generic enough to include post-quantum

algorithms.

– a method to derive an access control policy

from the legislation, that supports drivers service

subscriptions and sharing preferences. This method

also supports a transient data access for sworn

stakeholders in specific situations and is compatible

with the proposed protocol, illustrated by means of

a typical use case;

– a performance evaluation of the security pro-

tocol in terms of execution time, memory consump-

tion, and messages size.

2https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000

039666574

The paper is organized as follows. Section 2 specifies the

context of this work and the challenges addressed, the

entities and data flow, as well as the attacker model, the

security properties, and the access control policy require-

ments that need to be considered. This section concludes

with a summary of the proposal that is designed to fulfill

these properties and requirements. Section 3 discusses

related work addressing the security of connected vehi-

cles communications. Section 4 recalls some important

definitions about the cryptographic schemes on which

the security protocol is built. In particular, the use of
ABE cryptographic schemes is motivated and discussed

in a post-quantum context. Section 5 presents in de-

tail the security protocol and describes the enforcement

of the security properties, as well as the different sce-

narios that compose the protocol. Section 6 presents

the protocol formal verification using the ProVerif tool

and describes the ProVerif syntax required to specify

the properties, the simplification considered to model

the protocol, and the protocol verification. Section 7

proposes a method to derive the ABE cryptographic

components (attributes used to encrypt the messages as

well as the access trees used to generate the decryption

keys) according to the legislation, the driver’s consent

and contracts. This section ends with a use case illus-

trating this method. Section 8 presents the experiments

carried out to assess the performances of the security

protocol. Section 9 discusses some remaining challenges

of the approach and Section 10 draws conclusions and

outlines some directions for future work.

2 Context and problem statement

Currently investigated connected vehicle architectures

with enhanced on-board capabilities are designed to

regularly send data about the state of the vehicle or of

its environment. Nevertheless, an efficient data manage-

ment system is required to store this data. Conventional

architectures (such as 3) rely on a centralized archi-

tecture for the storage center. This data is expected

to be used by many stakeholders who have to connect

to the storage center to retrieve it. Such a centralized

architecture is illustrated in Figure 1. Generally, dur-

ing communication, data is encapsulated in a message

before being sent. Then, each legitimate recipient can

de-encapsulate the message to retrieve the data. In the

remainder of this paper, an encapsulated data is called a

message and a de-encapsulated message is called a data.

This section presents the entities involved in the archi-

tecture, the data flow, the attacker model, the security

3https://www.bmwgroup.com/en/innovation/technologies-

and-mobility/cardata.html

https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000039666574
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000039666574
https://www.bmwgroup.com/en/innovation/technologies-and-mobility/cardata.html
https://www.bmwgroup.com/en/innovation/technologies-and-mobility/cardata.html

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 3

properties, and the access control policy requirements

to be verified. It concludes with a discussion of relevant

security issues of current architectures and the proposal

to deal with these issues.

2.1 Entities involved

Existing architectures typically involve four entities: the

manufacturer, the vehicles, the storage center, and the

stakeholders. The Manufacturer of the vehicles (bus,

cars, trucks, etc.) is most often considered responsible

of the storage center deployment and the access control

policy. Vehicles are operated by drivers and regularly

send data to the storage center, by means of messages.

The Storage Center stores the messages and delivers

them through dedicated queries. It is usually deployed

in clouds. Stakeholders are connected to the storage

center to retrieve the relevant messages through dedi-

cated queries. They can include public services (police,

courthouse, etc.) or private companies (IT companies,

insurance companies, etc.).

Cloud

Insurance
Equipment

SupplierManufacturer
Service
Provider

Wireless network
Wired network

...

Fig. 1 Conventional architecture

2.2 Data flow

Such architectures must handle three different scenarios.

(Scenario S1) A vehicle must be able to send messages

to the storage center and the storage center has to store

these messages. (S2) A stakeholder must be able to

query the storage center to retrieve the messages it is

authorized to read and the storage center has to deliver

the corresponding messages. (S3) A vehicle must be able

to query the storage center to retrieve its own messages

and the storage center has to send the corresponding

messages back to the vehicle.

2.3 Attacker model

External attackers and honest-but-curious legitimate

entities of the system are considered.

An external attacker is an illegitimate participant in the

communication. It is assumed that such an attacker has
access to all messages exchanged on the network. This

pessimistic scenario is purposely considered, though in

real situations, an external attacker is unlikely to be

able to successfully intercept all messages. The attacker

is also supposed to know all the cryptographic schemes

used during the communication and all the associated

public information (i.e., public keys), but does not have

access to secret information (i.e., master and secret

keys). The operations that an attacker can perform are

specified in the Dolev-Yao model [16]. For instance, he

can retrieve a message, modify a message, encrypt a

message, inject a message, or perform a man-in-the-

middle attack.

An honest-but-curious legitimate participant is supposed

to perform its operations correctly, but may try to ob-

tain more information about the messages received le-

gitimately without cooperating with other parties. For

instance, a stakeholder or the storage center may try

to decrypt a ciphertext it has received even though it

is not supposed to be the legitimate recipient of this

ciphertext. Such a situation is considered to be similar

to an external attacker possessing the secret information

of the honest-but-curious participant.

The Dolev-Yao model is limited as it does not consider

the leak of secret information. Since a secret informa-

tion leak cannot be excluded, even if unintentional, the

impact of such a leakage must be duly analyzed. The

Canetti-Krawczyk model [11] extends the Dolev-Yao

model by considering such leaks. In the attacker model

of this paper, the Canetti-Krawczyk model is partially

taken into account. Actually, the leak of secrets keys

enabling to prove the identity of the emitter is not con-

sidered, but the leak of the secret keys of either the

vehicle, the storage center, or the stakeholder, enabling

4 Rémi Adelin et al.

the attacker to decrypt the corresponding encrypted

messages, is considered and discussed in Section 6.

2.4 Security properties

Security properties are identified in the following, they

take into account the attacker model previously de-

scribed. These are high level properties, which do not

consider the implementation details of the architecture.

The first properties deal with integrity and authenticity.

(P1) The legitimate recipient of a message sent by a

vehicle must be able to check its integrity and thus detect

its potential corruption by an attacker. (P2) The storage

center must be able to identify whether the messages

received come from a legitimate vehicle registered with

the manufacturer or not.

The following properties deal with permissions. (P3) A

vehicle must have the right to access to the data in a

message that it has previously sent. Such a property is

all the more important as it relates to drivers privacy

as stated in the European General Data Protection

Regulation. (P4) A stakeholder must be able to access

to the data in a message for which it has been authorized.

The next properties deal with confidentiality. (P5) The

storage center must not be able to recover the data con-

tained in the messages. (P6) A recipient who retrieves a

message must not be able to access the included data if it

has not been authorized. This property is essential con-

sidering that many recent leaks of private information

from storage centers have been reported4.

2.5 Access control policy requirements

As previously stated, an important issue in such security

architectures is the derivation of an access control policy

complying with the legislation. For that purpose, the

following five requirements must be satisfied. (R1) The

security policy must be compliant with the article of the

laws that define a set of permissions and prohibitions re-

garding some stakeholders. The article 32 of the French

Mobility Orientation Law is an example of article that

stipulates such rules. Nonetheless, the legislation does

not explicitly refer to a member of a company but rather

refers to functions or roles of stakeholders. Therefore,

from our point of view, the compliance to the legislation

seems to be naturally transposed to a role-based ap-

proach. (R2) Driver’s consent must be handled by the

access control policy. Each driver can consent to share

4https://support.parkmobile.io/hc/en-us/articles/

360058639032-Update-Security-Notification-March-2021,
https://support.wattpad.com/hc/en-us/articles/3600461413

92-FAQs-on-the-Recent-Wattpad-Security-Incident

his data with stakeholders, as long as this choice com-

plies with the legislation. (R3) A driver may subscribe

to a service by means of a contract that stipulates which

type of data must be shared to the stakeholder. Such

contracts must be included in the access control policy,

as long as they comply with the law. (R4) A stakeholder

may delegate different permissions to several branch of

its internal organization (e.g., departments of an insur-

ance company). This is not explicitly stated in the laws

but fundamental from a practical perspective. As such,

a delegation mechanism must be included in the access
control enforcement. (R5) In specific cases, data that

were already sent must be accessed by a sworn stake-

holder. For instance, in case of an investigation from the

police after an accident, the police may require access

to the position data of the vehicle before the accident.

The access control policy must take into account such

sworn stakeholders.

2.6 Discussion and proposal

In traditional architectures (such as 3) security mech-

anisms are typically implemented 1) to ensure data

confidentiality during communication, against a passive

listener on the network; 2) to authenticate a sender (a ve-

hicle) to ensure that a message was sent by a legitimate

sender; and 3) to authenticate a reader (a stakeholder)

to ensure that it has the rights to access the data. Thus,

this architecture covers properties P1, P2, and P4.

However, since data confidentiality is ensured through

encrypted communications while the data is stored in

plaintext in the storage center, the property P5 is not

satisfied. The storage center is a key component that is

responsible for enforcing access control. As the storage

center has full control over the plaintext data, a leak

or a misbehavior on its part can expose the data to an

unintended recipient: the property P6 is also violated.

Finally, conventional architectures do not make the pos-

sibility for drivers to be able to access to their own data

as a primary objective. Thus, it is necessary to give this

possibility to the drivers to ensure property P3.

To deal with these issues, this paper proposes a secure

protocol aiming to improve conventional architectures

and thus ensures the missing properties P3, P5, and

P6. This protocol relies on Attribute-Based Encryption

and Symmetric Encryption to ensure the confidential-

ity of data against unintended recipients (including the

honest-but-curious storage center) and on Group Sig-

nature to authenticate vehicles. The underlying crypto-

graphic schemes are sufficiently generic to adapt to post-

quantum algorithms. The security protocol has been

formally proven using the ProVerif tool and satisfies the

security properties. The paper also proposes a method

https://support.parkmobile.io/hc/en-us/articles/360058639032-Update-Security-Notification-March-2021
https://support.parkmobile.io/hc/en-us/articles/360058639032-Update-Security-Notification-March-2021
https://support.wattpad.com/hc/en-us/articles/360046141392-FAQs-on-the-Recent-Wattpad-Security-Incident
https://support.wattpad.com/hc/en-us/articles/360046141392-FAQs-on-the-Recent-Wattpad-Security-Incident

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 5

Table 1 Feature comparison of the proposal with other related works, represents a satisfied property and represents an
unsatisfied property

Automatic

Communication Scheme Genericity Protocol Post-Quantum Legislation protocol

verification

[19] v2v ABE Limited genericity

[57] v2v ABE Not generic

[41] v2v ABE Not generic

[25] v2v ABE Not generic

[26] v2v ABE Not generic

[34] v2v ABE Not generic

[24] v2v ABE Not generic

[44] v2v ABE Not generic

[52] v2v IBE Not generic

[23] v2s ABE Not generic

[35] v2s ABE Not generic

[48] v2s IBE Limited genericity

[56] v2s IBE Not generic

Our proposal v2s ABE Generic

to generate the access control policy in compliance with

the law, enabling to satisfy R1 to R5 requirements. For

that purpose, a trusted authority is included in the archi-

tecture, that is in charge of the permissions management

for the different stakeholders, in compliance with the

law. In traditional architectures, such permissions are

generally managed by the manufacturer, who can freely

grant access rights to any stakeholders while possibly

not respecting the privacy of the driver.

3 Related work

Many papers deal with security and privacy issues due to

data outsourcing in Cloud infrastructures and propose

suitable cryptographic schemes and protocols. The re-

cent survey from Domingo-Ferrer et al. [17] summarizes

these different proposals. In this survey, Identity-Based
Encryption (IBE) and Attribute-Based Encryption cryp-

tographic schemes are considered relevant in this context.

While IBE represents the authorized recipients using

an identity, ABE specifies a set of authorized recipients

using attributes. ABE is preferred over IBE in the follow-

ing as it seems more suitable to enforce a fined-grained

access control policy.

This section focuses on papers that specifically deal

with data security in connected vehicles communication

scenarios. A classification of these papers is presented in

Table 1, according to several criteria: 1) communica-

tion: are the messages emitted from a vehicle to other

vehicles (Vehicle-to-Vehicle: v2v) or from a vehicle to

stakeholders (Vehicle-to-Stakeholder: v2s)? 2) scheme:

does the paper rely on ABE or IBE? 3) genericity:

can the proposed solution be adapted to other crypto-

graphic schemes in the literature? 4) protocol: does the

paper propose a new cryptographic scheme or a protocol

that uses existing schemes? 5) post-quantum: does the

contribution hold with a quantum adversary? 6) legis-

lation: does the paper consider legal constraints from

the law? and 7) automatic protocol verification:

does the paper provide formally verified security guar-

anties with automatic verification tools? Note that the
communication column refers to the message recipient,

in particular the communication direction is considered

v2v if the destination is a vehicle, even if for some papers

the data is temporarily stored on a cloud before reaching

its final destination. Similarly, some papers deal with

secure communications between a vehicle and a cloud,

and only mention the existence of a stakeholder that

will process the data to provide a service. These papers

are classified in the v2s category.

Most of papers in Table 1 focus on v2v communica-

tions security [19,57,41,25,26,34,44,24,52] and mainly

deal with the security of messages sent to the vehicles

to improve driving, for instance, by anticipating colli-

sions or by warning the driver of traffic jams. Since the

legislation establishes rules specifying allowed or prohib-

ited accesses to specific data for specific stakeholders,

the approaches focusing on v2v communication security

are not appropriate as they do not consider the access

control of data sent by the vehicles and consumed by

different stakeholders.

