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Controlling the Solo12 Quadruped Robot
with Deep Reinforcement Learning

Michel Aractingi1,2, Pierre-Alexandre Léziart1, Thomas Flayols1,
Julien Perez2, Tomi Silander2 and Philippe Soueres1

Abstract—Quadruped robots require robust and general lo-
comotion skills to exploit their mobility potential in complex
and challenging environments. In this work, we present the first
implementation of a robust end-to-end learning-based controller
on the Solo12 quadruped. Our method is based on deep rein-
forcement learning of joint impedance references. The resulting
control policies follow a commanded velocity reference while
being efficient in its energy consumption, robust and easy to
deploy. We detail the learning procedure and method for transfer
on the real robot. In our experiments, we show that the Solo12
robot is a suitable open-source platform for research combining
learning and control because of the easiness in transferring and
deploying learned controllers.

Index Terms—Quadruped Locomotion, Deep Learning, Rein-
forcement Learning.

I. INTRODUCTION

LEGGED robots can traverse challenging, uneven terrains.
The interest in the design and control of legged robots has

resurged due to the development of many quadruped platforms
such as the Mini-Cheetah [1], HyQ [2], ANYmal [3], Solo [4],
Spot Mini [5] and Laikago [6]. These platforms serve as
suitable test-benches for control and locomotion research.
Finding the right way to control such systems is crucial to
fully exploit quadruped mobility. In this paper we conduct
our experiments using the Solo12 [7] robot which is a recent
alternative platform that provides a reliable low-cost open-
access quadruped within the Open Dynamic Robot Initiative1.

Many control methods based on motion planning and trajec-
tory optimization have been proposed for quadrupeds. Winkler
et al. [8] suggest using a tree search to plan the body path and
footsteps positions in the environment for the HyQ robot [2].
Bellicoso et al. [9] show a ZMP-based motion planner for
executing dynamic transitions between gaits on the ANYmal
robot [3]. The approaches proposed by Di Carlo et al. [10]
and Kim et al. [11] use model-predictive control (MPC) on
a centroidal model to plan the base trajectory and ground
reaction forces of the feet in contact for the Mini-cheetah [1].
Kim et al. [11] propose a whole body control formulation
that outputs the necessary low-level control in order to track
the base trajectory on a shorter-time horizon. Leziart et al. [7]
implement a similar MPC-based approach for Solo12 [4] while
simplifying solutions for the computation of the whole-body
control. While all these methods produce robust dynamic

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
2 NAVER LABS Europe, Grenoble, France.
michel.aractingi@naverlabs.com
1https://open-dynamic-robot-initiative.github.io/

Fig. 1. Snapshots of the Solo12 quadruped in simulation and in real settings
driven by a reactive controller learned through deep reinforcement learning.
With learned controllers the robot can traverse various outdoor environments
with slopes and rough ground. Full video: https://youtu.be/t-67qBxNyZI

controllers, they often require some aspects of control, such as
gait, feet trajectories, body height and orientation etc., to be
determined by hand-tuned parameters that are hard to adapt for
all the different environments a quadruped might encounter in
the real-world. These controllers often rely on models that are
hard to design and observe in many situations. Furthermore,
these methods are computationally heavy at run time and
sometimes laborious to set up.

In contrast to optimization methods, data-driven methods
that are based on learning can be used for designing con-
trollers. Specifically, reinforcement learning (RL) is an alter-
native approach for obtaining highly performant agents that act
in their environment in which the dynamics and transitions are
modeled as a Markov decision process (MDP) [12]. There are
many early examples of applying RL to robotic tasks such as
manipulation [13]–[16] and locomotion [17], [18]. However,
RL used to be hard to scale and was often limited to solving
small sub-problems in the control pipeline in which most of the
components were hand-designed. With increased computing
power and recent evolution of deep learning methods that
use large scale neural networks we can now solve problems
requiring high-dimensional data [19]–[21]. Deep RL combines
neural networks with RL algorithms to learn value function
approximations [22]–[24] and/or, directly, policies [25]–[27].
Using images from camera, deep RL has been successfully
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applied for manipulation tasks such as object insertion, peg in
a hole [28], and reaching and grasping objects [29].

