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ABSTRACT

Quadruped robots require robust and general locomotion skills to exploit their mobility potential in complex and challenging
environments. In this work, we present an implementation of a robust end-to-end learning-based controller on the Solo12
quadruped. Our method is based on deep reinforcement learning of joint impedance references. The resulting control policies
follow a commanded velocity reference while being efficient in its energy consumption and easy to deploy. We detail the
learning procedure and method for transfer on the real robot. We show elaborate experiments. Finally, we present experimental
results of the learned locomotion on various grounds indoors and outdoors. These results show that the Solo12 robot is
a suitable open-source platform for research combining learning and control because of the easiness in transferring and
deploying learned controllers.

Introduction
Legged robots can traverse challenging, uneven terrains. The interest in the design and control of legged robots has resurged
due to the development of many quadruped platforms such as the Mini-Cheetah1, HyQ2, ANYmal3, Solo4, Spot Mini5 and
Laikago6. These platforms serve as suitable test-benches for control and locomotion research. Finding the right way to control
such systems is crucial to fully exploit quadruped mobility. In this paper, we conduct our experiments using the Solo127 robot
which is a recent alternative platform that provides a reliable low-cost open-access quadruped within the Open Dynamic Robot
Initiative1.

Many control methods based on motion planning and trajectory optimization have been proposed for quadrupeds. Winkler
et al.8 suggest using a tree search to plan the body path and footsteps positions in the environment for the HyQ robot2. Bellicoso
et al.9 show a ZMP-based motion planner for executing dynamic transitions between gaits on the ANYmal robot3. The
approaches proposed by DiCarlo et al.10 and Kime et al.11 use model-predictive control (MPC) on a centroidal model to plan
the base trajectory and ground reaction forces of the feet in contact for the Mini-cheetah1. Kim et al.11 also propose a whole
body control formulation that outputs the necessary low-level control in order to track the base trajectory on a shorter-time
horizon. Léziart et al.7 implement a similar MPC-based approach for Solo124 while simplifying solutions for the computation
of the whole-body control. While all these methods produce robust dynamic controllers, they often require some aspects of
control, such as gait, feet trajectories, body height and orientation etc., to be determined by hand-tuned parameters that are
hard to adapt for all the different environments a quadruped might encounter in the real-world. These controllers often rely on
models that are hard to design and observe in many situations. Furthermore, these methods are computationally heavy at run
time and often require laborious effort to set up.

In contrast to optimization methods, data-driven methods that are based on learning can be used for designing controllers.
Specifically, reinforcement learning (RL) is an alternative approach for obtaining highly performant agents that act in their
environment in which the dynamics and transitions are modeled as a Markov decision process (MDP)12. There are many
early examples of applying RL to robotic tasks such as manipulation13–16 and locomotion17, 18. However, RL used to be hard
to scale and was often limited to solving small sub-problems in the control pipeline in which most of the components were
hand-designed. With increased computing power and recent evolution of deep learning methods that use large scale neural
networks, we can now solve problems requiring high-dimensional data19–21. Deep RL combines neural networks with RL
algorithms to learn value function approximations22–24 and/or, directly, policies25–27. Using images from camera, deep RL has
been successfully applied for manipulation tasks such as object insertion, peg in a hole28, and reaching and grasping objects29.

In recent works, deep RL has been applied to quadrupeds30 and bipeds31 for the purpose of learning end-to-end controllers.