6 Rémi Adelin et al.

Only few papers focus on v2s communications [56,48,23,

35] and have some connections with our proposal. The

proposals of Zhao et al. [56] and Vaanchig et al. [48] are

based on IBE schemes and the protocols proposed by

Horng et al. [23] and Luo and Ma [35] rely on ABE.

The two papers by Zhao et al. and Vaanching et al.

propose an IBE crytographic scheme to preserve the

confidentiality of the data sent by the different vehicles,

in which the storage center is not able to access them

in plaintext and the different stakeholders can only

access the data for which they have been authorized.

Nevertheless, these papers mainly propose cryptographic

schemes that could be used in a security protocol but

do not themselves propose a security protocol.

Horng et al. [23] propose an ABE scheme and a protocol

based on this scheme. In addition to addressing data

confidentiality, their proposal includes computing nodes

located in the Cloud that are used by vehicles to out-

source a part of the encryption and decryption process.

Their proposal also includes a revocation mechanism

and a multi-authority mechanism.

Similarly, Luo and Ma [35] propose an ABE scheme and

a protocol with decryption outsourcing and revocation.

Additionally, their proposal is multi-authority and the

central authority cannot decrypt all ciphertexts without

the master secret key of multiple authorities.

Overall, even if these four papers assess the security of

their scheme or protocol using manual proofs, the se-

curity properties are discussed but not formally proven

by means of a formal verification tool. Moreover, these

proposals rely on schemes that can be reduced to the
discrete logarithm problem and thus are vulnerable to

a quantum attacker. Hence, none of the proposals were

designed to be post-quantum compliant. In addition,

they do not verify whether the emitter of an encrypted

data is a legitimate vehicle or not and the authors do

not allow a legitimate vehicle to later access some data
that it has previously sent to the storage center. Finally,

the authors do not explain how the access control man-

agement can be enforced, especially to be compliant

with the law, which is, from our viewpoint, essential as

the communication considers stakeholders supposed to

consume the data. The secure protocol and the method

to derive the ABE attributes and access trees proposed

in this paper aim at tackling these issues.

4 Mathematical background

In this section, the mathematical background needed to

introduce the protocol is provided. Three cryptographic

primitives are presented: Attribute-Based Encryption,

Symmetric Encryption, and Group Signature.

4.1 Attribute-based encryption

4.1.1 A note on post-quantum ABE and implications

Attribute-Based Encryption, introduced in [45], is an

asymmetric encryption scheme that can support fine-

grained access control policies. Two concepts are used to

specify access control: attributes and access trees. Access

trees are trees whose internal nodes are AND/OR logical

connectors and whose leaves are attributes. Access is

granted if the access tree is satisfied by the attributes.

Two major constructions of ABE schemes exist: Key-

Policy ABE (KP-ABE) [45,22,40] when attributes are

set during encryption and Ciphertext-Policy ABE (CP-

ABE) [4,55,50,15,53] when the access tree is set during

encryption.

ABE is generally constructed from bilinear pairings [10]

or lattices [55]. While bilinear pairings-based ABE are

subject to strong vulnerabilities against quantum ma-

chines, lattice-based ones are considered quantum re-

sistant [20,38,39,42,43]. Historically, ABE is split into

two security notions: selective security and adaptive

security (also called full security). For a typical ad-

versary/challenger security game, selective security re-

quires access trees (or attributes) to be known before

public parameters are generated. This limitation typi-

cally restricts the type of access trees achievable by the

scheme (or the number of attributes), which limits the

expressiveness of the access control policy.

Due to a fairly mature literature on ABE based on bilin-

ear pairings, adaptive security is assumed for all recent

schemes with support for the NC1 class of problems.

For lattices, the landscape is more contrasting [9,54].
Achieving adaptive security has been an open problem

for many years, and although some recent construc-

tions have achieved the adaptive security, they still have

some limitations. In [47], Tsabary et al. proposed the

first adaptive post-quantum CP-ABE, but with the re-

striction that access trees must follow a t-Conjunctive

Normal Form (t-CNF), where t is the exact number of

literals for the clauses. In [49], Wang et al. proposed

an adaptive post-quantum CP-ABE for any polyno-

mial sized circuit, reducing the decryption cost from

O(n log n) to O(n) with public parameters linear with

the number of attributes.

4.1.2 ABE algorithms definition

ABE schemes typically consist of four algorithms (iden-

tified with the prefix abe). In the following, a slight

modification of the usual definition of ABE is realized

to facilitate the understanding of the protocol. In par-

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 7

ticular, KP-ABE is presented as it is the construction

used in the protocol:

– abe setup(1λ): Given a security parameter λ, gen-

erates the master key MK. This key will be used to

derive both public and secret keys;

– abe pkgen(MK): Using MK, generates the public

key PK;

– abe skgen(T, MK): Given an access tree T, gen-

erates the secret decryption key SK associated to T

using MK;

– abe enc(µ, X, PK): For attributes X, encrypts

message µ using PK, outputs the ciphertext C;

– abe dec(C, SK): For a ciphertext C, decrypts C

using SK, outputs µ only and only if the attributes

chosen during encryption match the access tree cho-

sen during SK generation.

Let us note that an abstract definition of KP-ABE is

purposely provided since the protocol is designed to

support current and future ABE schemes as much as

possible (including post-quantum ones). As long as the

ABE scheme securely supports all previously defined

algorithms, it can be used in the protocol.

4.2 Symmetric encryption

A Symmetric (S) encryption scheme uses the same sym-

metric key to encrypt and decrypt messages. A scheme

S is composed of a set of three algorithms (identified

with the prefix s) and the most common standard im-
plementation is AES [14]. An abstraction of this scheme

is presented in the following. In a similar way, this ab-

straction is generic enough to include all S schemes:

– s setup(1λ): Given a security parameter λ, gener-

ates a secret key SK;

– s enc(µ, SK): Using SK, encrypts message µ, out-

puts ciphertext C;

– s dec(C, SK): Using SK, decrypts ciphertext C,

outputs message µ only and only if the same key SK

has been used during encryption and decryption.

4.3 Group signature

A Group Signature (GS) scheme [12] allows a member of

a group to anonymously generate a signature on behalf

of the group. A key issuer is generally defined as the

entity responsible for generating and distributing signing

keys to legitimate members of the group. A GS is a set of

five algorithms (identified with the prefix gs). The first

post-quantum group signature scheme was proposed in

2010 by Gordon et al. [21]. Most of existing proposals

are based on lattices [31,32,33], but some proposals

exist for codes [18] and hashes [36]. An abstraction of

this scheme is presented in the following and is generic

enough to include all GS schemes:

– gs setup(1λ): Given a security parameter λ, gener-

ates a signature master key MK;

– gs pkgen(MK): Using MK, generates the signa-

ture public key PK used to verify signatures;

– gs skgen(ID, MK): Using MK, generates the sig-

nature secret key SK associated to identity ID;

– gs sign(µ, SK): Using SK, generates the signature

s for message µ;

– gs verif((µ,s), PK): Using PK, verifies if the sig-

nature s is a valid signature of message µ. Outputs

⊤ if the signature is valid, ⊥ otherwise.

5 Secure protocol

This section is dedicated to the detailed presentation

of the secure protocol. An overview of the architecture

that supports this protocol is first presented, then the

security properties enforcement is explained, and finally

the protocol scenarios are detailed.

5.1 Architecture overview

The implementation of a secure and trusted control of

data from different types of parties (users, legislation,

stakeholders, ...) requires a modification of the classical

architecture presented in Section 2. In particular, an

independent trusted authority is required to define the

specific attributes that must be set during data encryp-
tion using ABE, with respect to the law, and to manage

the different access trees for the stakeholders, also in

compliance with the law. Detailed information is pro-

vided in Section 7. In this section, the existence of two

functions provided by the trusted authority is assumed:

the get attrs function and the get access tree function.
The get attrs function takes as input either the storage

center identity (IDsc) or a vehicle identity (IDv) and a

context (C), it provides the attributes used during the

ABE encryption. The get access tree function takes

as input an entity identity (either a vehicle, the storage

center or a stakeholder), it provides the access tree used

during ABE key generation.

5.2 Security properties enforcement

This subsection describes how the security protocol pro-

posed in this paper has been purposely designed so that

the P1 to P6 security properties are enforced. A sig-

nature mechanism is used to enable message integrity

8 Rémi Adelin et al.

verification (P1) and to allow the storage center to

verify that a message was issued by an authorized ve-

hicle (P2). However, a group signature mechanism is

used to avoid overloading the storage center with as

many verification keys as legitimate vehicles. To handle

this authentication, the trusted authority executes the

gs setup and gs pkgen algorithms. Then, it gener-

ates the signature secret key noted SIG SK, using the

gs skgen algorithm, for each legitimate sender. A le-

gitimate sender must sign its messages using its secret

key. This way, each legitimate receiver can verify the
signature using the public key generated by the trusted

authority. This secret key provision is assumed to be

realized in a secure manner. The signature secret key

of a vehicle is embedded in the vehicle, together with

associated functions and algorithms, during the manu-

facturing process. The trusted authority has to provide

to each stakeholder the means to allow the access to

messages, in accordance with the law (P4). The use of

KP-ABE is particularly suited as it allows to enforce

a fine-grained access control by encrypting the data

over a set of attributes that can be only decrypted by

the stakeholders possessing the corresponding access

trees in their decryption key. Moreover, in this context,

KP-ABE schemes are preferable to CP-ABE schemes

as they do not require the generation of access trees

in the vehicle which would be too costly in such an

embedded system with limited resources. This approach

also allows the vehicle to have access to its data, as long

as it has the appropriate cryptographic materials (P3).

To generate the corresponding materials, the trusted

authority executes the abe setup and abe pkgen al-

gorithms to generate the master key and the public key
and the get access tree function to generate the access

tree for an authorized message reader, in compliance

with the law. When sending a message, a vehicle must

use the get attrs function to get the list of attributes

to be set. This function is provided to the vehicle by
the trusted authority during the manufacturing process.

When no context is given as input, this function simply

outputs the identity given as input. The derivation of

the access trees according to the law both prevents the

storage center (P5) and unauthorized recipients (P6)

from having access to the data in a message.

5.3 Protocol scenarios

5.3.1 Keys generation and distribution

The goal is to generate and to securely deploy the keys

for the legitimate entities (vehicles, stakeholders, and

storage center). Thus, in a first step, the trusted author-

ity creates the master and public keys for encryption

Table 2 Protocol symbols

Description Symbol

Vehicle Nonce Nv, Xv

Storage center Nonce Nsc, Xsc

Stakeholder Nonce Nst, Xst

Data D

Context C

Message M1, M2, M3, M4

Attribute List L, L1, L2

Query R

S Ciphertext C2, C3

S Key K

ABE Master Key MK

ABE Public Key PK

Vehicle ABE SK SKv

Storage center ABE SK SKsc

Stakeholder ABE SK SKst

ABE Ciphertext C1, CD

GS Master Key SIG MK

GS Public Key SIG PK

Vehicle GS SK SIG SKv

Storage center GS SK SIG SKsc

Stakeholder GS SK SIG SKst

GS Signature S1, S2, S3, SD

and signature. The public keys are released publicly

while the master keys are kept secret. The following

notation is used:

MK = abe setup(1λ) (1)

PK = abe pkgen(MK) (2)

SIG MK = gs setup(1λ) (3)

SIG PK = gs pkgen(SIG MK) (4)

The trusted authority proceeds in the same way for

all legitimate entities. For an entity e, it defines its

identity IDe. Then, it generates the access tree Ae using

get access tree, the secret key SKe, and the signature

secret key SIG SKe for this entity. For this generation,

it applies the following operations:

Ae = get access tree(IDe) (5)

SKe = abe skgen(Ae,MK) (6)

SIG SKe = gs skgen(IDe,SIG MK) (7)

These keys are assumed to be sent to the corresponding

entity through a secure channel. In particular, for a ve-

hicle, the keys can be deployed in a Hardware Security

Module during the manufacturing process. A stakeholder

can register to the trusted authority at any time. Obvi-

ously, it is assumed that the trusted authority verifies

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 9

that this stakeholder has the right to register with this

identity. Let us note that the stakeholder has the same

cryptographic materials as a vehicle because he also

needs to verify if the entity it is communicating with is

registered in the system.

5.3.2 Secure vehicle data send scenario (S1)

This scenario depicts a data sending by a vehicle to the

storage center. The exchanges are signed so that the

vehicle and the storage center can authenticate each
other. A symmetric encryption key is chosen by the

vehicle to avoid the systematic use of ABE. The data

to be stored is encrypted using the set of attributes L2.

Moreover, nonces are also used to prevent replay attacks.

The details of this scenario are presented in the following

and depicted in Figure 2.

① A vehicle initiates a connection request. This request

contains a symmetric key K and a nonce Nv (generated

using the random function). It is encrypted as C1 using

a set of attributes L1 that only allows the storage center

to decrypt C1 (i.e., the generation of L1 using get attrs

with an empty context). This encrypted request is signed

as S1 using the vehicle signature secret key SIG SKv.

Then, C1 and S1 are sent to the storage center as the

message M1.

② The storage center receives message M1. First, it

verifies the signature S1 using the signature public key

SIG PK. If the signature is wrong, the storage center

resets the communication. Otherwise, after extracting

the encrypted request C1 from the message M1 (using

the get msg function), it decrypts C1 using its secret

key SKsc. It obtains the symmetric key K and the nonce

Nv sent by the vehicle. The storage center generates a

connection response that contains the nonce Nv and a

new nonce Nsc. This response is encrypted as C2 using

K which is signed as S2 using the signature secret key

SIG SKsc. Then, C2 and S2 are sent back to the vehicle

as the message M2.