In recent works, deep RL has been applied to quadru-
peds [30] and bipeds [31] for the purpose of learning end-
to-end controllers. Hwangbo et al. [30] outline a general RL
method for learning joint angle controllers from the base and
joint states of the robot. The authors propose learning a model
of the actuation dynamics of ANYmal [3] from real-data that
can then be deployed in simulation thus enabling the learned
policies to transfer to the real-world. In the work by Miki et
al. [32], the authors deploy a similar learning scheme and
augment the action space with a central pattern generator
(CPG) layer that produces a baseline walking gait pattern
for the feet [33]. Using proprioception and a LIDAR based
reconstruction of the environment, the policy then learns to
manipulate the CPG phase and joint angles to modify the gait.
Similarly, Lee et al. [34] learn a policy that modifies the phase
and shift of CPG functions that determine the foot trajectories
which are fed to model-based controller to produce joint angle
control. Ji et al. [35] propose learning a control policy through
RL and a state estimation network with supervised learning
that tries to predict state variables that are not measured on
the real robot but are available in simulation and provide vital
information for learning robust policies, e.g., feet contact states
and linear velocity of the base. These works mostly rely on
domain randomization techniques that add noise to the sensory
input of the policy and to the dynamics of the simulation
in order to learn policies that transfer to the real system.
Rapid motor adaptation (RMA) presents an alternative method
for transfer by adding an adaptation network to the training
architecture [36], [37]. The original policy is initially trained
in different simulated conditions by varying ground friction,
payload, motor strength, etc. In this first learning phase the
algorithm also constructs a compact latent descriptor of the
relevant aspects of these different conditions. In the second
phase of learning the system learns an adaptation network that
estimates this latent condition descriptor using only the history
of measurements available in the real robot. This ability to
adapt to different conditions also compensates for discrepancy
between simulated and real settings.

In this paper, we present an RL approach for learning robust
controllers on the Solo12 robot [7]. We detail our procedure for
setting up the MDP components, i.e., state space, action space
and reward function, along with the additional techniques
required to make the learning converge and transfer to the
real robot. We use proximal policy optimization (PPO) [27]
as the RL algorithm, and present results on the real Solo12
robot with videos and snapshots. Figure 1 depicts examples of
Solo12 controlled by learned policies in simulation and real-
world using two different joint angle configurations. Our main
contributions are:

• Detailed description and analysis of a deep RL method
for learning controllers for the Solo12 that transfer to the
real-robot.

• Introduction and study of a realistic energy loss penalty
for policy learning based on actuator friction and Joules
losses identification.

• Open-source implementation to make the work repro-

ducible that is in line with the open-source mission of
Solo12. 2

In Section II we present notations and preliminaries for
RL and MDPs. Section III details our learning methods and
notably the core components of the MDP, i.e., the state,
actions, reward function and transfer methods. Section IV
showcases our results in simulation and with the real robot.
Finally, we conclude in Section V.

II. REINFORCEMENT LEARNING PRELIMINARIES

We model the reinforcement learning (RL) environment as
a Markov decision process (MDP) with continuous state
and action spaces [12]. An MDP is defined by the tuple
(S,A,R, T , P0), where S ⊂ RdS is a set of states, and
A ⊂ RdA is a set of actions. In RL setting, only spaces S and
A of the MDP are known to the learning agent. The agent
starts by observing the initial state s0 ∈ S and it performs
actions at ∈ A in the environment at discrete times indexed
by t ∈ N, after which it receives a stochastic reward rt+1 ∈ R
and observes a new stochastic state st+1.