1https://open-dynamic-robot-initiative.github.io/



Figure 1. Snapshots of the Solo12 quadruped in real settings and in simulation driven by a reactive controller learned through
deep reinforcement learning. With learned controllers, the robot can traverse various outdoor environments with slopes and
rough ground, full video: https://youtu.be/t-67qBxNyZI
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Hwangbo et al.30 outline a general RL method for learning joint angle controllers from the base and joint states of the robot.
The authors propose learning a model of the actuation dynamics of ANYmal3 from real-data that can then be deployed in
simulation, thus enabling the learned policies to transfer to the real-world. In the work by Miki et al.32, the authors deploy a
similar learning scheme and augment the action space with a central pattern generator (CPG) layer that produces a baseline
walking gait pattern for the feet33. Using proprioception and a LIDAR based reconstruction of the environment, the policy then
learns to manipulate the CPG phase and joint angles to modify the gait. Similarly, Lee et al.34 learn a policy that modifies
the phase and shift of CPG functions that determine the foot trajectories which are fed to model-based controller to produce
joint angle control. Ji et al.35 propose learning a control policy through RL and a state estimation network with supervised
learning that tries to predict state variables that are not measured on the real robot but are available in simulation and provide
vital information for learning robust policies, e.g., feet contact states and linear velocity of the base. These works mostly rely
on domain randomization techniques that add noise to the sensory input of the policy and to the dynamics of the simulation in
order to learn policies that transfer to the real system. Recent work also proposed to learn different skills for the Solo8 robot
through imitation learning of sequences generated by trajectory optimization method36, 37. In our work, we focus on using RL
to learn robust end-to-end controllers from scratch for the Solo12 robot.

In this paper, we present an RL approach for learning robust controllers on the Solo12 robot7. We use similar RL techniques
for learning locomotion while introducing curriculum processes at different levels and randomization schemes for zero-shot
transfer to the real robot. We detail our procedure for setting up the MDP components, i.e., state space, action space and reward
function, along with the additional techniques required to make the learning converge and transfer to the real robot. We use
proximal policy optimization (PPO)27 as the RL algorithm. Finally, we present videos and plots to describe experimental results
showing the execution of the learned locomotion by the Solo12 quadruped indoors and outdoors. Figure 1 depicts examples of
Solo12 controlled by learned policies in simulation and real-world using two different joint angle configurations Our main
contributions are:

• Detailed description and analysis of a deep RL method for learning controllers for the Solo12 that transfer to the
real-robot.

• Introduction and study of a realistic energy loss penalty for policy learning based on actuator friction and Joules losses
identification.

• Open-source implementation to make the work reproducible that is in line with the open-source mission of Solo12. 2

• Intensive tests of the learned locomotion on the Solo12 quadruped indoors and outdoors.

In the next section, we present notations and preliminaries for RL and MDPs. After that, we explain our learning
methods and notably the core components of the MDP, i.e., the state, actions, reward function and transfer methods. The
Experiments-section showcases our results in simulation and with the real robot. Finally, we offer concluding remarks.

Reinforcement Learning Preliminaries
We model the reinforcement learning (RL) environment as a Markov decision process (MDP) with continuous state and action
spaces12. An MDP is defined by the tuple (S ,A ,R,T ,P0), where S ⊂RdS is a set of states, and A ⊂RdA is a set of actions.
In RL setting, only spaces S and A of the MDP are known to the learning agent. The agent starts by observing the initial
state s0 ∈ S and it performs actions at ∈ A in the environment at discrete times indexed by t ∈ N, after which it receives a
stochastic reward rt+1 ∈ R and observes a new stochastic state st+1.

The environment dynamics are described by a transition probability distribution T : S ×A ×S → R+, such that
T (s,a,s′) = p(s′ | s,a) is the probability (density) that the next state is s′ given that the current state is s and that the action
taken is a. P0 is the initial state probability distribution. Similarly, the stochastic reward r ∈ R after taking an action a in a state
s and observing a state s′ next is governed by the function R : S ×A ×S ×R→ R+ that defines the probability densities
p(r | s,a,s′). While in general R is defined as a density, in our simulations the reward function is a deterministic function of a
and s′.

To formalize the goal of learning, we define a stochastic policy πβ (s,h,a) = pβ (at = a | st = s,ht = hk
t ), parameterized by

β , that gives the probability density of taking an action a given a state s and a history hk of length k where h contains parts
of the past states and actions from t −1 to t − k timesteps. In general it could contain the full states and actions of the last
k timesteps hk

t = (st−k,at−k, ... st−1,at−1). However, in our work we found that we only need the history of the actions and
joint states as will be disussed in the following section. The learning objective is to find the parameters β of the policy for
which the expected discounted sum of rewards J(β ) := E[∑H

t=1 γ t−1rt ] is maximized. In this expression H is the horizon of the

2Code available at: https://github.com/Gepetto/soloRL
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Figure 2. Summary of the control scheme shows the policy network, base estimation network and the low level control setup
on the real robot

episode and γ ∈ [0,1] is a discount factor. The expectation is taken over the stochastic policy, the initial state distribution, and
the stochasticity of rewards and state dynamics.