③ The vehicle receives message M2. First, it verifies the

signature using the signature public key SIG PK. If the

signature is wrong, the vehicle resets the communication.

Otherwise, it extracts the encrypted response C2 and

decrypts it using the symmetric key K. It obtains the two

nonces and verifies that the nonce Nv has been returned

correctly. Then, it gets the data D and the context C

(using the retreive data function). The context and

the identifier of the vehicle are used to derive the set of

attributes L2. The data is encrypted as C3 using this

set and then encrypted again, together with Nsc, using

K. This way, the storage center will be able to decrypt

and retrieve the encrypted data. The vehicle signs the

ciphertext as S3 using its signature secret key. At this

point, the vehicle successfully sent the data. Finally, C3

and S3 are sent to the storage center as message M3.

④ The storage center receives message M3. In a similar

manner, it verifies the signature. It extracts the message

and uses K for decryption. It obtains the encrypted data

and a nonce. If the nonce has the same value as the

one it has generated during ② then it is able to store

the encrypted data in its database (using the db store

function).

Vehicle Storage Center

①
K = s setup()

Nv = random()

L1 = get attrs(IDsc, ∅)
C1 = abe enc((K, Nv), L1, PK)

S1 = gs sign(C1, SIG SKv)

M1 = (C1,S1)

M1

②
gs verif(M1, SIG PK) ?

C1 = get msg(M1)

(K, Nv) = abe dec(C1, SKsc)

Nsc = random()

C2 = s enc((Nsc, Nv), K)

S2 = gs sign(C2, SIG SKsc)

M2 = (C2,S2)

M2

③
gs verif(M2, SIG PK) ?

C2 = get msg(M2)

(Nsc, Xv) = s dec(C2, K)

Nv = Xv ?

(D, C) = retreive data()

L2 = get attrs(IDv, C)

CD = abe enc(D, L2, PK)

C3 = s enc((CD, Nsc), K)

S3 = gs sign(C3, SIG SKv)

Vehicle sends data

M3 = (C3,S3)

M3

④
gs verif(M3, SIG PK) ?

C3 = get msg(M3)

(CD, Xsc) = s dec(C3, K)

Nsc = Xsc ?

Storage center writes CD

db store(CD)

Fig. 2 Secure vehicle data send sequence diagram

5.3.3 Secure data read scenario (S2 and S3)

The scenarios S2 and S3 differ only regarding the entity

that wants to read the data: either a stakeholder or a

vehicle. Thus, in the following, only the scenario S2 is

considered, this scenario depicts a data retrieved by a

stakeholder from the storage center. Note that the query

language used to retrieve data is out of the scope of this

paper. The details of the S2 scenario are presented in the

following and depicted in Figure 3. As this scenario uses

10 Rémi Adelin et al.

the same method as S1 to prevent replay attacks and

to ensure authentication, steps ①, ②, and the beginning

of step ③ are similar to the ones in scenario S1. In the

end of the step ③, the stakeholder generates its query

R (using the gen query function), encrypts this query

with the key K and sends the encrypted query to the

storage center together with its signature. Let us note

again that nonces are used to prevent replay attacks.

④ The storage center receives the message M3. It ver-

ifies the signature, extracts the message and uses K

for decryption. It obtains the query and a nonce. It

checks the value of the nonce, which must be identical

to the one it has generated during ②. Then it queries

its database (using the db read function). The result

is sent to the stakeholder together with its signature.

⑤ The stakeholder receives the message M4. It verifies

the signature, extracts the message, and uses SKst for

decryption. It obtains the result of its query. At this
moment, the stakeholder can successfully read the data.

6 Formal verification

Several studies have shown the existence of weaknesses

in formally defined protocols (for instance [30] and [13]),

thus a formal description of a protocol is a first good

step but not sufficient by itself. As connected vehicles

have a long lifespan, it is necessary to formally ver-

ify the security properties to ensure the viability of

the proposed protocol in the long term. This section

presents the ProVerif tool used to verify the properties,

the simplification realized to model the protocol, and

the presentation of the security properties along with

their verification.

6.1 ProVerif

Several tools can be used to formally verify the security

properties of a protocol (AVISPA [2], ProVerif [8,7],

YAPA [3], TAMARIN [37]). ProVerif was chosen as it is

stable, mature, still maintained, successful [5,6], and it

supports any number of sessions (which is useful to avoid

imposing a number of vehicles and stakeholders). In

addition, as cryptographic primitives can be represented

by an equational theory or rewrite rules, this allows the

proof to be established for families of primitives (i.e., as

long as the chosen primitive respects the equations).

Considering the attacker model discussed in Section 2.3,

ProVerif is well suited as it allows to represent a public

channel and it uses the Dolev-Yao attack model [16].

The representation of the protocol in ProVerif is not

complex as long as the sequence diagrams are provided

(see Figures 2 and 3). This representation is available

Stakeholder Storage Center

①
K = s setup()

Nst = random()

L = get attrs(IDsc, ∅)
C1 = abe enc((K, Nst), L, PK)

S1 = gs sign(C1, SIG SKst)

M1 = (C1,S1)

M1

②
gs verif(M1, SIG PK) ?

C1 = get msg(M1)

(K, Nst) = abe dec(C1, SKsc)

Nsc = random()

C2 = s enc((Nsc, Nst), K)

S2 = gs sign(C2, SIG SKsc)

M2 = (C2,S2)

M2

③
gs verif(M2, SIG PK) ?

C2 = get msg(M2)

(Nsc, Xst) = s dec(C2, K)

Nst = Xst ?

R = gen query()

C3 = s enc((R, Nsc), K)

S3 = gs sign(C3, SIG SKst)

M3 = (C3,S3)

M3

④
gs verif(M3, SIG PK) ?

C3 = get msg(M3)

(R, Xsc) = s dec(C3, K)

Nsc = Xsc ?

CD = db read(R)

SD = gs sign(CD, SIG SKsc)

Storage center sends data

M4 = (CD,SD)

M4

⑤
gs verif(M4, SIG PK) ?

CD = get msg(M4)

D = abe dec(CD, SKst)

Stakeholder reads data

Fig. 3 Secure stakeholder data read sequence diagram

in the appendix, together with the table explaining

the syntax of ProVerif. However, it is worth explaining

the events and syntax of the queries themselves, which

represent the properties to be checked.

The ProVerif code can be enriched with events that can

occur several times. In the model, events correspond to

a particular step in the protocol. To distinguish them, if

necessary, an event can have parameters. For example,

an event generated during the execution of the vehicle

part of the protocol can have as a parameter the identity

of this vehicle. These events correspond to the comments

in green in Figures 2 and 3.

During the protocol verification, a key leak is also simu-

lated to analyze the attacker’s possibilities and events

are also generated when a key leak is forced. The list of

considered events is as follows:

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 11

– The vehicle send event occurs just before a vehicle

sends, on the public channel, a message that contains

data (see step ③ in Figure 2);

– The storage write event occurs just before the

storage center stores a message in its database (see

step ④ in Figure 2);

– The storage send event occurs just before the stor-

age center sends, on the public channel, a message

that contains data (see step ④ in Figure 3);

– The stakeholder read event occurs just after a

stakeholder retrieves and successfully decrypts a mes-
sage that contains data (see step ⑤ in Figure 3);

– The vehicle read event occurs just after a vehicle

retrieves and successfully decrypts a message that

contains data (see step ⑤ in Figure 3);

– The vehicle leak event occurs when the secret key

of a vehicle leaks;

– The storage leak event occurs when the secret key

of the storage center leaks;

– The stakeholder leak occurs when the secret key

of a stakeholder leaks.

The queries used to prove security properties rely on

five main constructions:

– not (event X): the result of this query is true if the

event X is never generated with the protocol. Other-

wise, it may be generated and ProVerif provides a
trace of its execution. This kind of query is useful to

check that all interesting parts of the protocol are

reachable;

– not attacker.pN(V): the result of this query is true

if the attacker does not have the possibility to know
the value V. N is used to indicate a phase in the

protocol. Phases are used only to simplify the repre-
sentation of the protocol (the first phase corresponds

to the keys generation and distribution);

– secret V1(,Vi)*: the result of this query is true if

all Vi values are kept secret. This query is close to

the previous one. It is used when the values Vi are

inner values of a ProVerif process;

– inj-event(X1) ==> inj-event(X2): the result of

this query is true if each event X1 corresponds to a

distinct and previous event X2;

– S1 (&& Si)* ==> C1 (|| Ci)*: the result of this

query is true if all the sub-queries Si are verified,

then one of the conditions Ci is true.

6.2 Simplification of the protocol

When integrating the technical details of the protocol

into ProVerif, a slight modification of the protocol needs

to be realized for the sake of the verification process.

First, the implementation of attributes in ProVerif needs

to be adapted. The naive method would be to implement

unbounded list of attributes directly, but this would lead

to an infinite loop during verification. In practice, the

number of lists of attributes used for a finite trace is

necessarily finite. Thus, the list of attributes that the

vehicles can use during the trace is chosen randomly for

encryption. This set (of lists of attributes) is selected

at the key generation and distribution phase. Then, a

distinct lock is associated to each attributes and entities

are randomly associated to the locks. In this way, en-

tities that are associated to the same lock can decrypt
all messages encrypted with the corresponding list of

attribute. Second, some details are omitted in the model:

the authentication part during the query of the storage

center is not described in ProVerif. In other words, the

nonces and the symmetric key are not used during the

query scenario. This choice results in a stronger attacker,

but it does not affect the security as it will be shown in

Section 6.3.

6.3 Security properties and verification

This subsection first presents the considered queries and

their link with the properties, followed by the considered

leak scenarios and the results of the assessments.

The verification of properties relies on the set of queries

from Table 3. The queries Q1 to Q5 are used to ver-

ify that the protocol is functional by ensuring that all

events can occur. Queries Q6 to Q10 ensure the secrecy

of master keys (for the trusted authority) and secret

keys (for vehicles, the storage center, and stakeholders).

Query Q11 ensures that the attacker cannot read the

data contained in a message. The queries Q12 and Q13

(resp. Q14 and Q15) ensure that, if a vehicle (resp. a

stakeholder) is able to read a data from a message, then

this message is necessarily stored within the storage

center and this message has been sent by a registered ve-

hicle. Query Q16 ensures that, if a storage center stores

a message, this message has been sent by a registered

vehicle. Query Q17 verifies that, if an attacker is able

to read a data, this necessarily implies that a secret key

has been leaked and that the attacker cannot read more

data than this key allows.

These queries together participate in the verification

of the properties presented in Section 2.4. The verifica-

tion of the property P1 is deduced from queries Q12

to Q15. The verification of the property P2 is deduced

from the query Q16. The property P3 is deduced from

queries Q12 and Q13. The vehicle can read messages

but only those it has sent. The verification of the prop-

erty P4 is deduced from queries Q14 and Q15. The

stakeholder can read messages but only those stored

within the storage center.

12 Rémi Adelin et al.

Table 3 Security properties and verification results, represents a satisfied property and represents an unsatisfied property

Query id Security property

E
x
p
ec
te
d
re
su

lt

N
O

L
E
A
K

S
T
A
K
E
H
O
L
D
E
R

L
E
A
K

V
E
H
IC

L
E

L
E
A
K

S
T
O
R
A
G
E

L
E
A
K

Q1 not event(vehicle send(va 2,conj 5,ct,msg 3)) false

Q2 not event(vehicle read(conj 5,ct,msg 3)) false

Q3 not event(storage write(ct)) false

Q4 not event(storage send(ct)) false

Q5 not event(stakeholder read(sap 2,ct,msg 3)) false

Q6 not attacker p4(abe mk[]) true

Q7 not attacker p4(gs mk[]) true

Q8 secret storage abe sk 1,storage abe sk true

Q9 secret stakeholder abe sk true

Q10 secret vehicle abe sk 1,vehicle abe sk true

Q11 secret msg 2,msg 1,msg true

Q12 event(vehicle read(va 2,ct,msg 3))

==> event(vehicle send(va 2,conj 5,ct,msg 3))

true

Q13 event(vehicle read(va 2,ct,msg 3))

==> event(storage write(ct))

true

Q14 event(stakeholder read(sap 2,ct,msg 3))

==> event(vehicle send(va 2,conj 5,ct,msg 3))

true

Q15 event(stakeholder read(sap 2,ct,msg 3))

==> event(storage write(ct))

true

Q16 inj-event(storage write(ct))

==> inj-event(vehicle send(va 2,conj 5,ct,msg 3))

true

Q17 attacker p4(msg 3)

&& event(storage write(abe enc(msg 3,ext attrs(a 3,va 2),abe pkgen(abe mk[]))))

==> event(vehicle leak(va 2,abe skgen(vap 2,abe mk[])))

|| (event(stakeholder leak(sap 2,abe skgen(sap 2,abe mk[])))

&& event(stakeholder conj(sap 2,a 3)))

true

The properties P5 and P6 are deduced from the query

Q17. If the attacker is able to read a message, then the

secret key of the corresponding vehicle or the secret key

of a stakeholder able to read the message has leaked.

Moreover, if the secret key of the storage center has

leaked, the attacker has the same privileges as the stor-

age center. Thus, considering the Dolev-Yao model [16],

if the attacker is not able to read the data, then the
storage center is not able to read the data either and

the property P5 is checked.

Four campaigns have been carried out: one with no

leaks and one for each type of leak (a stakeholder secret

key, a vehicle secret key, and the storage center secret

key). The results are shown in Table 3. The first column

indicates the identifier of the query, the second column

details the queries and the third column indicates the ex-

pected result of the queries evaluation. The last columns

correspond to the queries evaluation for the different

campaigns: a full circle indicates that the query is valid

(corresponds to the expectations) otherwise the symbol

is an empty circle.