The environment dynamics is described by a transition
probability distribution T : S × A × S → R+, such that
T (s, a, s′) = p(s′|s, a) is the probability (density) that the
next state is s′ given that the current state is s and that the
action taken is a. P0 is the initial state probability distribution.
Similarly, the stochastic reward r ∈ R after taking an action
a in a state s and observing a state s′ next is governed by the
function R : S×A×S×R → R+ that defines the probability
densities p(r|s, a, s′).

To formalize the goal of learning, we define a stochastic
policy πθ(h, a) = pθ(at = a | ht = h), parameterized by θ,
that gives the probability density of taking an action a given
a state-action history h = (s0, a0, s1, a1, ... at). The learning
objective is to find the parameters θ of the policy for which the
expected discounted sum of rewards J(θ) := E[

∑H
t=1 γ

t−1rt]
is maximized. In this expression H is the horizon of the
episode and γ ∈ [0, 1] is a discount factor. The expectation is
taken over the stochastic policy, the initial state distribution,
and the stochasticity of rewards and state dynamics.

III. METHOD

Our goal is to define an RL method that can learn to control a
Solo12 robot conditioned on a user-defined velocity command.
The Solo12 quadruped is a 12 degrees of freedom version of
Solo8 [4] that can be torque controlled. We will describe the
design of our state space, action space and reward function in
the following sections.

In general, our control policy is implemented as a neural
network that takes the state as an input, and outputs the actions.
The actions that define joint angle targets are then fed to
a Proportional Derivative (PD) feedback controller in order
to get the desired torques for commanding the robot joints.
Figure 2 shows a summary of the control scheme in terms
of the inputs/outputs of the control network and how it is
deployed on the real robot. The estimation network in Figure 2

2Code available at: https://github.com/Gepetto/soloRL
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Fig. 2. Summary of the control scheme. The control policy receives a desired 3D velocity to follow. Using the linear velocity prediction from the base
estimation network and other state values measured by the robot’s sensors, the control policy outputs joint angle displacements to a nominal joint angle
configuration. The target is fed to a proportional derivative (PD) joint impedance controller to calculate the torques. The estimation network predicts the linear
velocity of the base from the state information. The control scheme on the real robot is split into two levels, the RL policy (θ) is queried at 100Hz to give a
joint target action that will be executed at a high frequency low level PD loop at 10kHz.

is trained with supervised learning to predict the linear velocity
of the base. The control policy parameters are optimized using
the proximal policy gradients objective (PPO) [27].

A. State space

The state space of the MDP is constructed from the proprio-
ception of the robot, i.e., the sensory readings from the joint
encoders, and the inertial measurement unit (IMU). The state
at time t includes the base state and the joint state. The base
state consists of the orientation θbody

t ∈ R3, linear velocity
vbody
t ∈ R3 and angular velocity ωbody

t ∈ R3 of the body.
The joint state consists of the joint angles qt ∈ R12, joint
velocities q̇t ∈ R12 along with history of the joint target errors
{qet−j ∈ R12}j=1...N (explained below) and joint velocities
{q̇t−j ∈ R12}j=1...N . In our work N = 3, i.e., the velocities
and joint target errors from last three policy steps are stored
and added to the state. We also include to the state st the
last two actions {at−j ∈ R12}j=1...(N−1). Finally, the 3D
velocity command is also given as an input to the policy neural
network. The design of this state space is similar in spirit to
those proposed in other works [32], [34], [35].

The orientation and angular velocity of the base can be
provided by an IMU on-board the robot, which internally
uses an Extended Kalman Filter (EKF) to estimate angular
orientation from raw gyroscope and accelerometer sensor data.
At each joint an optical encoder measures the joint angles from
which one can then compute the joint velocities. The joint
target errors are the differences between the target joint angles
conveyed to the PD controller and the measured joint angles,
i.e., qet = qtargett−1 −qt. The error qet is related to a torque, and it
implicitly provides rich information, such as the contact state
of the feet with the ground, about the environment. The target
errors also vary by terrain as the vertical foot position shifts if
the terrain is not flat, which changes the resulting joint angles.
Therefore, it is also crucial to add the last two actions of the
policy to the state so that the learning can observe the change

of the joint target errors for the similar actions which indicates
a change in the terrain.