Method
Our goal is to define an RL method that can learn to control a Solo12 robot to follow a user-defined velocity command. The
Solo12 quadruped is a 12 degrees of freedom version of Solo84 that can be torque controlled. We will describe the design of
our state space, action space and reward function in the following sections.

In general, our control policy is implemented as a neural network that takes the state as an input, and outputs the actions.
The actions that define joint angle targets are then fed to a Proportional Derivative (PD) feedback controller in order to get the
desired torques for commanding the robot joints. Figure 2 shows a summary of the control scheme in terms of the inputs/outputs
of the control network and how it is deployed on the real robot. The estimation network in Figure 2 is trained with supervised
learning to predict the linear velocity of the base. The control policy parameters are optimized using the proximal policy
gradients objective (PPO)27.

State space
The state space of the MDP is constructed from the proprioception of the robot, i.e., the sensory readings from the joint encoders,
and the inertial measurement unit (IMU). The state at time t includes the base state and the joint state. The base state consists of
the orientation θ

body
t ∈R3, linear velocity vbody

t ∈R3 and angular velocity ω
body
t ∈R3 of the body. The joint state consists of the

joint angles qt ∈R12, joint velocities q̇t ∈R12 along with history of the joint target errors qe
hist,t = {qe

t− j ∈R12} j=1...N (explained
below) and joint velocities q̇hist,t = {q̇t− j ∈ R12} j=1...N . In our work N = 3, i.e., the velocities and joint target errors from last
three policy steps are stored and added to the state. We also include to the state st the last two actions {at− j ∈ R12} j=1...(N−1).
Finally, the 3D velocity command is also given as an input to the policy neural network.

The orientation and angular velocity of the base can be provided by an IMU on-board the robot, which internally uses an
Extended Kalman Filter (EKF) to estimate angular orientation from raw gyroscope and accelerometer sensor data. At each joint
an optical encoder measures the joint angles, from which one can then compute the joint velocities. The joint target errors are
the differences between the target joint angles conveyed to the PD controller and the measured joint angles, i.e., qe

t = qtarget
t−1 −qt .

The error qe
t is related to a torque, and it implicitly provides rich information, such as the contact state of the feet with the

ground, about the environment. The target errors also vary by terrain as the vertical foot position shifts if the terrain is not flat,
which changes the resulting joint angles. Therefore, it is also crucial to add the last two actions of the policy to the state so that
the learning can observe the change of the joint target errors for the similar actions which indicates a change in the terrain.

The on-board IMU does not directly measure linear velocity, and estimating the velocity from accelerations often diverges
over time due to sensor bias. Like Ji et al.35, we propose training a separate state estimation network for estimating the base
linear velocity from the IMU and joint encoder measurements. The state estimation network is trained through supervised
learning and it receives as input the base orientation and angular velocity along with the joint angles, joint velocity, history
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of the past joint angle errors, joint velocities and actions. The output is a three-dimensional vector that estimates the linear
velocity in the x,y,z directions. Implementation details can be found in Experimental Results section.

Action space
The design of the action space can make a difference on the learning speed and policy quality. Peng et al.38 showed that
direct torque control is harder to learn than joint position control in RL-based systems. Similar observations were made in the
literature on learning quadruped robots’ locomotion30, 39. We also argue that torque control policies are harder to transfer than
joint angle control policies, due to the fact that joint angle control is inherently stable after choosing appropriate impedance
gains Kp and Kd . While direct torque control can result in diverging motion, especially during the flying phases of the legs
where the apparent joint inertia is low, the position-based impedance control forces the joints to behave like a spring damper
system.

In this work, we propose learning a policy π that outputs displacements of the reference joint angles with respect to the
nominal pose of the robot, i.e., πβ (st) = ∆qβ

t , where π is implemented by the policy neural network parameterized by β , and st
is the state input to the policy at time t. The target joint angles can then be computed as:

qtarget
t = qinit +λq∆qβ

t ,

where qinit are robot’s nominal joint configuration around which the policy actions are centered. We define λq as a constant that
scales the output of the network before adding to qinit . Given qtarget

t , we use a PD controller to compute the torques:

τt = Kp(q
target
t −qt)−Kd q̇t

with the proportional and derivative gains Kp and Kd . It is important to note that using such a joint controller doesn’t imply
having a rigid position control. The reference angle qtarget

t should not be interpreted as positions to be reached, but rather as
intermediate control variables. The resulting system is analog to elastic strings that pull the joint angles toward qtarget

t .