This table shows that, first of all, without any leak, all

queries are validated. Thus, all properties are satisfied

and the minimum expected for such an architecture

is provided. Moreover, it is formally verified that the

storage center is not able to read the data contained

in a massage and the attacker cannot either. In case

of a leak, five queries are invalidated. In case of a leak

of a stakeholder secret key, the first empty circle is

obvious as it indicates that the attacker has obtained

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 13

this secret key. The second empty circle indicates that

the attacker is able to read the messages but the last

query guarantees that these messages are those that the

stakeholder was already able to read. In case of a vehicle

secret key leak, the empty circles have a similar meaning

as the previous campaign. In case of a storage center

secret key leak, the only information the attacker is able

to obtain is its secret key and the attacker is not able

to read any messages. Thus, this last campaign gives us

the guarantee that the storage center is not able to read

data.

7 Legislation-compliant access control

In the previously described protocol, messages sent by

vehicles are encrypted over a set of attributes and the

stakeholders secret keys used to decrypt these messages

are produced using an access tree. These attributes and

access trees must be generated with respect to the law,

thus this section describes a method for generating them

in compliance with the legislation. This method satisfies

the R1 to R5 requirements presented in Section 2.5

and this section also presents how these requirements

are actually satisfied.

7.1 Overview

To cover the different aspects of the legislation, an at-

tribute can be a role or an identity, (so-called role/iden-

tity in the rest of the paper), a contextual information

or a stakeholder-defined string:

– a role/identity attribute identifies stakeholders or

vehicles authorized to read the content of a message
either by their identity or, for a stakeholder, by their

role;

– a contextual attribute identifies either the vehicle

position, or the data sending date, or the data type

(e.g., engine temperature), or additional contextual

information for specific situations (e.g., accident).

Such attributes are used to authorize stakeholders to

access to the data under context related conditions

(i.e., at a precise time, in a specific location, or in

case of an accident);

– a stakeholder-defined attribute is an attribute defined

by a stakeholder during delegation.

Access trees are provided by the trusted authority, or

can be delegated by a stakeholder to another stakeholder

(R4). The trusted authority uses the get access tree

function to produce the access tree associated to the

storage center, or a stakeholder, or a vehicle. Vehicles

access trees are provided into the vehicle during their

manufacturing and only include the vehicle identity.

Similarly, the storage center access tree includes only its

identity. Stakeholders access trees embed role/identity

attributes and contextual attributes, and in case of dele-

gation, they also embed stakeholder-defined attributes.

The choice of role/identity attributes and contextual

attributes is realized in accordance with the law (R1).

In specific situation, a stakeholder can be sworn in by

a legal organization to access to data previously sent

through the use of a transient access tree, as explained in

Section 7.3 (R5). The remaining of this section focuses
on stakeholders access trees.

The algorithm that identifies the attributes for every

data transmitted by the vehicle must be designed in

compliance with the law and must not be under the

control of the vehicle manufacturer (R1). As such, the

trusted authority derives the so-called law attributes

and each manufacturer has to embed this set during the

implementation of its vehicles. For instance, if the law

stipulates in case of an accident, the data recorded in

the vehicle at the time of the accident must be available

to the police, then the corresponding attributes must be

set during the encryption process so that the police can

decipher the corresponding messages using the access

tree embedded in their secret key, and this decision

does not belong to the manufacturer, nor the driver

(see Section 7.4.1). Additionally, the driver may also

set attributes during the encryption process as long as

these attributes (so-called driver attributes) comply with

the law. The two situations in which the driver may

add these attributes are described in details in Section

7.4.2: 1) the driver consents to share its data with a

stakeholder (R2); 2) the driver has signed a contract

with a stakeholder (R3). In both situations, the added

attributes may target a stakeholder with a delegated
key (R4). During encryption, the vehicle automatically

extracts the law attributes and driver attributesmatching

the current context and type of the data that is to be

sent and also sets the contextual attributes.

Figure 4 and 5 summarize the main steps of the at-

tributes and access trees generation process (the differ-

ent steps are detailed in the remaining of this section).

In these figures, a rectangle corresponds to an entity

(either a vehicle, a stakeholder, the storage center, or

the trusted authority); an ellipse corresponds to a data;

a rounded rectangle corresponds to the execution of a

process; an arrow corresponds to the transfer of a data;

an hexagon corresponds to the execution of a specific

function; a diamond corresponds to an exclusive choice

over its input arrow; a fully rounded rectangle corre-

sponds to the internal parameter of a function; and a

dash arrow corresponds to a transfer of data used as an

internal parameter of a function.

14 Rémi Adelin et al.

Trusted Authority

Law OrBAC

generation
OrBAC

Permisision

Storage Center
IDsc

get_access_tree

Av

OrBac pool

Vehicle
IDv

Stakeholder
IDst

Asc

Ast

Fig. 4 Access trees generation method

Law Attrs

extraction

Driver Attrs

selection
Driver Attrs

Law Attrs

Vehicle

Driver's
consent

L

Driver's
contracts

get_attrs

Trusted Authority

OrBAC
Permisision

OrBAC
Prohibition

Law
OrBAC

generation Attrs pool

IDv

IDsc

C

Fig. 5 Attributes generation method

7.2 From articles of the law to OrBAC security rules

The derivation of access trees and attributes from the

law is a two step process. The first step consists in

generating access control rules in a specific formalism

from the different articles of the law that are written in

natural language. The formalism proposed in this paper

to express these rules is taken from the Organization-

Based Access Control (OrBAC) model. This step is quite

difficult to automate and it is considered to be done

manually only once by a competent person, such as a

lawyer. In case the laws exhibit some conflicts, such as

two different rules authorizing and preventing a stake-

holder to access to a same data, the lawyer is considered

able to solve these conflicts during this step. The con-

flict solving process is out of the scope of this article.

The second step consists in obtaining the attributes and

access trees from the OrBAC security rules. This step

can easily be automated by parsing the OrBAC rules.

This two step approach is proposed as generating in one

step the ABE access trees and attributes would require

specific skills that a lawyer is not supposed to have. The

generation of OrBAC rules seems to be an acceptable

tradeoff as this formalism is quite simple to understand.

This subsection describes the first step of the process

which corresponds to the OrBAC generation process in

Figure 4 and 5.

7.2.1 OrBAC formalism

Role-Based Access Control (RBAC) [46] is a flexible

access control model in which roles are assigned to users,

permissions are assigned to roles, and users acquire per-

missions by playing roles. The OrBAC [29] model is

an extension of RBAC that details permissions while

remaining implementation independent. The main idea
is to express the security policy with abstract entities

only, and thus to completely separate the representation

of the security policy from its implementation. Indeed,

OrBAC is based on roles, views, activities to structure
subjects, objects, and actions. In OrBAC, an organiza-

tion is a structured group of active entities, in which

subjects play specific roles. An activity is a group of one

or more actions, a view is a group of one or more objects,

and a context is a specific situation that condition the

validity of a rule. Actually, the role entity is used to

structure the link between subjects and organizations.

Similarly, objects that satisfy a common property are

specified through views, and activities are used to ab-

stract actions. OrBAC includes four relationships to

express the relations between organizations, roles, views,

activities, and contexts: the Obligation, Permission,

Prohibition, and Recommendation relationships. Se-
curity rules in the OrBAC formalism are expressed as

follows:

– Obligation(O, R, V, A, C);

– Permission(O, R, V, A, C);

– Prohibition(O, R, V, A, C);

– Recommendation(O, R, V, A, C).

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 15

These expressions mean that, in the context C, organiza-

tion O grants role R the obligation (or the permission, the

prohibition, the recommendation) to perform activity A

on view V.

7.2.2 Extracting meaningful information from the law

The objective is thus to generate such OrBAC secu-

rity rules from the articles of the law. For this purpose,

each article of the law is manually parsed and the rele-

vant information to generate OrBAC security rules is

retrieved. The articles of the law stipulate situations

(which are used to define the OrBAC context C), in

which data of a certain type (which is used to define

the OrBAC view V), can or cannot (which is used to

define the type of OrBAC rules, either Permission or

Prohibition) be accessed by any stakeholder fulfilling

a certain role (which is used to define the OrBAC role

R). When no context is provided, the symbol * is used

to represent any context. Each OrBAC rule also defines

an organization O and an activity A. In our case, the

O corresponds to the unique organization considered

in this paper which is the trusted authority (TA), and

the activity A corresponds to the unique activity con-

sidered, which is the read activity. Let us note that,

as the law identifies possible or prohibited access to

data, only the Permission and Prohibition relation-

ships are considered in the following (the Obligation

and Recommendation relationships are not used in this

method).

Let us illustrate this step with the article 32 of the

French Mobility Orientation Law. Paragraph 32(I)(2),

translated in English, states:

In the event of a road accident, make data from ac-

cident data recording devices and driving delegation
data recorded in the period preceding the accident
accessible to officers and agents of the judicial po-

lice for the purpose of determining liability, as well as
to the bodies responsible for the technical and safety
investigations provided in Article L. 1621-2 of the
Transport Code.

Using this example, the following OrBAC rule is gener-

ated:

Permission(TA, police_force , accident , read ,

accident)

7.3 Access trees generation

7.3.1 Access trees generation from OrBAC security

rules

This step corresponds to the execution of the

get access tree function in Figure 4. This function

takes an identity as input and behaves as follows. If

the identity given as input is a vehicle or the storage

center identity, the resulting access tree contains only

one node which is the input identity. Otherwise, the

identity given as input is a stakeholder identity. In such

a case, the OrBAC rules are filtered to retrieve only the

Permission rules that match the role of the stakeholder

(i.e., the rules for which the R field matches the role of

the stakeholder). For each rule, the trusted authority

extracts the data type (V field of the OrBAC rule) and

the contextual information (C field of the OrBAC rule)

and generates a so-called role-string resulting from the
logical AND of this information and the role considered:

C AND V AND R. The final access tree associated to a

stakeholder is the logical OR of his role-strings and his

identity: (C1 AND V1 AND R) OR ... OR (Cn AND Vn

AND R) OR IDst.

7.3.2 Transient access trees for sworn stakeholders

Trusted AuthorityStakeholder
Order

Transient Access

Tree generation
Transient

Access tree

Fig. 6 Transient access tree generation method

Some specific stakeholders can be sworn in by legal or-

ganizations. When a stakeholder is sworn in, it receives

an order from a legal organization specifying which data

it can access. The sworn stakeholder can ask the trusted

authority a secret key to access to the information spec-

ified in the order. This access tree is a logical AND
linking contextual information such as, for instance, a

start date, an end date, a data type, and a position.

The trusted authority generates the corresponding se-

cret keys and grants it to the sworn stakeholder (as

summarized in Figure 6).

7.3.3 Access tree delegation

Delegate
Delegated

Stakeholder-
Access trees

Additional
Sub-Tree

Stakeholder
Ast

Trusted Authority

Fig. 7 Delegated access tree generation method

A stakeholder may desire to delegate its access to some

specific data to another stakeholder. During delegation,

16 Rémi Adelin et al.

the resulting secret key is produced with a more restric-

tive access tree than the original one and may include

stakeholder-defined attributes. Such attributes are used

to characterize the stakeholders who benefit from a

delegated key. Stakeholders are assumed to be able to

delegate a key to other stakeholders with whom they

have a legal relationship such as a subsidiary, a subcon-

tractor, an association, etc. All steps are summarized in

Figure 7. Two cases of a more restrictive key delegation

are considered:

1. Adding a child to an AND node. In this case, more

attributes are required to satisfy the node. The ad-

ditional child is a sub-tree containing stakeholder-

defined attributes;

2. Removing a child of an OR node. In this case, less

combination of attributes enable to satisfy the node.

7.4 Attributes generation

The attributes used to encrypt the messages to be sent

are selected using the get attrs function (represented

in Figure 5). This function takes as input an identity

and the context of the data. In case of a vehicle identity,

the context is used to 1) select attributes from two

attribute sets (law attributes and driver attributes) and

2) to generate the contextual attributes. An attribute

corresponding to the vehicle identity is also generated

to enable the sending vehicle to access to the data

it has sent. In case of the storage center identity, an

empty context is given as input, and only one attribute

corresponding to the storage center identity is forwarded

as output. The following subsections describe in details

the processes aiming at generating the attributes.

7.4.1 From OrBAC Permission rules to law attributes

This step corresponds to the Law Attrs extraction

process in Figure 5. The trusted authority relies on the

Permission rules to generate the law attributes. Gen-

erating this set is quite easy once the OrBAC security

rules are established. The extraction of these attributes

can be informally described as follows. For each rule,

the data type (V), the context (C), and the role (R) are

extracted and a couple ({V,C},R) is generated. The

set of all couples is the law attribute set. This set is

included in the vehicle during its manufacturing and

must be updated when the laws are themselves modified.

During a data encryption, the role is extracted from

each law attribute that matches the type and the context

of the data currently sent. The set of attributes used for

encryption is simply the set of extracted roles from the

law attributes.