The on-board IMU does not directly measure linear velocity,
and estimating the velocity from accelerations often diverges
over time due to sensor bias. Like Ji et al. [35], we propose
training a separate state estimation network for estimating
the base linear velocity from the IMU and joint encoder
measurements. The state estimation network is trained through
supervised learning and it receives as input the base orientation
and angular velocity along with the joint angles, joint velocity,
history of the past joint angle errors, joint velocities and
actions. The output is a three-dimensional vector that estimates
the linear velocity in the x, y, z directions. Implementation
details can be found in Section IV.

B. Action space

The design of the action space can make a difference on the
learning speed and policy quality. Peng et al. [38] showed that
direct torque control is harder to learn than joint position con-
trol in RL-based systems. Similar observations were made in
the literature on learning quadruped robots’ locomotion [30],
[36]. We also argue that torque control policies are harder
to transfer than joint angle control policies, due to the fact
that joint angle control is inherently stable after choosing
appropriate impedance gains Kp and Kd. While direct torque
control can result in diverging motion especially during the
flying phases of the legs where the apparent joint inertia is
low, the position-based impedance control forces the joints to
behave like a spring damper system.

In this work, we propose learning a policy π that outputs
displacements of the reference joint angles with respect to the
nominal pose of the robot, i.e., πθ(st) = ∆qθt , where π is
implemented by the policy neural network parameterized by
θ, and st is the state input to the policy at time t. The target
joint angles can then be computed as:

qtargett = qinit + λq∆qθt ,
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where qinit are robot’s nominal joint angles around which the
policy actions are centered. We define λq as a scalar that scales
the output of the network before adding to qinit. Given qtargett ,
we use a PD controller to compute the torques:

τt = Kp(q
target
t − qt)−Kdq̇t

with the proportional and derivative gains Kp and Kd. It is
important to note that using such a joint controller doesn’t
imply having a rigid position control. The reference angle
qtargett should not be interpreted as positions to be reached, but
rather as intermediate control variables. The resulting system
is analog to elastic strings that pull the joint angles toward
qtargett .

C. Reward function

The reward function defines the task. The main task in our
work is to follow a given reference velocity. In order to get
natural locomotion that can be deployed on the robot, one
needs some constraints on the robot’s pose, joint torques,
joint velocities, etc. After each action at, the robot receives
a reward rt+1. We split our reward r into one main positive
term that rewards the tracking of the commanded velocity and
several weighted penalty terms that act as negative costs in the
reward. The values of the weights are listed in Table III. The
reward terms and state variables below are implicitly indexed
by the time step index t but we only include this index when
necessary for clarity.

Command velocity tracking. The reward rvel for following
the command velocity is based on the squared Euclidean
distance between the 3D vector Vx,y,wz

consisting of the
forward, lateral and yaw velocities of the body and the 3D
velocity command V cmd, i.e.,

rvel = cvele
−||V cmd−Vx,y,wz ||

2

.

with coefficient cvel that scales the reward.
Foot clearance penalty. To encourage the robot to lift its

feet high even when training on a flat surface, we use the foot
clearance objective proposed by Ji et al. [35]. Denoting the
height of the i-th foot by pz,i, we set a constant foot height
target pmax

z and define the foot clearance penalty as

rclear = cclear

4∑
i=1

(pz,i − pmax
z )2||ṗxy,i||0.5,

where ṗxy,i stands for the velocity of the foot i in the x, y
direction so that the target is not active during the ground
contact and it is approximately maximal in the middle of the
swing phase. Scalar cclear is a weight for this penalty.

Foot slip penalty. When a foot comes in contact with the
ground, its x, y velocity should be zero in order to avoid
slipping. We define a foot slip penalty as

rslip = cslip

4∑
i=1

Ci||ṗxy,i||2,

where Ci is a binary indicator of the ground contact of the
i-th foot, and cslip is penalty weight.