Reward function
The reward function defines the task. The main task in our work is to follow a given reference velocity. In order to get natural
locomotion that can be deployed on the robot, one needs some constraints on the robot’s pose, joint torques, joint velocities,
etc. After each action at , the robot receives a reward rt+1. We split our reward r into one main positive term that rewards the
tracking of the commanded velocity and several weighted penalty terms that act as negative costs in the reward. The values of
the weights are listed in Table 3. The reward terms and state variables below are implicitly indexed by the time step index t but
we only include this index when necessary for clarity.

Command velocity tracking.
The reward rvel for following the command velocity is based on the squared Euclidean distance between the 3D vector Vx,y,wz

consisting of the forward, lateral and yaw velocities of the body and the 3D velocity command V cmd , i.e.,

rvel = cvele−||V cmd−Vx,y,wz ||2

with coefficient cvel that scales the reward.

Foot clearance penalty.
To encourage the robot to lift its feet high even when training on a flat surface, we use the foot clearance objective proposed by
Ji et al.35. Denoting the height of the i-th foot by pz,i, we set a constant foot height target pmax

z and define the foot clearance
penalty as

rclear = cclear

4

∑
i=1

(pz,i − pmax
z )2||ṗxy,i||0.5,

where ṗxy,i stands for the velocity of the foot i in the x,y direction so that the target is not active during the ground contact and
it is approximately maximal in the middle of the swing phase. Scalar cclear is a weight for this penalty.

Foot slip penalty.
When a foot comes in contact with the ground, its x,y velocity should be zero in order to avoid slipping. We define a foot slip
penalty as

rslip = cslip

4

∑
i=1

Ci||ṗxy,i||2,

where Ci is a binary indicator of the ground contact of the i-th foot, and cslip is penalty weight.
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Base orientation and velocity penalties.
The base pitch, roll and velocity in the z direction should all be near zero to produce stable motion. With scalars corn and cvz,
we define this penalty as

rbase = corn(roll2 + pitch2)+ cvzV 2
z .

Joint pose penalty.
We add a penalty on the joint angles in order to learn to avoid large joint displacement. We define this penalty as the deviation
from the nominal joint angles at the initial state, as

r joint = cq||qt −qinit ||2

with weight cq.

Power loss penalty.
For safety reasons and for saving energy, we would usually prefer to minimize the overall power consumption of the robot. The
power loss term encapsulates the relationship between the torque and velocity at the joint level - we use the model proposed
and identified by Fadini et al.40 which includes the heating by Joules loss in the motors PJ as well as the losses by friction Pf .

We denote with τ f the torque necessary to overcome the joint friction :

τ f = τusign(q̇)+bq̇,

where q, q̇ are respectively the joint position and velocity. The identified model parameters are the Coulomb friction
τu = 0.0477[Nm] and the viscous friction coefficient b = 0.000135[Nm·s].

The two sources of power losses can then be expressed as

Pf = τ f q̇ [W ], and PJ = K−1(τ + τ f )
2 [W ],

where τ is the joint output torque and K = 4.81[Nm·s] is linked to the motor coil resistance and motor constant.
The total power over joints and the penalty term used in the reward is taken as the sum over all joints:

rE = cE

12

∑
j=1

Pf , j +PJ, j

with the weight cE .

Action smoothness penalties.
To generate joint trajectories without vibrations and jitter, we define a penalty on the first and second order differences in the
joint angle values:

rsmooth = ca1||qtarget
t −qtarget

t−1 ||2 + ca2||qtarget
t −2qtarget

t−1 +qtarget
t−2 ||2

with weights ca1 and ca2.

Total reward.
The final reward is a weighted sum of the positive velocity tracking reward minus a sum rpen of all the penalties explained
above:

rtotal = rvel − rpen.