7.4.2 Driver control on the attributes

At any time, the driver may add attributes for the ABE

encryption of data, as long as they do not violate an

OrBAC Prohibition rule. This may happen in two situ-

ations. First, the driver may consent to open his data to

additional stakeholders and may decide to add roles/i-

dentities attributes corresponding to stakeholders of his

choice. He may also add stakeholder-defined attributes

to share his data with a stakeholder having a delegated

key. Second, when a driver signed a contract with a

particular stakeholder, the attributes corresponding to

this contract must be added at encryption time. Such at-

tributes may simply be the identity of the corresponding

stakeholder or some stakeholder-defined attributes that

are stipulated in the contract. In both cases, couples are

formed specifying a context and data type that must be

satisfied to generate the corresponding attributes. In the

first case, the context and data type are specified by the
driver and in the second case they are specified in the

contract. During a data encryption, either the role/i-

dentity or the stakeholder-defined attribute is extracted

from each couple that matches the type and the context

of the data currently sent. The set of attributes used for

encryption is simply the set of extracted roles/identities

or stakeholder-defined attributes from the couples. This

process corresponds to the Driver Attrs selection

process in Figure 5.

Role/identity attributes When a driver wants to add

role/identity attributes or when a contract specifies an

identity attribute, this must be done in compliance with

the law. If the considered data are not covered by any
article of the law and thus by any OrBAC rule, then

the driver may use any role/identity attribute. Other-

wise, the considered data are covered by a matching

OrBAC Prohibition rule (i.e., matching the role, the

data type, and context), the driver/contract may only

add attributes that do not conflict with such rules. Two

situations can be considered:

1. The additional attribute is a stakeholder role, this
role must not appear in any OrBAC matching

Prohibition rules;

2. The additional attribute is a stakeholder identity,

the role associated to the stakeholder must not be in-

cluded in any OrBAC matching Prohibition rules.

For that purpose, a function that is able, from a

stakeholder identity, to provide its role, is also em-

bedded in the vehicle and regularly updated.

Stakeholder-defined attributes They may be freely added

by a driver or through a contract. These attributes only

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 17

concern delegated stakeholders and the drivers are as-

sumed to know the attributes required to grant access

to a delegated stakeholder.

7.5 Requirements satisfaction

This subsection summarizes how the method described

in this section satisfies the R1 to R5 requirements. The

R1 requirement is satisfied through the generation of ac-

cess trees and attributes using the OrBAC Permission

rules extracted from the legislation. The R2 require-
ment is satisfied through the use of driver’s consent at-

tributes during the Driver Attrs selection process

and through the respect of OrBAC Prohibition rules

while providing these attributes. The R3 requirement

is satisfied by taking into account driver’s contracts

in the Driver Attrs selection process and OrBAC

Prohibition rules while providing these attributes. The

R4 requirement is satisfied through the Delegate pro-

cess generating delegated access trees and the Driver

Attrs selection process taking into account driver’s

consent attributes and driver’s contracts. Finally, the

R5 requirement is satisfied through the Transient

Access Tree generation process generating transient

access tree and the generation of contextual attributes

in the vehicle.

7.6 Use case

This subsection presents a simple use case illustrating

the previously described method (i.e., access trees and
attributes generation and access control enforcement).

7.6.1 Context

The stakeholders considered are: a meteorological service

(meteo), two police forces (policeA and policeB), a

road infrastructure manager (infra) with three agencies,

two in regionA (infraA1 and infraA2), and one in

regionB (infraB1), an insurance (insur) employing a

subcontractor (sc1) processing speed data only and a

subcontractor (sc2) processing position data only. The

roles of the different stakeholders are as follows:

id: meteo , role: meteo_service

id: policeA , role: police_force

id: policeB , role: police_force

id: infra , role: road_infra

id: insur , role: insurance

id: sc1 , role: subcontractor

id: sc2 , role: subcontractor

Each stakeholder is considered as a legal entity. If a

stakeholder has multiple agencies, each agency legally

depends on the parent company. This applies to the

three agencies (i.e. infraA1, infraA2, and infraB1)

which depend on infra.

One vehicle called veh is considered. It is equipped with

sensors generating data which types are: speed, pollution,

position, temperature, road damage, and accident. To

simplify the position representation, the world map

is considered to be divided into tiles and a position

corresponds to a specific tile, e.g., tile5. An accident

data is emitted when the vehicle itself has an accident

and is able to detect it. Six messages are considered
which are sent by veh on 07-22-2021, they are presented

in Table 4.

Table 4 Messages on 07-22-2021

ID Time Tile Data type

M1 09:55:20 tile5 pollution

M2 09:55:30 tile5 position

M3 09:55:40 tile6 temperature

M4 09:58:05 tile6 road damage

M5 09:59:00 tile6 speed

M6 10:00:00 tile7 accident

7.6.2 Access control specification

As the articles of the law are still in draft form, the

proposed articles are inspired from the article 32 of the

French Mobility Orientation Law:

L1 Road infrastructure managers can access to the road

damage data;

L2 Police forces cannot access to the speed data;

L3 In case of an accident, police forces can access to the

accident data;

L4 In case of an accident, a police force can be sworn

in and then can access to the position data before

the accident.

It is considered that:

– using L4, policeA obtains an order to be sworn in
to access to the position data before the accident in

M6 (i.e., the position data in M2);

– the driver has signed a pay-as-you-drive contract

with insur which stipulates that the speed data

must be accessible by insur and sc1;

– the driver consents to share the position data with

the road infra role and its agencies in regionA, the

temperature data with meteo, the speed data with

the police force role and with policeB.

To summarize in term of access control objectives:

18 Rémi Adelin et al.

Table 5 Access rights matrix representing the access control
objectives, represents an authorized access and represents
a forbidden access

M1 M2 M3 M4 M5 M6

meteo

policeA

policeB

infra

infraA1

infraA2

infraB1

insur

sc1

sc2

veh

1. the pollution data from M1 must be accessible by no-

body, excepts veh, as no access control specification
identifies the stakeholder that can access a pollution

data;

2. the position data from M2 must be accessible by

policeA since it has been sworn in, and by infra,

infraA1, and infraA2 as the driver consents to

share its position data with infra and its agencies

in regionA;

3. the temperature data from M3 must be accessible

only by meteo as the driver consents to share it with

meteo only;

4. the road damage data from M4 must be accessible

by infra, infraA1, infraA2, and infraB1 as L1

specifies that each road infrastructure manager can

access to the road damage data;

5. the speed data from M5 must be accessible by insur

and sc1 as it is specified in the pay-as-you-drive

contract;

6. the accident data from M6 must be accessible by

policeA and policeB as L3 specifies that the acci-

dent data is available to the police forces;

7. all data must be accessible by veh.

Let us note that, even if the driver consents to share its

speed data with policeA and policeB, as L2 prevents

him to share this data, they must not have the right to

access to it. The corresponding access control matrix is

represented in Table 5.

7.6.3 Access control enforcement

Attributes list

Each attribute is defined with a prefix and a value.

Stakeholder roles/identities attributes:

– stakeholder roles prefixed with st role:, possible

values are meteo service, police force,

road infra, insurance, and subcontractor;

– stakeholder identities prefixed with st id:, the pos-

sible values are meteo, policeA, policeB, infra,

insur, sc1, and sc2.

Contextual attributes:

– the date prefixed with date: (e.g., date:07-22-2021);

– the hour prefixed with hour: (e.g., hour:08-31);

– the position prefixed with position:

(e.g., position:tile10);

– the data type prefixed with type:, the possible val-

ues are pollution, position, temperature,

road damage, speed, and accident;

– a contextual label prefixed with label:, the value

accident is the only value considered, i.e.,

label:accident.

Stakeholder-defined attributes are prefixed with

st attr:, the values considered in this use case are

regionA, regionB, speed, and position.

Finally, the vehicle identity is also an attribute that
is prefixed with v id: (i.e., v id:veh).

Vehicle Access tree

The trusted authority generates the vehicle access tree

which solely contains the vehicle identity:

veh:

v_id:veh

Access trees from the articles of the law

Three OrBAC rules are generated from the articles L1,

L2, and L3:

Permission(TA, road_infra , road_damage ,

read , *)

Prohibition(TA , police_force , speed ,

read , *)

Permission(TA, police_force , accident ,

read , accident)

Let us note that the L4 rule cannot be used to generate

OrBAC rules as this rule is dedicated to the sworn
in process and is used by the trusted authority when

generating transient access trees.

From the OrBAC rules, the following access trees are

generated by the trusted authority:

policeA:

(st_role:police_force

AND type:accident

AND label:accident)

OR st_id:policeA

policeB:

(st_role:police_force

AND type:accident

AND label:accident)

OR st_id:policeB

infra:

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 19

(st_role:road_infra

AND type:road_damage)

OR st_id:infra

meteo:

st_role:meteo_service

OR st_id:meteo

insur:

st_role:insurance

OR st_id:insur

sc1:

st_role:subcontractor

OR st_id:sc1

sc2:

st_role:subcontractor

OR st_id:sc2

Let us note that, the access tree for stakeholders with

no matching OrBAC rules is only composed or their

role and identity.

Access trees from delegation

Two cases of delegation are considered: infra delegates

its secret key to its agencies by adding an AND with

the region of its agency and insur delegates its secret

key to its subcontractors with an AND for each type of

data:

infraA1/infraA2(delegated):

(st_role:road_infra

AND type:road_damage)

OR (st_id:infra

AND st_attr:regionA)

infraB1(delegated):

(st_role:road_infra

AND type:road_damage)

OR (st_id:infra

AND st_attr:regionB)

sc1(delegated):

st_role:insurance

OR (st_id:insur

AND st_attr:speed)

sc2(delegated):

st_role:insurance

OR (st_id:insur

AND st_attr:position)

Transient access tree

As policeA is sworn (L4 rule), it obtains a transient

key from the trusted authority, due to the occurrence

of an accident, containing the following access tree:

policeA(transient):

date :07 -22 -2021

AND position:tile5

AND type:position

AND hour :09 -55

Attributes from the articles of the law

In the vehicle, using the OrBAC rules, the following law

attributes are generated:

((type:accident , label:accident),

st_role:police_force)

((type:road_damage), st_role:road_infra)

Attributes from driver’s contract

From the pay-as-you-drive contract, two attributes are

added when a speed data is emitted, one specifying

the identity insur and one specifying the stakeholder-

defined attribute speed:

((type:speed), st_id:insur)

((type:speed), st_attr:speed)

Attributes from driver’s consent

From driver’s consent, meteo can access the temperature

data using its identity and the infrastructure managers

in regionA can access the position data using the infra

identity and the regionA stakeholder-defined attribute:

((type:temperature), st_id:meteo)

((type:position), st_id:infra)

((type:position), st_attr:regionA)

Let us note that no attributes are selected from driver’s

consent for the access of the police force role and the

policeB identity to the speed data as the vehicle filters

the role and identity using the OrBAC Prohibition rule.

Attributes generation for the data sending events
For the six data sending events, from M1 to M6, the

following attributes are selected:

M1: (date :07 -22-2021, hour :09-55,

position:tile5 , type:pollution ,

v_id:veh)

M2: (st_id:infra , st_attr:regionA ,

date :07-22-2021 , hour:09-55,

position:tile5 , type:position ,

v_id:veh)

M3: (st_id:meteo , date :07 -22-2021,

hour:09-55, position:tile6 ,

type:temperature , v_id:veh)

M4: (st_role:road_infra , date :07-22-2021,

hour:09-58, position:tile6 ,

type:road_damage , v_id:veh)

M5: (st_id:insur , st_attr:speed ,

date :07-22 -2021 , hour:09-59,

position:tile6 , type:speed ,

v_id:veh)

M6: (st_role:police_force , date :07 -22-2021,

hour:10-00, position:tile7 ,

type:accident , v_id:veh , label:accident)

7.6.4 Access control evaluation

Taken into account the attributes associated to the six

events and the access trees of the different stakehold-

ers described above, the access control objectives are

verified:

1. the pollution data emitted at M1 cannot be accessed

by any stakeholder;

2. the position data from M2 is accessible by policeA

through its transient key, by infra through the at-

tribute st role:road infra, and by infraA1 and

infraA2 through the attributes st role:road infra

and st attr:regionA;

20 Rémi Adelin et al.

3. the temperature data from M3 is only accessible by

meteo through the attribute st id:meteo;

4. the road damage data from M4 is accessible by

infra, infraA1, infraA2, and infraB1 through the

attribute st role:road infra;

5. the speed data fromM5 is accessible by insur through

the attribute st id:insur and by sc1 through the

attributes st id:insur and st attr:speed;

6. the accident data from M6 is accessible by policeA

and policeB through the attributes

st role:police force, type:accident, and

label:accident;

7. all data are accessible by veh through the attribute

v id:veh.

These results are consistent with the access matrix in

Table 5 and show that the attribute and access tree

generation method is relevant to enforce the access rights

described in the matrix.

8 Performance evaluation

This section is dedicated to the evaluation of the proto-
col performances with a presentation of the prototype

developed to conduct these experiments, the experimen-

tal protocol, and the experimentation results regarding

the execution time, the memory consumption, and the

message size.

8.1 Implementation details

The security protocol is implemented in C language5,

using the KP-ABE algorithms provided by the Open-

ABE library [51]. This library, developed by Zeutro in

C++, relies on the RELIC library [1] to perform the low

level cryptographic operations and provides an adapted

implementation of KP-ABE large universe construction

of [22], which is a pairing based implementation. The

symmetric encryption algorithms are implemented using

AES in CTR mode from OpenSSL libcrypto library. This

mode was chosen as a stream encryption was needed to

not expand the size of the ciphertext, others AES modes

offering various properties can be used instead of the

CTR mode. As a suitable group signature implemen-

tation was not available, the signature implementation

relies on a classic asymmetric signature from OpenSSL

libcrypto library. The signature performs a digest using

SHA256 and outputs the signature using ECDSA on

the brainpoolP512r1 curve.