Base orientation and velocity penalties. The base pitch,
roll and velocity in the z direction should all be near zero to
produce stable motion. With scalars corn and cvz , we define
this penalty as

rbase = corn(roll
2 + pitch2) + cvzV

2
z .

Joint pose penalty. We add a penalty on the joint angles
in order to learn to avoid large joint displacement. We define
this penalty as the deviation from the nominal joint angles at
the initial state, as

rjoint = cq||qt − qinit||2

with weight cq .
Power loss penalty. For safety reasons and for saving

energy, we would usually prefer to minimize the overall power
consumption of the robot. The power loss term encapsulates
the relationship between the torque and velocity at the joint
level - we use the model proposed and identified by Fadini
et al. [39] which includes the heating by Joules loss in the
motors PJ as well as the losses by friction Pf .

We denote with τf the torque necessary to overcome the
joint friction :

τf = τusign(q̇) + bq̇,

where q, q̇ are respectively the joint position and velocity.
The identified model parameter are the Coulomb friction
τu = 0.0477[Nm] and the the viscous friction coefficient
b = 0.000135[Nm·s].

The two sources of power losses can then be expressed as

Pf = τf q̇ [W ],

PJ = K−1(τ + τf )
2 [W ],

where τ is the joint output torque and K = 4.81[Nm·s] is
linked to the motor coil resistance and motor constant.

The total power over joints and the penalty term used in the
reward is taken as the sum over all joints:

rE = cE

12∑
j=1

Pf,j + PJ,j

with the weight cE .
Action smoothness penalties. To generate joint trajectories

without vibrations and jitter, we define a penalty on the first
and second order differences in the joint angle values:

rsmooth = ca1||qtargett − qtargett−1 ||2

+ ca2||qtargett − 2qtargett−1 + qtargett−2 ||2

with weights ca1 and ca2.
Total reward. The final reward is a weighted sum of the

positive velocity tracking reward minus a sum rpen of all the
penalties explained above:

rtotal = rvel − rpen.
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D. Domain and dynamic randomization

In order to learn policies that transfer to the real robot we
have to identify and bridge the sim-to-real gap. We decided to
use domain randomization techniques by adding noise to the
state and randomizing some aspects of the simulator dynamics.
Table I shows the noise models used for each element in
the state and dynamics. For the dynamics, we found that
for Solo12 it was enough to randomize the gains of the
PD controller in order to learn policies that adapt to some
stochasticity in the low level control that can come from many
factors. This is in contrast to previous work on ANYmal and
Mini-cheetah where more randomization is needed for the
center of mass, mass of the body and links, positions of the
joints and motor friction [30], [32], [34], [35]. Randomizing
the state is essential in order to overcome sensory noise. Our
results show that one can learn a transferable policy on Solo12
using this simple randomization strategy.

TABLE I
UNIFORM NOISE FOR EACH OF THE STATE OBSERVATIONS

AND PD CONTROLLER GAINS.

Observation Noise

θbody U3(−0.05, 0.05)

ωbody U3(−0.10, 0.10)

vbody U3(−0.10, 0.10)

q U12(−0.05, 0.05)

q̇ U12(−0.50, 0.50)

Dynamics Noise

Kp U(−1.0, 3.0)

Kd U(−0.1, 0.1)

E. Curriculum learning

Reward curriculum. Due to the elaborate penalty terms of
the reward function, we observe that the agent may learn to
neglect the positive reinforcement signal from following the
command velocity and learn to stand still since this optimizes
several penalty terms in the reward. In order to bypass this
problem, we introduce a linear curriculum on the reward.
Curriculum learning is a popular method that introduces easier
tasks to learn at the start of training and gradually increases the
level of difficulty as training progresses [40]. Like Hwangbo et
al. [30], we multiply the cost terms of the reward function by a
curriculum factor kc ∈ [0, 1] that is equal to zero at the start of
the training and slowly increases up to one through the training
iterations. The reward function becomes rtotal = rvel−kcrpen.
This way we first train the agent to follow the command
velocity in any manner before emphasizing the cost terms in
the reward in order to refine locomotion.