Domain and dynamic randomization
In order to learn policies that transfer to the real robot, we have to identify and bridge the sim-to-real gap. We decided to
use domain randomization techniques by adding noise to the state and randomizing some aspects of the simulator dynamics.
Table 1 shows the noise models used for each element in the state and dynamics. For the dynamics, we found that for Solo12 it
was enough to randomize the gains of the PD controller in order to learn policies that adapt to some stochasticity in the low
level control that can come from many factors. This is in contrast to previous work on ANYmal and Mini-cheetah where more
randomization is needed for the center of mass, mass of the body and links, positions of the joints and motor friction30, 32, 34, 35.
Randomizing the state is essential in order to overcome sensory noise. Our results show that one can learn a transferable policy
on Solo12 using this simple randomization strategy.
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Observation Noise
θbody U3(−0.05,0.05)
ωbody U3(−0.10,0.10)
vbody U3(−0.10,0.10)

q U12(−0.05,0.05)
q̇ U12(−0.50,0.50)

Dynamics Noise
Kp U(−1.0,3.0)
Kd U(−0.1,0.1)

Table 1. Uniform noise for each of the state observations
and PD controller gains.

PPO parameters Flat terrain Non-flat terrain
Clip ratio 0.200 0.050

Gradient norm clip 0.500 0.300
Entropy coefficient 0.010 0.000

Learning rate 0.005 0.001

Table 2. PPO parameters when training on
flat terrain and non-flat terrain.

Curriculum learning

Reward curriculum.
Due to the elaborate penalty terms of the reward function, we observe that the agent may learn to neglect the positive
reinforcement signal from following the command velocity and learn to stand still, since this optimizes several penalty terms in
the reward. In order to bypass this problem, we introduce a linear curriculum on the reward. Curriculum learning is a popular
method that introduces easier tasks to learn at the start of training and gradually increases the level of difficulty as training
progresses41. Like Hwangbo et al.30, we multiply the cost terms of the reward function by a curriculum factor kc ∈ [0,1]
that is equal to zero at the start of the training and slowly increases up to one through the training iterations. The reward
function becomes rtotal = rvel − kcrpen. This way we first train the agent to follow the command velocity in any manner before
emphasizing the cost terms in the reward in order to refine locomotion.

Noise curriculum.
We also propose a curriculum on the injected noise for randomizing the state and dynamics. We found that decoupling the
curriculum of the reward and randomization works better. Therefore, the sampled noise in Table 1 is multiplied by another
curriculum factor kc,noise ∈ [0.0,1.0] that is increased at a slower pace than kc.

Terrain curriculum.
We introduce rough terrains at the end of training to learn from more complex interactions when the ground is not flat. This
helps in refining the robot’s locomotion in terms of lifting all feet equally in order to keep balance. At the last 1000th training
iteration, we start sampling random heightmaps at the start of the episodes. We also lower some PPO parameters to perform
more conservative updates to the policy in order to avoid catastrophic forgetting42 of locomotion on flat terrain once the rough
terrains are introduced and the training data distribution changes. The PPO parameter values before and after introducing the
rough terrains are listed in Table 2, we refer to Schulman et al.27 for a description of these parameters.

Experimental Results
In this section, we analyze the locomotion produced by our learned control policies. We test both symmetric (>< ) and
non-symmetric (<< ) poses of the legs with the policy being able to learn both successfully. We display results about velocity
tracking and energy consumption of the learned controller. Successful real robot transfer experiments are conducted and
discussed in the following sections.
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cvel cclear cslip corn cvz cq cE ca1 ca2
6.0 20.0 0.07 3.0 1.2 0.5 2.0 2.5 1.5

Table 3. Reward terms’ weights.

Implementation details
The control policy is implemented as a multi-layer perceptron with three hidden layers of sizes 256, 128 and 32 with Leaky ReLU
activations between each layer. The control policy runs at a frequency of 100Hz. We use the Raisim simulator43 for training.
The simulator frequency is set at 1kHz which means that the PD control between each RL step is executed ten times. On the
real-robot we have a low-level loop at 10kHz for communicating with the actuators, but the policy network is still queried every
0.01 seconds (see Figure 2). In simulation, 300 different versions of the robot are run in parallel processes in order to collect
diverse data faster. The value of the PD control gains are Kp = 3 and Kd = 0.2 respectively. On the robot, the computation of
actions from states only takes 10 µs on a Raspberry Pi 4 which makes this approach particularly appealing due to its simple
setup and high computational speed.