5Code available at: https://gitlab.laas.fr/jicv 2022 s

ecurity protocol/security protocol

All steps of the scenarios (Keys generation and distri-

bution, Secure vehicle data send scenario, and Secure

data read from Subsection 5.3) are implemented as a C

function. The message exchanges on the network are

not strictly implemented but the impact on the network

metrics (network throughput and bandwidth) is evalu-

ated. The get access tree function is not implemented

as it is executed by the Trusted Authority offline. The

get attrs function is not implemented either as it only

performs a search in an array, which has a very limited

cost in term of computation time.

The remaining of this section is focused on the Secure

vehicle data send scenario (Subsection 5.3.2) and more
specifically on the steps 1 and 3 which are the most crit-

ical steps in term of performances as they are executed

on the vehicle, which has limited resources in term of

computation power, memory capacity, and bandwidth

capacity.

8.2 Experimental protocol

The benchmarks were performed on a Raspberry Pi

3 B+ chosen for its similarity with the resources of a

vehicle ECU. It has a 1.4GHz 64-bit quad-core processor

(ARMv8) and a 1GB RAM. Three benchmarks were

performed: a time benchmark, a size benchmark, and a

memory benchmark.

Time benchmark The execution time in millisecond of

the steps 1 and 3 is evaluated. The measurements were

performed using the processor performance counter and
then converted to milliseconds. To reduce the counter

variation, the processor was set to its maximum fre-

quency and the benchmark process was isolated on a

single core using cset shield. This benchmark was per-

formed with a number of attributes varying from 1 to 31

per step of 2. For each number of attributes, the size of

the data to be sent in step 3 varies from 1 byte to 4096

bytes per power of 2. Finally, for each combination of

number of attributes and message size, 1024 iterations

were performed.

Size benchmark The size in bytes of the message pro-

duced after the execution of the step 3 is evaluated. It

was performed with a number of attributes varying from

1 to 31 per step of 2. For each number of attributes, the

size of the data to be sent in step 3 varies from 1 byte to

4096 bytes per power of 2. Finally, for each combination

of number of attributes and message size, 16 iterations

were performed.

https://gitlab.laas.fr/jicv_2022_security_protocol/security_protocol
https://gitlab.laas.fr/jicv_2022_security_protocol/security_protocol

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 21

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

30

40

50

60

70

80

90

100

110

120

Data Size (B)

T
im

e
(m

s)

31 attributes

15 attributes

7 attributes

3 attributes

1 attribute

Fig. 8 Step 3 average execution time w.r.t the size of the
data for 1, 3, 7, 15, and 31 attributes

Memory benchmark The maximum size in kilobytes of

the heap and stack memory regions of step 1 and step 3

is evaluated. The measurements were performed using

the Massif tool of Valgrind which profiles the heap and

stack size. It was performed with a number of attributes

varying from 1 to 31 per step of 2. For each number of

attributes, the size of the data to be sent in step 3 varies

from 1 byte to 4096 bytes per power of 2. Finally, for
each combination of number of attributes and message

size, 16 iterations were performed.

8.3 Experimentation results

In the following graphs, the dots represent the data and

the curves represent the corresponding linear regression.

8.3.1 Time benchmark

The execution time of step 3 is first evaluated as step

3 regularly performs ABE encryptions and is definitely

the most time consuming primitive. Figure 8 represents

the average execution time of step 3 for different sizes

of data in the case of 1, 3, 7, 15, and 31 attributes.

As illustrated in this figure, the execution time is a

nearly constant function of the size of the data to be

sent. This demonstrates that the size of the data does

not have any significant impact on the execution time

of step 3. In fact, the OpenABE library implements

the ABE encryption algorithm as a Key Encapsulation

Mechanism. This algorithm first generates a key that is

encrypted with ABE, then the key is used to encrypt

the data using AES. As the AES encryption time is

low in comparison with the remaining of the operation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

20

40

60

80

100

120

Attribute

T
im

e
(m

s)

step 3 max

step 3 avg

step 3 min

step 1 max

step 1 avg

step 1 min

Fig. 9 Execution time w.r.t the number of attribute for a 64
bytes data

performed in step 3, the increase in the size of the data

has not a significant impact on the total execution time

of step 3. In the following, we chose to focus on a 64

bytes data, which is realistic in the context of a data

that may be regularly sent by connected vehicles, and

on a 4096 bytes data, which represents a worst case

scenario.

The impact of the number of ABE attributes on the

execution time of step 1 and 3 is evaluated. Table 6

and 7 represent the execution time of step 1 and step 3,

respectively in case of a 64 bytes and 4096 bytes data for

different number of attributes, and Figure 9 represents

the execution time of step 1 and step 3 in case of a

64 bytes data for different number of attributes. These

tables and figure show that 1) the execution time of step

1 is nearly constant, which is not surprising as this step

is a connection step with only one ABE attribute; 2)

the execution time of step 3 linearly increases w.r.t to

the number of attributes; and 3) the absolute execution

time of step 1 (21.45-27.36 ms) and step 3 (32.06-122.44

ms) remains reasonable in a connected vehicle scenario.

Even with 31 attributes, the execution time of step 3 is

in average 114.71 ms for a 64 bytes data, which enables

approximately 8 step 3 per second, this is perfectly re-

alistic in a real context. Extrapolating on these data, to

reach an execution time of one second, the number of at-

tributes should be set to 361. This number of attributes

is large enough to include complex scenarios of a real

case implementation of the legislation. Furthermore, let

us note that the experiments have been carried out on

a Raspberry Pi and that the implementation as well as

the OpenABE library were not optimized. The execu-

tion time would reduce if an optimized implementation

and optimized library were used. Overall, these experi-

22 Rémi Adelin et al.

Table 6 Execution time w.r.t the number of attribute for a 64 bytes data

attribute
step 1 (ms) step 3 (ms)

step 3 (Hz)

min max avg med min max avg med

1 21.74 25.94 23.43 23.4 32.06 37.46 34.1 34.08 29

3 21.8 26.87 23.44 23.42 37.65 42.47 39.49 39.45 25

5 21.98 25.89 23.43 23.41 42.65 50.73 44.89 44.81 22

7 21.91 25.62 23.45 23.41 47.81 54.26 50.26 50.19 19

9 21.76 25.63 23.41 23.38 52.83 59.37 55.62 55.5 17

11 21.55 25.35 23.43 23.41 58.1 64.72 60.96 60.89 16

13 21.87 25.89 23.46 23.43 63.18 72.17 66.35 66.26 15

15 21.77 25.84 23.44 23.4 68.02 77.87 71.67 71.55 13

17 21.77 25.59 23.46 23.44 72.44 81.76 77.0 76.88 12

19 21.53 25.92 23.46 23.44 78.43 88.51 82.41 82.28 12

21 21.65 26.47 23.42 23.4 83.82 94.78 87.86 87.83 11

23 21.91 25.79 23.44 23.4 88.98 100.28 93.14 93.03 10

25 21.94 25.11 23.45 23.43 93.93 105.05 98.42 98.32 10

27 22.05 26.06 23.44 23.4 98.88 110.83 103.93 103.87 9

29 21.93 26.64 23.44 23.41 103.97 116.63 109.18 109.06 9

31 21.53 26.24 23.45 23.43 108.85 121.43 114.71 114.59 8

Table 7 Execution time w.r.t the number of attribute for a 4096 bytes data

attribute
step 1 (ms) step 3 (ms)

step 3 (Hz)

min max avg med min max avg med

1 21.67 26.49 23.47 23.41 33.61 38.37 35.21 35.18 28

3 21.79 25.49 23.45 23.45 38.9 43.38 40.58 40.52 24

5 21.97 27.36 23.41 23.38 43.68 50.16 45.89 45.8 21

7 22.06 25.33 23.45 23.4 48.76 56.74 51.29 51.26 19

9 21.62 25.32 23.44 23.42 54.07 60.93 56.67 56.59 17

11 21.93 26.65 23.46 23.43 58.81 66.43 62.02 61.94 16

13 21.88 25.59 23.46 23.42 64.15 72.35 67.37 67.29 14

15 21.85 25.83 23.48 23.45 69.55 79.16 72.78 72.73 13

17 21.54 25.64 23.42 23.4 74.63 83.01 78.14 78.05 12

19 21.45 25.93 23.43 23.4 79.26 88.62 83.49 83.31 11

21 21.99 25.57 23.45 23.43 84.67 94.17 88.88 88.77 11

23 21.97 26.52 23.47 23.45 89.07 102.84 94.26 94.2 10

25 21.72 26.13 23.44 23.42 95.15 106.38 99.64 99.57 10

27 22.06 25.87 23.45 23.43 100.72 111.85 105.11 105 9

29 21.9 27.18 23.46 23.44 105.11 118.26 110.39 110.36 9

31 21.86 25.34 23.45 23.41 109.34 122.44 115.8 115.73 8

ments show that the execution time of the encryption

process is acceptable and may not significantly impede

the performances of the ECU embedded in the vehicle.

8.3.2 Size benchmark

This benchmark was dedicated to the evaluation of the

size of the messages produced by step 3 (M3 in Figure

2), and, as a direct consequence, the network bandwidth

required to send the messages. Table 8 and Figure 10

represent the size of the message produced by step 3 for

different number of attributes, in case of a 64 bytes and

4096 bytes data, and Figure 11 represents the size of

the message produced by step 3 for different data sizes,

in case of 1, 3, 7, 15, and 31 attributes. These table and

figures show that 1) the message size linearly increases

w.r.t to the number of attributes; 2) the message size

linearly increases w.r.t to the data size; and 3) for a 64

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 23

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Attribute

M
es
sa
ge

S
iz
e
(B

)

4096 B

64 B

Fig. 10 M3 size w.r.t the number of attribute for a 64 bytes
and 4096 bytes data

Table 8 M3 size w.r.t the number of attribute for a 64 bytes
and 4096 bytes data

attribute 64 (B) 4096 (B)

1 723 6104

3 867 6244

5 1007 6388

7 1149 6527

9 1292 6667

11 1431 6811

13 1573 6951

15 1716 7091

17 1856 7235

19 1995 7377

21 2140 7516

23 2279 7659

25 2420 7799

27 2563 7939

29 2703 8083

31 2843 8224

bytes data, the cipher expansion is 11.3 for 1 attribute,

and 44.4 for 31 attributes. Considering a 64 bytes data

with 31 attributes, and, according to the previous ex-

periments, 8 executions of the step 3 per second, the

sending of the messages requires approximately 181.95

kbps network bandwidth. The website of the Interna-

tional Telecommunication Union [28] specifies that the

3G provides a minimum speed of 348 kbps for a moving

vehicle, which means that the required bandwidth for

the protocol can be supported by 3G/4G/5G vehicle

connections.

However, with a 4096 bytes data with 31 attributes, the

same sending of messages requires approximately 526.34

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Data Size (B)

M
es
sa
ge

S
iz
e
(B

)

31 attributes

15 attributes

7 attributes

3 attributes

1 attribute

Fig. 11 M3 size w.r.t the data size for 1, 3, 7, 15, and 31
attributes

kbps network bandwidth, which should not be supported

by a 3G connection. This estimation was realized by

considering that the data are sent at the maximum rate,

which may not probably be the case for data of 4096

bytes. Such messages may rather correspond to batch

data that are sent less frequently. If a lower sending rate

is considered, for example executing step 3 each second

with a 4096 bytes data and 31 attributes, the required

bandwidth becomes 65.79 kpbs which is compliant with

any 3G or 4G or 5G vehicle connection.

To finalize the evaluation of the message size, a worst

case is considered in which the vehicle outputs the whole

messages that are exchanged on the CAN Bus. The band-

with of the CAN Bus is 1 Mbps [27], so it is considered

that a message of 1 Mb with 31 ABE attributes must

be sent each second. The required bandwidth for the

network connection is then 1.4 Mbps which should not

be supported by a 3G connection, but can be supported

by 4G or 5G connections.

8.3.3 Memory benchmark

Finally, the maximum heap and stack size required for

the execution of step 1 and step 3 is evaluated. Figure

12 represents the average maximum size of the heap

and stack of step 1 and step 3, for different number of

attributes, in the case of a 64 bytes data. This figure

shows that 1) for step 1 and step 3, the maximum stack

size is nearly constant with less than 20 kB; 2) for step

1, the maximum heap size is nearly constant and does

not exceed 220 kB; and 3) for step 3, the maximum heap

size linearly increases w.r.t to the number of attributes

and does not exceed 240 kB for attributes between 1

and 31. This size represents less than 0.1% of the whole

24 Rémi Adelin et al.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

50

100

150

200

250

Attribute

M
em

or
y
S
iz
e
(k
B
)

step 3 heap

step 1 heap

step 3 stack

step 1 stack

Fig. 12 Step 3 average maximum heap and stack size w.r.t
the number of attribute for a 64 bytes data

memory available on the Raspberry Pi, and we expect

the ECU embedded in the vehicle to have at least a 1

GB memory.

Overall, these benchmarks show that the resource con-

sumption, in terms of memory occupation, execution

time and bandwidth, is acceptable in the context of an

ECU embedded in a vehicle.

9 Discussions and Future works

From a theoretical viewpoint, this solution provides a

sufficiently generic approach to handle the main chal-

lenges raised by the integration of the legislation in

connected vehicles. However, several rooms of improve-

ment are required to maintain the effectiveness of the

approach in the following years. Three main challenges

still need to be tackled:

1. the efficient integration of post-quantum compliance;

2. the vehicles’ anonymity;

3. the inference attacks through queries.