Noise curriculum. We also propose a curriculum on the
injected noise for randomizing the state and dynamics. We
found that decoupling the curriculum of the reward and
randomization works better. Therefore the sampled noise in
Table I is multiplied by another curriculum factor kc,noise ∈
[0.0, 1.0] that is increased at a slower pace than kc.

Terrain curriculum. We introduce rough terrains at the
end of training to learn from more complex interactions when
the ground is not flat. This helps in refining the robot’s

TABLE II
PPO PARAMETERS WHEN TRAINING ON
FLAT TERRAIN AND NON-FLAT TERRAIN.

PPO parameters Flat terrain Non-flat terrain
Clip ratio 0.200 0.050

Gradient norm clip 0.500 0.300
Entropy coefficient 0.010 0.000

Learning rate 0.005 0.001

locomotion in terms of lifting all feet equally in order to keep
balance. At the last 1000th training iteration, we start sampling
random heightmaps at the start of the episodes. We also lower
some PPO parameters to perform more conservative updates
to the policy in order to avoid catastrophic forgetting [41]
of locomotion on flat terrain once the rough terrains are
introduced and the training data distribution changes. The
PPO parameter values before and after introducing the rough
terrains are listed in Table II, we refer to Schulman et al. [27]
for a description of these parameters.

IV. RESULTS

In this section, we analyze the locomotion produced by our
learned control policies. We test both symmetric ( >< ) and
non-symmetric (< < ) poses of the legs with the policy being
able to learn both successfully. We display results about veloc-
ity tracking and energy consumption of the learned controller.
Successful real robot transfer experiments are conducted and
discussed in the following sections.

TABLE III
REWARD TERMS’ WEIGHTS.

cvel cclear cslip corn cvz cq cE ca1 ca2

6.0 20.0 0.07 3.0 1.2 0.5 2.0 2.5 1.5

A. Implementation details

The control policy is implemented as a multi-layer perceptron
with three hidden layers of sizes 256, 128 and 32 with
Leaky ReLU activations between each layer. The control
policy runs at a frequency of 100Hz. We use the Raisim
simulator [42] for training. The simulator frequency is set
at 1kHz which means that the PD control between each RL
step is executed ten times. On the real-robot we have a low-
level loop at 10kHz for communicating with the actuators,
but the policy network is still queried every 0.01 seconds (see
Figure 2). In simulation, 300 different versions of the robot are
run in parallel processes in order to collect diverse data faster.
The value of the PD control gains are Kp = 3 and Kd = 0.2
respectively. On the robot, the computation of actions from
states only takes 10 µs on a Raspberry Pi 4 which makes this
approach particularly appealing due to its simple setup and
high computational speed.

The state estimation network is also a multi-layer perceptron
with two hidden layers of sizes 256 and 128 with Leaky ReLU
activations and a three dimensional output corresponding to the
linear velocity. To train the state estimation network, we collect
a dataset by running learned policies on random velocity
commands. We found that a dataset of 50,000 samples (policy
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Fig. 3. Plot of the 3D velocity command controlled by a gamepad to command the real robot in blue. The red curve plots the output of the state estimation.
The black plot is the motion capture of the real solo12 to convey the ground-truth base velocity. The purple plot is the yaw velocity estimate from the
gyroscope in the IMU. The x-axis shows time in seconds.

steps) is enough to train the estimation network to a good
accuracy. The data is collected with the random noise added
to the observations and PD gains along with randomizing the
terrains between rough and flat. We train on a supervised
cost to minimize the mean squared error loss using the Adam
optimization algorithm [43].