The state estimation network is also a multi-layer perceptron with two hidden layers of sizes 256 and 128 with Leaky ReLU
activations and a three-dimensional output corresponding to the linear velocity. To train the state estimation network, we run
the learned policy in simulation to collect a dataset of states, without linear velocity, that are the input to the state estimation
network and the linear velocities that will be its output. We found that a dataset of 50,000 samples (policy steps) is enough
to train the estimation network to a good accuracy. In Ji et al.35, the authors propose to learn both networks (estimation and
control) simultaneously. In our experiments, we didn’t observe any advantage when training both networks together and decided
to train the estimation network after the control policy in order to not slow down the RL training due to the overhead from
performing supervised learning every few RL iterations. The data is collected with the random noise added to the observations
and PD gains along with randomizing the terrains between rough and flat. We train on a supervised cost to minimize the mean
squared error loss using the Adam optimization algorithm44.
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Figure 3. Plot of the 3D velocity command controlled by a gamepad to command the real robot in blue. The red curve plots
the output of the state estimation. The black plot is the motion capture of the real solo12 to convey the ground-truth base
velocity. The purple plot is the yaw velocity estimate from the gyroscope in the IMU. The x-axis shows time in seconds

We use the objective from PPO27 to train the policy network. This is done in an actor-critic setup where, in addition to the
policy network (actor), we train another network (critic) that learns to map the state to a single scalar value that estimates the
desirability of the state. This scalar value is commonly used for reducing the variance of the RL objective27. In each training
episode, the policy is run for 100 steps (= 1 second of real-time) to collect data for optimizing the objective. The episode
ends if the body of the robot comes in contact with the ground. Even though locomotion is not an episodic task with a natural
endpoint and the episode is not reset between each training epoch, we choose to introduce random resets at the beginning of
some episodes since this appears to stabilize training. At the start of each episode, a random velocity command is sampled
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and then scaled by the noise curriculum factor so that the network starts learning gradually from one low velocity towards
higher ones. The initial state at the start of each episode is set at the nominal joint pose qinit with zero joint velocity. We use the
stable-baselines45 open source implementation of the PPO algorithm.

As mentioned before, at the beginning of training the ground is flat, but in order to learn more robust policies, we gradually
introduce some non-flat terrains by sampling random height values for points in a regular grid. At the last 1000th training
iteration, 80% of the parallel processes start sampling non-flat terrains. We found that we need around 10,000 training iterations
which equates to 300 million collected samples with 300 parallel processes.

Table 3 shows the coefficient values that are used to scale each term in the reward function. Along with choosing the right
values of the weights, we choose the desired maximum foot height in the foot clearance reward to be pmax

z = 6cm. We scale the
output of the policy network, with scalar λq = 0.3 before integrating towards the target joint angles.

Velocity tracking
We first judge the quality of the learned controller by its ability to follow the reference velocity in the forward, lateral and
yaw directions. During training, we randomly sample the velocity vector based on the following uniform distributions:
Vx ∼U(−1.5,1.5), Vy ∼U(−1,1) and Wz ∼U(−1,1). As mentioned before, these values are scaled by knoise in order to start
learning with low velocities before gradually increasing the range of sampled velocities.

Figure 3 shows the velocity plots of a random walk recorded while guiding the robot with the gamepad across the room.
The blue lines plot the reference velocity command in three directions. The black lines represent the robot’s body velocity
estimation from motion capture data. The red lines in the first two plots are the state estimation network’s velocity estimates in
the x and y directions. From the plots, we see that the real robot is able to follow the commanded velocity well, as indicated by
the alignment between the motion capture plots – which provides ground-truth values – and the reference command plots. The
velocity predictions from the state estimation network are similar to the ones from motion capture, while being more noisy. The
noise in the prediction, that is given as an input to the control network, does not appear to downgrade the performance of the
controller. Indeed, this robustness to noisy estimation is expected as noise is added to the linear velocity input during training.