For the first point, existing post-quantum ABE schemes

are sufficiently expressive to construct the access trees re-

quired for the legislation enforcement. Nevertheless, they

still require theoretical improvements before their adop-

tion in practice. As presented in Section 4, to achieve

adaptive security, constraints must be applied to the

access tree. For instance, construction from Tsabary et

al. [47] requires access trees to be represented in Con-

junctive Normal Form (CNF), which differs from the

natural derivation of access trees from the law. The

transformation to CNF is possible, but increases the

span of the tree, impacting both ciphertext and key sizes,

and computation times. The same discussion stands for

concurrent post-quantum ABE schemes. Another point

is the lack of large universe constructions. Basically,

to support the access of uploaded data by the vehicle

itself, the identity is encoded as an attribute. Current

post-quantum ABE schemes do not scale well when the

universe of attributes is large. Once again, such limita-

tion impacts both ciphertext and key sizes, and com-

putation times. The protocol remains fully compatible

with pairing-based ABE schemes, which are considered

mature but are vulnerable to a quantum adversary.

For the second point, the anonymity of the vehicle can-
not be guaranteed because the identity of the vehicle

is included in the list of attributes. In the ABE cryp-

tographic scheme currently used in the protocol, the

attributes are sent in plaintext and as a consequence, the

identity of the vehicle that sends data is not confiden-

tial. Some other ABE cryptographic schemes enable to

hide the attributes (these schemes are so-called hidden-

policy) but they may not necessarily be post-quantum

compliant and we still have to investigate these issues.

For the last point, in the current version of the proto-

col, the inference attacks that may be possible through

the observation of the different queries are not consid-

ered. Such attacks are still possible and would allow

the storage center and possible attackers observing the

communications to infer some information about the ve-

hicle and, as a consequence, to the driver himself. Some

suited countermeasures are still to be investigated to

overcome these issues.

A last future work can be considered to improve the

protocol performances. When a data needs to be sent by

the vehicle, the S key K in the step 3 of the Secure vehicle

data send scenario (Subsection 5.3.2) can be reused

as a short-lived session key. This improvement would

reduce the time between two emissions of messages,

nevertheless, as previously stated in the Performance

Evaluation section (Section 8), without this optimization

the performances of the protocol are still acceptable.

10 Conclusion

In this article, a security protocol allowing to implement

fine-grained access control mechanisms on the data emit-

ted by connected vehicles is presented. This protocol

mainly relies on an ABE cryptographic scheme, satis-

fies suited security properties formally proven with the

ProVerif tool, and is designed to be post-quantum com-

pliant. Furthermore, this protocol takes into account

the legislation to generate the adequate access trees

for the different stakeholders and the attributes used

during data encryption. For that purpose, this article

also describes a semi-automated process based on the

OrBAC formalism and a specific use case illustrating the

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 25

process. Finally, the performances of the protocol have

been evaluated in terms of computation time, memory

consumed, and message size, and show that the perfor-

mances of the protocol are acceptable in a connected

vehicle context. Future work is directly connected to

the challenges identified in Section 9. We plan to inves-

tigate the size of the attribute universe and identify, if

necessary, a suited compromise to satisfy current post-

quantum constraints. Finally, we also plan to study

solutions to grant anonymity to vehicles and to prevent

the possible inference attacks.

References

1. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S.
Wahby, and K. Liao. RELIC is an Efficient LIbrary for
Cryptography. https://github.com/relic-toolkit/rel

ic.

2. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Com-
pagna, J. Cuellar, P. Hankes Drielsma, P. C. Heám,
O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vi-
ganò, and L. Vigneron. The avispa tool for the automated
validation of internet security protocols and applications.
In Kousha Etessami and Sriram K. Rajamani, editors,
Computer Aided Verification, pages 281–285, Berlin, Hei-
delberg, 2005. Springer Berlin Heidelberg.

3. Mathieu Baudet, Véronique Cortier, and Stéphanie De-
laune. Yapa: A generic tool for computing intruder
knowledge. In Ralf Treinen, editor, Rewriting Techniques
and Applications, pages 148–163, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

4. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-
policy attribute-based encryption. In Security and Privacy,
pages 321–334, 2007.

5. Bruno Blanchet. Symbolic and computational mecha-
nized verification of the arinc823 avionic protocols. In
2017 IEEE 30th Computer Security Foundations Symposium

(CSF), pages 68–82, 2017.

6. Bruno Blanchet and Avik Chaudhuri. Automated formal
analysis of a protocol for secure file sharing on untrusted
storage. In Proceedings of the 29th IEEE Symposium on

Security and Privacy (S&P’08), pages 417–431. IEEE, 2008.

7. Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc
Sylvestre. ProVerif 2.00: Automatic Cryptographic Protocol
Verifier, User Manual and Tutorial, 2018. Originally ap-
peared as Bruno Blanchet and Ben Smyth (2011) ProVerif
1.85: Automatic Cryptographic Protocol Verifier, User
Manual and Tutorial.

8. Yohan Boichut, Pierre-Cyrille Héam, Olga Kouchnarenko,
and Frederic Oehl. Improvements on the genet and klay
technique to automatically verify security protocols. In
Proc. AVIS, volume 4, page 84, 2004.

9. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Niko-
laenkov, G. Segev, V. Vaikuntanathan, and D. Vinayaga-
murthy. Fully key-homomorphic encryption, arithmetic
circuit abe and compact garbled circuits. In EUROCRYPT,
pages 533–556, 2014.

10. Dan Boneh and Matt Franklin. Identity-based encryption
from the weil pairing. In Annual international cryptology

conference, pages 213–229. Springer, 2001.

11. Ran Canetti and Hugo Krawczyk. Analysis of key-
exchange protocols and their use for building secure chan-
nels. In International conference on the theory and applica-
tions of cryptographic techniques, pages 453–474. Springer,
2001.

12. David Chaum and Eugène Van Heyst. Group signatures.
In Workshop on the Theory and Application of of Crypto-

graphic Techniques, pages 257–265. Springer, 1991.
13. Liqun Chen and Mark Ryan. Attack, solution and verifica-

tion for shared authorisation data in tcg tpm. In Pierpaolo
Degano and Joshua D. Guttman, editors, Formal Aspects

in Security and Trust, pages 201–216, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

14. Joan Daemen and Vincent Rijmen. Aes proposal: Rijn-
dael, aes algorithm submission, september 3, 1999. URL

http://www. nist. gov/CryptoToolKit, pages 37–38, 1999.
15. H. Deng, Q. Wu, B. Qin, J. Domingo-Ferrer, L. Zhang,

J. Liu, and W. Shi. Ciphertext-policy attribute-based
encryption: An expressive, efficient, and provably secure
realization. In Inf. Sci., pages 270–384, 2014.

16. Danny Dolev and Andrew Yao. On the security of public
key protocols. IEEE Transactions on information theory,
29(2):198–208, 1983.

17. Josep Domingo-Ferrer, Oriol Farras, Jordi Ribes-González,
and David Sánchez. Privacy-preserving cloud computing
on sensitive data: A survey of methods, products and
challenges. Computer Communications, 140:38–60, 2019.

18. M.F. Ezerman, H.T. Lee, S. Ling, K. Nguyen, and
H. Wang. A provably secure group signature scheme
from code-based assumptions. In ASIACRYPT, 2015.

19. Chaosheng Feng, Keping Yu, Moayad Aloqaily, Mamoun
Alazab, Zhihan Lv, and Shahid Mumtaz. Attribute-based
encryption with parallel outsourced decryption for edge
intelligent iov. IEEE Transactions on Vehicular Technology,
69(11):13784–13795, 2020.

20. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In
STOC, 2008.

21. S.D. Gordon, J. Katz, and V. Vaikuntanathan. A group
signature scheme from lattice assumptions. In ASI-

ACRYPT, 2010.
22. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-

based encryption for fine-grained access control of en-
crypted data. In CCS, pages 89–98, 2006.

23. Shi-Jinn Horng, Cheng-Chung Lu, and Wanlei Zhou.
An identity-based and revocable data-sharing scheme
in vanets. IEEE Transactions on Vehicular Technology,
69(12):15933–15946, 2020.

24. Dijiang Huang and Mayank Verma. Aspe: Attribute-based
secure policy enforcement in vehicular ad hoc networks.
Ad Hoc Networks, 7(8):1526–1535, 2009.

25. Qinlong Huang, Nan Li, Zhicheng Zhang, and Yixian
Yang. Secure and privacy-preserving warning message
dissemination in cloud-assisted internet of vehicles. In
2019 IEEE Conference on Communications and Network
Security (CNS), pages 1–8. IEEE, 2019.

26. Qinlong Huang, Yixian Yang, and Yuxiang Shi. Smartveh:
Secure and efficient message access control and authenti-
cation for vehicular cloud computing. Sensors, 18(2):666,
2018.

27. ISO. Road vehicles — controller area network (can) —
part 2: High-speed medium access unit. https://www.iso.

org/standard/33423.html.
28. ITU. About mobile technology and imt-2000. https:

//www.itu.int/osg/spu/imt-2000/technology.html#Cellu

lar%20Standards%20for%20the%20Third%20Generation.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.iso.org/standard/33423.html
https://www.iso.org/standard/33423.html
https://www.itu.int/osg/spu/imt-2000/technology.html#Cellular%20Standards%20for%20the%20Third%20Generation
https://www.itu.int/osg/spu/imt-2000/technology.html#Cellular%20Standards%20for%20the%20Third%20Generation
https://www.itu.int/osg/spu/imt-2000/technology.html#Cellular%20Standards%20for%20the%20Third%20Generation

26 Rémi Adelin et al.

29. Anas Abou El Kalam, R El Baida, Philippe Balbiani,
Salem Benferhat, Frédéric Cuppens, Yves Deswarte,
Alexandre Miege, Claire Saurel, and Gilles Trouessin. Or-
ganization based access control. In Proceedings POLICY

2003. IEEE 4th International Workshop on Policies for Dis-

tributed Systems and Networks, pages 120–131. IEEE, 2003.
30. Steve Kremer and Mark D. Ryan. Analysing the vulnera-

bility of protocols to produce known-pair and chosen-text
attacks. Electronic Notes in Theoretical Computer Science,
128(5):87–104, 2005. Proceedings of the 2nd International
Workshop on Security Issues in Coordination Models,
Languages, and Systems (SecCo 2004).

31. F. Laguillaumie, A. Langlois, B. Libert, and Stehlé.
Lattice-based group signatures with logarithmic signa-
ture size. In ASIACRYPT, 2013.

32. A. Langlois, S. Ling, K. Nguyen, and H. Wang. Lattice-
based group signature scheme with verifier-local revoca-
tion. In PKC, 2014.

33. S. Ling, K. Nguyen, and H. Wang. Group signatures from
lattices: simpler, tighter, shorter, ring-based. In PKC,
2015.

34. Xuejiao Liu, Yingjie Xia, Wenzhi Chen, Yang Xiang,
Mohammad Mehedi Hassan, and Abdulhameed Alelaiwi.
Semd: Secure and efficient message dissemination with
policy enforcement in vanet. Journal of Computer and
System Sciences, 82(8):1316–1328, 2016.

35. Wei Luo and Wenping Ma. Efficient and secure access
control scheme in the standard model for vehicular cloud
computing. IEEE Access, 6:40420–40428, 2018.

36. Shafieinejad M. and Nasr Esfahani N. A scalable post-
quantum hash-based group signature. In Designs, Codes

and Cryptography, 2021.
37. Simon Meier, Benedikt Schmidt, Cas Cremers, and David

Basin. The tamarin prover for the symbolic analysis of
security protocols. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification, pages 696–701,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

38. D. Micciancio and C. Peikert. Hardness of sis and lwe
with small parameters. In CRYPTO, 2013.

39. D. Micciancio and O. Regev. Worst-case to average-
case reductions based on gaussian measures. In SIAM J.

Comput. 37, 2007.
40. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based

encryption with non-monotonic access structures. In CCS,
pages 195–203, 2007.

41. Jingwen Pan, Jie Cui, Lu Wei, Yan Xu, and Hong Zhong.
Secure data sharing scheme for vanets based on edge
computing. EURASIP Journal on Wireless Communications

and Networking, 2019(1):1–11, 2019.
42. C. Peikert. Public-key cryptosystems from the worst-case

shortest vector problem: extended abstract. In STOC,
2009.

43. O. Regev. On lattices, learning with errors, random linear
codes, and cryptogra- phy. In STOC, 2005.

44. Sushmita Ruj, Amiya Nayak, and Ivan Stojmenovic. Im-
proved access control mechanism in vehicular ad hoc
networks. In International Conference on Ad-Hoc Networks
and Wireless, pages 191–205. Springer, 2011.

45. A. Sahai and B. Waters. Fuzzy identity-based encryption.
In EUROCRYPT, pages 457–473, 2005.

46. Ravi S Sandhu. Role-based access control. In Advances in

computers, volume 46, pages 237–286. Elsevier, 1998.
47. Rotem Tsabary. Fully secure attribute-based encryption

for t-cnf from lwe. In CRYPTO, 2019.
48. Nyamsuren Vaanchig, Zhiguang Qin, and Batjargal

Ragchaasuren. Constructing secure-channel free identity-
based encryption with equality test for vehicle-data shar-

ing in cloud computing. Transactions on Emerging Telecom-
munications Technologies, page e3896, 2020.

49. Geng Wang, Zhen Liu, and Dawu Gu. Ciphertext policy
attribute-based encryption for circuits from lwe assump-
tion. In ICICS, 2019.

50. B. Waters. Ciphertext-policy attribute-based encryption:
An expressive, efficient, and provably secure realization.
In PKC, pages 53–70, 2011.

51. B. Waters, M. Green, S. Hohenberger Waters, J. A.
Akinyele, A. M. Dunn, and M. Rushanan. Openabe.
https://github.com/zeutro/openabe.