We use the objective from PPO [27] to train the pol-
icy network. This is done in an actor-critic setup where,
in addition to the policy network (actor), we train another
network (critic) that learns to map the state to a single scalar
value that estimates the desirability of the state. This scalar
value is commonly used for reducing the variance of the RL
objective [27]. In each training episode, the policy is run
for 100 steps (= 1 second of real-time) to collect data for
optimizing the objective. The episode ends if the body of
the robot comes in contact with the ground. Even though
locomotion is not an episodic task with a natural endpoint
and the episode is not reset between each training epoch, we
choose to introduce random resets at the beginning of some
episodes since this appears to stabilize training. At the start
of each episode, a random velocity command is sampled and
then scaled by the noise curriculum factor so that the network
starts learning gradually from one low velocity towards higher
ones. The initial state at the start of each episode is set at the
nominal joint pose qinit with zero joint velocity. We use the
stable-baselines [44] open source implementation of
the PPO algorithm.

As mentioned before, at the beginning of training the ground
is flat, but in order to learn more robust policies, we gradually
introduce some non-flat terrains by sampling random height
values for points in a regular grid. At the last 1000th training
iteration, 80% of the parallel processes start sampling non-
flat terrains. We found that we need around 10,000 training
iterations which equates to 300 million collected samples with
300 parallel processes.

Table III shows the coefficient values that are used to scale
each term in the reward function. Along with choosing the
right values of the weights, we choose the desired maximum
foot height in the foot clearance reward to be pmax

z = 6cm. We
scale the output of the policy network, with scalar λq = 0.3
before integrating towards the target joint angles.

B. Velocity tracking

We first judge the quality of the learned controller by its
ability to follow the reference velocity in the forward, lateral
and yaw directions. During training we randomly sample the
velocity vector based on the following uniform distributions:
Vx ∼ U(−1.5, 1.5), Vy ∼ U(−1, 1) and Wz ∼ U(−1, 1). As
mentioned before, these values are scaled by knoise in order to
start learning with low velocities before gradually increasing
the range of sampled velocities.

Figure 3 shows the velocity plots of a random walk recorded
while guiding the robot with the gamepad across the room.
The blue lines plot the reference velocity command in three
directions. The black lines represent the robot’s body velocity
estimation from motion capture data. The red lines in the first
two plots are the state estimation network’s velocity estimates
in the x and y directions. From the plots we see that the
real robot is able to follow the commanded velocity well, as
indicated by the alignment between the motion capture plots
– which provides ground-truth values – and the reference com-
mand plots. The velocity predictions from the state estimation
network are similar to the ones from motion capture while
being more noisy. The noise in the prediction, that is given as
an input to the control network, does not appear to downgrade
the performance of the controller. Indeed, this robustness to
noisy estimation is expected as noise is added to the linear
velocity input during training.

Figure 4 shows the plot of the hind right joint angle target
vs. the measured joint angles for the same random run. We
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Fig. 4. Plot of the desired joint angle command vs. the measured joint angles
over a random run for the hind right leg.

observe that the target joint angles are not reached. The
difference between the command and the achieved angles
showcases the nature of the soft impedance control which
resembles elastic strings where the desired joint velocity is
zero. Similar behaviour is observed for the other legs.

C. Energy consumption

In order to verify the usefulness of the proposed power loss
penalty in the reward function, we run several experiments
while varying the power loss weight cE in the reward and
observe its effect on the learned policy. We run the policies in
simulation for five seconds for the maximum forward velocity
command of 1.5[m/s]. This test focuses on a rapid and
dynamic task that would require most energy.

Table IV lists the effect of cE on the average power
consumption, velocity error and base height during the test
task. We first observe that the increase of cE decreases the
power loss. This confirms that the power term on the learned
policy makes intuitive sense and that it can be tuned to learn
locomotion with different power profiles. For cE = 50 the
increase in power consumption seems to contradict this general
conclusion. However, with such a high power loss penalty the
policy merely learns to stand still in an inefficient pose.

Increasing the weight cE makes the policy prioritize op-
timizing the power loss rather than other rewards such as
velocity tracking. We observe this effect in the table as the
velocity error increases when using policies that have learned
to consume less power due to higher cE . The velocity error
column contains the l1 norm of the difference between the
desired velocity and the achieved velocity. Note that even
though the error increases, we see a big decrease in the con-
sumed power which would make the policies with cE ∈ [3, 4]
an attractive option since the robot would have slightly less
accurate velocity tracking but still save more than 30% on the
consumed power.