Figure 4 shows the plot of the hind right joint angle target vs. the measured joint angles for the same random run. We
observe that the target joint angles are not reached. The difference between the command and the achieved angles showcases the
nature of the soft impedance control which, resembles elastic strings where the desired joint velocity is zero. Similar behaviour
is observed for the other legs.

Energy consumption
In order to verify the usefulness of the proposed power loss penalty in the reward function, we run several experiments while
varying the power loss weight cE in the reward and observe its effect on the learned policy. We run the policies in simulation
for five seconds for the maximum forward velocity command of 1.5[m/s]. This test focuses on a rapid and dynamic task that
would require most energy.

Table 4 lists the effect of cE on the average power consumption, velocity error and base height during the test task. We first
observe that the increase of cE decreases the power loss. This confirms that the power term on the learned policy makes intuitive
sense and that it can be tuned to learn locomotion with different power profiles. We found for higher values for cE > 10 the
reward is ill-defined and training fails.

Increasing the weight cE makes the policy prioritize optimizing the power loss rather than other rewards such as velocity
tracking. We observe this effect in the table as the velocity error increases when using policies that have learned to consume
less power due to higher cE . The velocity error column contains the l1 norm of the difference between the desired velocity and
the achieved velocity. Note that even though the error increases, we see a big decrease in the consumed power, which would
make the policies with cE ∈ [3,4] an attractive option since the robot would have slightly less accurate velocity tracking but still
save more than 30% on the consumed power.

The base height could be another indicator of energy efficiency, since standing on straighter legs requires less power. In
Table 4 we list the body height as a function of cE , and observe a gradual 2cm increase in the base height when cE increases
from zero to ten. Beyond cE = 10 the RL ceases to produce good policies as mentioned before.

Power vs. torque penalty
In previous work30, 32, 35 penalty terms on the torque magnitude, joint velocity magnitude and joint accelerations are used in
the reward. We trained several policies using these penalty terms to compare with the proposed power cost. The last row in
Table 4 shows the power loss vs. velocity error for the policy trained with those penalties. The learned policy is less energy
efficient than most of the policies that have the power term with high variance between the policies. In practice, we found it
easier to tune a single power weight during experimentation rather than tuning three separate weights for torque, velocity and
acceleration terms with different units. The power loss formula expresses the relationship between the torque and the velocity
by effectively combining the other three penalties into a one single physical and coherent term.
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Figure 4. Plot of the desired joint angle command vs. the measured joint angles over a random run for the hind right leg. HFE
stands for Hip-Flexion-Extension and HAA stands for Hip Aduction-Abduction

cE Power [W] Velocity error [m/s] (%) Base height [m]
0.0 17.7 0.079±0.054 (7.9%) 0.23±0.004
0.1 16.2 0.083±0.067 (8.3%) 0.23±0.006
1.0 13.7 0.092±0.065 (9.2%) 0.24±0.009
2.0 12.0 0.121±0.064 (12.1%) 0.24±0.007
3.0 11.0 0.141±0.086 (14.1%) 0.24±0.014
4.0 10.2 0.145±0.091 (14.5%) 0.25±0.004

10.0 7.7 0.198±0.164 (19.8%) 0.25±0.014
20.0 5.5 0.275±0.113 (27.5%) 0.23±0.005

With joint torque, velocity and acceleration penalty
- 15.5 0.122±0.054 (12.2%) 0.27±0.008

Table 4. Average Power vs. velocity error as a function of the power weight cE .

Studying the effect of the curriculum
In order to validate some of the choices made on the reward terms, curriculum and terrain curriculum, we run a set of ablation
experiments. Figure 5 shows the training curves that plot the average reward over the training steps for different setups. The
blue curve shows our proposed method with the curriculum on the reward and terrain. The orange curve shows the experiments
without using a curriculum. The red curve experiments the same reward curriculum but introduces the non-flat terrain from the
start of training rather than at the end, as we propose. All the curves are averaged over three different runs of their respective
experiments.