52. Hu Xiong, Yingzhe Hou, Xin Huang, and Yanan Zhao.
Secure message classification services through identity-
based signcryption with equality test towards the internet
of vehicles. Vehicular Communications, 26:100264, 2020.

53. E. Zavattoni, L. J. D. Perez, S. Mitsunari, A. H.
Sanchez-Ramirez, T. Teruya, and F. Rodriguez-Henrique.
Ciphertext-policy attribute-based encryption: An expres-
sive, efficient, and provably secure realization. In IEEE

TC, pages 1429–1441, 2015.
54. J. Zhang and Z. Zhang. A ciphertext policy attribute-

based encryption scheme without pairings. In Inscrypt,
pages 324–340, 2011.

55. J. Zhang, Z. Zhang, and A. Ge. phertext policy attribute-
based encryption from lattices. In ASIACCS, pages 16–17,
2012.

56. Yanan Zhao, Yingzhe Hou, Yanan Chen, Sachin Kumar,
and Fuhu Deng. An efficient certificateless public key
encryption with equality test toward internet of vehicles.
Transactions on Emerging Telecommunications Technologies,
page e3812, 2019.

57. Yang Zhao, Xing Zhang, Xin Xie, Yi Ding, and Sachin
Kumar. A verifiable hidden policy cp-abe with decryption
testing scheme and its application in vanet. Transactions
on Emerging Telecommunications Technologies, page e3785,
2019.

A ProVerif term syntax

1 M, N ::= terms

2 a,b,c,k,m,n,s names

3 x,y,z variables

4 (M1,...,Mk) tuple

5 h(M1,...,Mk) constructor/destructor

6 M = N term equality

7 M <> N term inequality

8 M N conjunction

9 M N disjunction

B ProVerif process syntax

1 P, Q, R ::= processes

2 0 null process

3 P || Q parallel composition

4 !P replication

5 new n : t; P name restriction

6 in(M, x : t); P message input

7 out(M, N) ; P message output

8 if M then P else Q conditional

9 let x = M in P else Q term evaluation

10 R(M1, ..., Mn) macro usage

https://github.com/zeutro/openabe

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 27

C Type declaration

1 type s_key.
2 type attrs.
3 type accessp.
4 type abe_mkey.
5 type abe_skey.
6 type abe_pkey.
7 type gs_mkey.
8 type gs_skey.
9 type gs_pkey.

D Global variable

1 free c: channel.
2 free storage_attrs: attrs.
3 free storage_ap: accessp.

E Event declaration

1 event vehicle_send(attrs, attrs, bitstring, bitstring).
2 event vehicle_read(attrs, bitstring, bitstring).
3 event vehicle_conj(accessp, attrs).
4 event vehicle_leak(attrs, abe_skey).
5 event storage_write(bitstring).
6 event storage_send(bitstring).
7 event storage_leak(abe_skey).
8 event stakeholder_read(accessp, bitstring, bitstring).
9 event stakeholder_conj(accessp, attrs).

10 event stakeholder_leak(accessp, abe_skey).

F ABE representation

1 free abe_mk: abe_mkey [private].
2

3 fun abe_pkgen(abe_mkey): abe_pkey.
4 fun abe_skgen(accessp, abe_mkey): abe_skey.
5 fun abe_enc(bitstring, attrs, abe_pkey): bitstring.
6 fun abe_bolt(abe_skey, attrs, abe_mkey): bitstring.
7 fun ext_attrs(attrs, attrs): attrs.
8

9 reduc forall m: bitstring, mk: abe_mkey, i: attrs ;
10 abe_attrs(abe_enc(m, i, abe_pkgen(mk))) = i.
11

12 reduc forall m: bitstring, mk: abe_mkey, i: attrs,
13 sk: abe_skey, ap: accessp ;
14 abe_dec(abe_enc(m, i, abe_pkgen(mk)),
15 abe_skgen(ap, mk),
16 abe_bolt(abe_skgen(ap, mk), i, mk)) = m.

G S representation

1 fun s_enc(bitstring, s_key): bitstring.
2

3 reduc forall m: bitstring, k: s_key ;
4 s_dec(s_enc(m, k), k) = m.

H GS representation

1 free gs_mk: gs_mkey [private].
2

3 fun gs_pkgen(gs_mkey): gs_pkey.
4 fun gs_skgen(attrs, gs_mkey): gs_skey.

5 fun gs_sign(bitstring, gs_skey): bitstring.
6

7 reduc forall m: bitstring, mk: gs_mkey, i: attrs ;
8 gs_msg(gs_sign(m, gs_skgen(i, mk)), gs_pkgen(mk)) = m.

I Global tables

1 table list_conjs(attrs).
2 table list_msg(bitstring).
3 table list_stakeholders_sk(accessp, abe_skey).
4 table list_vehicles_sk(accessp, attrs, abe_skey).
5 table list_bolts(accessp, attrs, bitstring).

J Attribute creation process

1 let create_list_conjs() =
2 !(new a: attrs ;
3 insert list_conjs(a) ;
4 out(c, a)).

K Vehicle process

1 let handle_vehicle(va: attrs, vap: accessp,
2 vehicle_abe_sk: abe_skey, vehicle_abe_pk: abe_pkey,
3 vehicle_gs_sk: gs_skey, vehicle_gs_pk: gs_pkey) =
4 !(
5 (* Send a store request. *)
6 new k: s_key ;
7 new vehicle_nonce: bitstring ;
8 let ct1 = abe_enc((s_key2bs(k), vehicle_nonce),
9 storage_attrs, vehicle_abe_pk) in

10 out(c, gs_sign(ct1, vehicle_gs_sk)) ;
11 (* Read the nonce to use. *)
12 in(c, response: bitstring) ;
13 let (storage_nonce: bitstring, =vehicle_nonce)
14 = s_dec(gs_msg(response, vehicle_gs_pk), k) in
15 new msg: bitstring ;
16 (* Choose a conjunction to cipher the message msg. *)
17 get list_bolts(=vap, conj, b) in
18 let ct2 = abe_enc(msg, conj, vehicle_abe_pk) in
19 let ct3 = gs_sign(s_enc((ct2, storage_nonce), k),
20 vehicle_gs_sk) in
21 event vehicle_send(va, conj, ct2, msg) ;
22 out(c, ct3)
23) | !(
24 (* Read a message from the storage. *)
25 in(c, ct1: bitstring) ;
26 let ct2 = gs_msg(ct1, vehicle_gs_pk) in
27 let conj = abe_attrs(ct2) in
28 get list_bolts(=vap, =conj, b) in
29 let msg = abe_dec(ct2, vehicle_abe_sk, b) in
30 event vehicle_read(va, ct2, msg)
31).

L Storage Center process

1 let handle_storage(
2 storage_abe_sk: abe_skey,
3 storage_gs_sk: gs_skey,
4 storage_gs_pk: gs_pkey) =
5 !(
6 (* Read a store request. *)
7 in(c, store_request: bitstring) ;
8 get list_bolts(=storage_ap, =storage_attrs, b) in
9 let ct4 = abe_dec(gs_msg(store_request, storage_gs_pk),

10 storage_abe_sk, b) in
11 let (s_key2bs(k), vehicle_nonce: bitstring) = ct4 in
12 (* Generate and send the nonce. *)

28 Rémi Adelin et al.

13 new storage_nonce: bitstring ;
14 out(c, gs_sign(s_enc((storage_nonce, vehicle_nonce), k),
15 storage_gs_sk)) ;
16 (* Read the data sent, check the nonce and
17 store the message. *)
18 in(c, ct3: bitstring) ;
19 let (ct2: bitstring, =storage_nonce)
20 = s_dec(gs_msg(ct3, storage_gs_pk), k) in
21 event storage_write(ct2) ;
22 insert list_msg(ct2)
23) | !(
24 (* Read and send a value. *)
25 get list_msg(ct1) in
26 let ct2 = gs_sign(ct1, storage_gs_sk) in
27 event storage_send(ct2) ;
28 out(c, ct2)
29).

M Stakeholder process

1 let handle_stakeholder(
2 gs_pk: gs_pkey) =
3 !(
4 in(c, ct1: bitstring) ;
5 (* We could have the sk in parameter but we
6 proceed this way to make leak easier. *)
7 get list_stakeholders_sk(sap, stakeholder_a_sk) in
8 let ct2 = gs_msg(ct1, gs_pk) in
9 let conj = abe_attrs(ct2) in

10 get list_bolts(=sap, =conj, b) in
11 let msg = abe_dec(ct2, stakeholder_a_sk, b) in
12 event stakeholder_read(sap, ct2, msg)
13).

N Vehicle, Storage Center and Stakeholder

deployment process

1 let create_storage() =
2 let storage_abe_sk = abe_skgen(storage_ap, abe_mk) in
3 let storage_gs_sk = gs_skgen(storage_attrs, gs_mk) in
4 insert list_bolts(storage_ap, storage_attrs,
5 abe_bolt(storage_abe_sk, storage_attrs,
6 abe_mk)) ;
7 phase 4 ;
8 handle_storage(storage_abe_sk, storage_gs_sk,
9 gs_pkgen(gs_mk)).

10

11 let create_vehicles() =
12 !(
13 new va: attrs ;
14 new vap: accessp ;
15 let vehicle_abe_sk = abe_skgen(vap, abe_mk) in
16 insert list_vehicles_sk(vap, va, vehicle_abe_sk) ;
17 let vehicle_gs_sk = gs_skgen(va, gs_mk) in
18 (
19 phase 2 ;
20 !(
21 get list_conjs(a) in
22 let conj = ext_attrs(a, va) in
23 event vehicle_conj(vap, a) ;
24 insert list_bolts(vap, conj, abe_bolt(vehicle_abe_sk,
25 conj, abe_mk))
26)
27) | (
28 phase 4 ;
29 handle_vehicle(va, vap, vehicle_abe_sk,
30 abe_pkgen(abe_mk), vehicle_gs_sk,
31 gs_pkgen(gs_mk))
32)
33).
34

35 let create_stakeholders() =
36 !(
37 new sap: accessp ;

38 let stakeholder_abe_sk = abe_skgen(sap, abe_mk) in
39 insert list_stakeholders_sk(sap, stakeholder_abe_sk) ;
40 (
41 phase 2 ;
42 !(
43 get list_conjs(a) in
44 get list_vehicles_sk(vap_private,
45 va_private, unused) in
46 let conj = ext_attrs(a, va_private) in
47 event stakeholder_conj(sap, a) ;
48 insert list_bolts(sap, conj,
49 abe_bolt(stakeholder_abe_sk, conj,
50 abe_mk))
51)
52)
53) | (
54 phase 4 ;
55 handle_stakeholder(gs_pkgen(gs_mk))
56).

O Vehicle, Storage Center and Stakeholder

ABE decryption key leak process

1 let do_vehicle_leak() =
2 <##ifdef VEHICLE_LEAK>
3 get list_vehicles_sk(leak_vehicle_ap, leak_vehicle_attrs,
4 leak_vehicle_abe_sk) in
5 event vehicle_leak(leak_vehicle_attrs,
6 leak_vehicle_abe_sk) ;
7 out(c, (leak_vehicle_attrs, leak_vehicle_abe_sk)) ;
8 !(
9 get list_conjs(leak_a) in

10 let leak_conj = ext_attrs(leak_a, leak_vehicle_attrs) in
11 get list_bolts(=leak_vehicle_ap, =leak_conj, leak_b) in
12 out(c, leak_b)
13).
14 <##else>
15 0.
16 <##endif>
17

18 let do_storage_leak() =
19 <##ifdef STORAGE_LEAK>
20 let leak_storage_abe_sk = abe_skgen(storage_ap, abe_mk) in
21 event storage_leak(leak_storage_abe_sk) ;
22 out(c, leak_storage_abe_sk) ;
23 <##endif>
24 0.
25

26 let do_stakeholder_leak() =
27 <##ifdef STAKEHOLDER_LEAK>
28 get list_stakeholders_sk(leak_stakeholder_ap,
29 leak_stakeholder_abe_sk) in
30 event stakeholder_leak(leak_stakeholder_ap,
31 leak_stakeholder_abe_sk) ;
32 out(c, leak_stakeholder_abe_sk) ;
33 !(
34 get list_bolts(=leak_stakeholder_ap, leak_conj,
35 leak_b) in
36 out(c, leak_b)
37).
38 <##else>
39 0.
40 <##endif>
41

42 let do_public_leak() =
43 out(c, storage_attrs) ;
44 out(c, abe_pkgen(abe_mk)) ;
45 out(c, gs_pkgen(gs_mk)) ;
46 0.
47

48 let leaks() =
49 phase 3 ;
50 (
51 do_vehicle_leak()
52 | do_storage_leak()
53 | do_stakeholder_leak()
54 | do_public_leak()
55).

A Formally Proven, Legislation Compliant, and Post-Quantum Ready Security Protocol 29

P Main process

1 process
2 create_list_conjs()
3 | create_storage()
4 | create_vehicles()
5 | create_stakeholders()
6 | leaks()

	Introduction
	Context and problem statement
	Related work
	Mathematical background
	Secure protocol
	Formal verification
	Legislation-compliant access control
	Performance evaluation
	Discussions and Future works
	Conclusion
	ProVerif term syntax
	ProVerif process syntax
	Type declaration
	Global variable
	Event declaration
	ABE representation
	S representation
	GS representation
	Global tables
	Attribute creation process
	Vehicle process
	Storage Center process
	Stakeholder process
	Vehicle, Storage Center and Stakeholder deployment process
	Vehicle, Storage Center and Stakeholder ABE decryption key leak process
	Main process