The base height could be another indicator of energy
efficiency since standing on straighter legs requires less power.
In Table IV we list the body height as a function of cE , and
observe a gradual 2 cm increase in the base height when cE
increases from zero to ten. Beyond cE = 10 the RL ceases to
produce good policies as mentioned before.

D. power vs. torque penalty

In previous work [30], [32], [35] penalty terms on the torque
magnitude, joint velocity magnitude and joint accelerations
are used in the reward. We trained several policies using these
penalty terms to compare with the proposed power cost. The
last row in Table IV shows the power loss vs. velocity error
averaged over three policies trained with those penalties. The
learned policies are less energy efficient than most of the
policies that have the power term with high variance between
the policies. In practice we found it easier to tune a single
power weight during experimentation rather than tuning three
separate weights for torque, velocity and acceleration terms
with different units. The power loss formula expresses the
relationship between the torque and the velocity by effectively
combining the other three penalties into a one single physical
and coherent term.

TABLE IV
AVERAGE POWER VS. VELOCITY ERROR

AS A FUNCTION OF THE POWER WEIGHT cE .

cE Power [W] Velocity error [m/s] Base height [m]
0.0 17.7 0.079 ± 0.054 0.23 ± 0.004

0.1 16.2 0.083 ± 0.067 0.23 ± 0.006

1.0 13.7 0.092 ± 0.065 0.24 ± 0.009

2.0 12.0 0.121 ± 0.064 0.24 ± 0.007

3.0 11.0 0.141 ± 0.086 0.24 ± 0.014

4.0 10.2 0.145 ± 0.091 0.25 ± 0.004

10.0 7.7 0.198 ± 0.164 0.25 ± 0.014

20.0 5.5 0.275 ± 0.113 0.23 ± 0.005

50.0 7.5 1.51 ± 0.039 0.17 ± 0.005

With joint torque, velocity and acceleration penalty
- 15.5 0.122 ± 0.054 0.27 ± 0.008

E. Comment on the policy transfer to Solo12

As explained earlier, random uniform noise was added to the
robot dynamics and state observations during training. This
noise was progressively inserted through the curriculum factor
kc,noise, starting with noiseless simulations and increasing the
noise magnitude as the training progressed. The goal was to
prepare the policy network for sim-to-real transfer so that,
once deployed on a real Solo12, it would still produce a
robust behavior even if the model did not perfectly fit the
system. Such discrepancy is inevitable since different motors
have slightly different characteristics that vary as coils get
warmer, and the model does not include joint friction, its
inertia matrices are not perfectly accurate, etc.

Despite these inevitable model inaccuracies, the policy was
successfully transferred on the very first try and the robot
moved around without falling. The transfer did not require
learning an actuator model, as done in other works [30], or
modelling the actuation dynamics in the PD formula. This
demonstrates how a simple randomization during training is
enough for direct transfer to Solo12, probably by virtue of the
fast dynamics of this robot (lightweight quadruped powered
by low inertia actuators with high bandwidth) which leads to
a limited sim-to-real gap. This all makes the Solo platform an
attractive choice for deploying RL schemes.
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V. CONCLUSION

We presented an end-to-end approach for learning controllers
for the Solo12 quadruped robot. We described the training
method in detail with the choice of state space, action space
and reward function along with the curriculum strategy and
domain/dynamic randomization method for learning trans-
ferable policies for following 3D velocity commands. We
presented results for the velocity tracking and energy loss.
Numerous experimental tests on the real robot have shown
that robust locomotion policies with different energy profiles
can be learned by randomizing the weights of the power loss
variables. Based on this work and previous publications, we
plan to conduct a large scale study in the near future to
compare the potential of current model-based and RL-based
controllers on Solo12.
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