Figure 5 shows that the proposed method with the curriculum outperforms the rest of the experiments in terms of the final
average reward achieved and that the variance in the performance between the learned policies is low. This indicates that
the learning is consistently reaching similar behaviours at the end of training. We also see that the experiments that use a
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Figure 5. Plot of the average rewards over training steps for different setups. Each curve is averaged over three random seeds
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Figure 6. Plot of the separate reward penalties of the different curriculum settings over training steps

curriculum achieve a higher reward at the start of training, which allows it to learn faster and reach a higher performance in the
end. On the contrary, not using a curriculum results in slower learning, higher variance between runs and an asymptotically
lower performance at the end of training.

The green curve is an experiment where an RL policy is trained only with the velocity tracking reward without the rest of
the penalties. The curve plots the value of the reward with the penalty terms to show whether velocity tracking alone optimizes
the other terms. As we see, the average reward performance for that experiment is very low, even though we observe that the
velocity tracking term for these experiments is fully optimized.
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Figure 7. Plot of the gait frequency as a function of the linear velocity command

Figure 6 shows the values of the individual reward terms for the same ablation experiments during the training process
weighted by their chosen coefficients. The plot displays the average rewards achieved over three random seeds for each
experiment. The objective is to maximize the velocity tracking reward while minimizing the rest of the penalties. Our proposed
training setup results in the best velocity tracking reward while optimizing the rest of the penalties. The experiments that do
not use a reward curriculum (orange) or a terrain curriculum (red) optimize penalties but do not get a good performance over
the main velocity tracking reward. This is in line with our motivation for designing the curriculum to learn the best trade-off
between following the velocity and respecting the penalties. We notice that the experiment trained on only tracking the reward
(green) is able to maximize the velocity tracking term, however it doesn’t respect any penalty terms.

Gait frequency
One of the desired features to have in a controller is the ability to adapt the gait frequency based on the velocity command. We
show in our work that using RL, we can learn controllers that adapt their frequencies online. Using Fast Fourier Transform
analysis (FFT) on the trajectory of the joint angles of the robot, we are able to deduce the frequency of the gait. Figure 7 shows
the value of the frequency as a function of the linear velocity command. We see a proportional relationship between the velocity
and gait frequency. This behaviour emerges naturally during learning and is not hand-designed. This is an interesting result
because adapting the gait frequency to velocity is not that straightforward to obtain through MPC-based controllers.

Comment on the policy transfer to Solo12
As explained earlier, random uniform noise was added to the robot dynamics and state observations during training. This noise
was progressively inserted through the curriculum factor kc,noise, starting with noiseless simulations and increasing the noise
magnitude as the training progressed. The goal was to prepare the policy network for sim-to-real transfer so that, once deployed
on a real Solo12, it would still produce robust behavior even if the model did not perfectly fit the system. Such discrepancy is
inevitable since different motors have slightly different characteristics that vary as coils get warmer, and the model does not
include joint friction, its inertia matrices are not perfectly accurate, etc.

Despite these inevitable model inaccuracies, the policies were successfully transferred on the very first try. Even though
Solo12 is a lightweight small robot, we were able to run it with our learned policies on various terrains, i.e., indoors, outdoors
on grass and pebbles and on an ascending and descending slopes that are relatively steep considering the size of the robot3.
These results show the robustness of the proposed control approach with respect to model variations. The transfer did not
require learning an actuator model, as done in other works30, or modeling the actuation dynamics to include a bandwidth
limitation through a low pass filter on the torques. This demonstrates how a simple randomization during training is enough for
direct transfer to Solo12, probably by virtue of the fast dynamics of this robot (lightweight quadruped powered by low inertia

3Video of the deployed policies on the real robot: https://youtu.be/t-67qBxNyZI
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actuators with high bandwidth) which leads to a limited sim-to-real gap. This all makes the Solo platform an attractive choice
for deploying RL schemes.

Conclusion
We presented an end-to-end approach for learning controllers for the Solo12 quadruped robot. We described the training method
in detail with the choice of state space, action space and reward function along with the curriculum strategy and domain/dynamic
randomization method for learning transferable policies for following 3D velocity commands. We presented results for the
velocity tracking and energy loss. Numerous experimental tests on the real robot have shown that robust locomotion policies
with different energy profiles can be learned by randomizing the weights of the power loss variables. Based on this work and
previous publications, we plan to conduct a large scale study in the near future to compare the potential of current model-based
and RL-based controllers on Solo12.
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