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Abstract—Connectivity in remote areas remains an unsolved
problem, especially in developing countries. An adequate com-
munications infrastructure can provide important services (e.g.,
telemedicine, virtual education, etc.) to communities of these
regions. However, the management of these networks is complex
because, on the one hand, they experience highly variable
environmental conditions that require the continuous intervention
of a human operator and, on the other hand, most of them are
deployed in inaccessible areas. Self-management is proposed as
an alternative solution to the management problem for these
networks, thus reducing human intervention and, conversely, op-
erational costs. This paper shows a network self-management ar-
chitecture based on the SDN paradigm and Deep Reinforcement
Learning algorithms that can learn the network dynamics and
make autonomous decisions to optimize the network performance
and adapt to the changing conditions of the environment to meet
the QoS demands of the different network services. The proposed
architecture has been successfully implemented in a simulated
environment and was tested using a case study of QoS-aware
routing optimization in a rural scenario.

Index Terms—SDN, QoS, Routing, Deep Reinforcement Learn-
ing, self-management

I. INTRODUCTION

Providing connectivity and internet access to people
living in remote/rural areas is a major issue that needs to be
overcome globally because communication networks can offer
them the opportunity to develop and improve their quality of
life through services such as virtual education, telemedicine,
e-commerce, etc. Connectivity projects, in these constrained
scenarios, face several challenges including: i) Low population
density and low purchasing power do not justify the business
case, ii) High investment in infrastructure (e.g. towers and
base stations) and alternative energy sources (e.g., generators,
solar panels, etc.) increases capital expenditures (CAPEX),
and iii) Complex network management increases operating
expenses OPEX [18], since rural areas are often inaccessible
and require specialized personnel. These factors reduce the
return on investment (ROI) making the construction of rural
networks even more complicated [16].
Despite these challenges, several efforts can be found in the
literature that have focused on providing network architectures
for rural areas in a cost-effective manner such as the ones
presented in [18]; where it is possible to notice that several of

these solutions are based on current wireless technologies such
as 5G/4G, unmanned aerial vehicles (UAVs), stratospheric
balloons, or the latest advances in satellite communications,
and also on more traditional approaches such as WiMAX or
WiLD [10] that can further reduce costs by using unlicensed
frequencies and low-cost equipment.
There is not a single solution that fits all rural scenarios;
on the contrary, it is necessary to study which technology
or combination of technologies can solve the connectivity
problem for each case, considering that cost reduction is one
of the most important aspects.
An important part of the operational costs is related to
the need for specialized human resources for network
management. Network management includes tasks such as
continuous review of network Key Performance Indicators
(KPIs), network configuration and optimization to ensure that
Quality of Service (QoS) levels meet the demand of several
network services (i.e., telemedicine, virtual education, etc.).
Our work aims to contribute to this matter by presenting
and evaluating a network management architecture that
uses state-of-the-art mechanisms to add self-management
functionalities to the network to reduce human intervention
and, therefore, reduce OPEX while guaranteeing the desired
QoS levels. Self-management is a desired feature in modern
networks, and both the scientific community and industry
have developed novel paradigms to achieve it. One of them
is the software-defined networking (SDN) paradigm which
aims to decouple the data and the control plane of network
devices. This allows the creation of a programmable network
by instrumenting the control plane in the SDN controller
(SDN-C) [14]. In addition, the SDN-C can collect centralized
information to be used by optimization programs running
over it through the northbound interfaces [3].
Although SDN can automate many of the repetitive
management tasks that have traditionally been carried out
by human operators, using programs, these do not adapt
to changing network conditions (e.g., sudden changes
in traffic loads, unexpected link failures, changes in the
environment, etc.) typical of remote zones. Therefore, we
consider including Artificial Intelligence (AI), specifically
Deep Reinforcement Learning (DRL), since these are



techniques that learn optimal behaviors from their continuous
interaction with the environment [1], adapting to unforeseen
operational conditions, and handling the decision-making
process autonomously.
Figure 1 shows the high-level diagram of our self-management
network architecture. It can be seen that the SDN-C collects
the metrics and the current state of the entire network (e.g.,
the state of interfaces, flow tables, delay, etc.), and delivers
this information to the DRL agents distributed in the backhaul
Network Elements (NEs). The DRL-agents analyze the
collected data and plan the actions to be taken to meet high-
level management objectives. For testing purposes, we have
adapted our architecture to a case study of QoS-aware routing
optimization in a rural scenario, where the DRL-agents find
the optimal route for transmitting local flows through the
backhaul network as is explained in Our architecture section.
The remainder of this article is organized as follows. First,

Fig. 1: High-level architecture of proposed traffic routing
optimization solution

a review of the related articles is presented in Section II.
Then, in Section III we present the proposed architecture in
detail showing aspects such as the design of the DRL agents,
the QoS-aware Routing optimization solution for the case
study, among others. Section IV shows the evaluation of our
architecture, here we describe the case study scenario, the
simulation environment setup, and the main results. Finally,
the conclusions and future work are presented in Section V.

II. RELATED WORK

This section presents the most relevant proposals that in-
tegrate DRL and SDN algorithms for routing optimization
like our case study. A summary of the main features of these
papers in terms of the DRL algorithms used, the type of agent
deployment (i.e., centralized or distributed), the observation
space, the action space, and the metrics with which they
calculate the reward of their neural networks can be seen in

Table I.
In [13] the authors present a DRL-based routing optimization

solution on top of the SDN controller (SDN-C). The DRL
agent uses actor-critical, Deterministic Policy Gradient (DPG)
algorithm to provide the SDN-C with the ability to adapt
to changes in the environment by calculating proper routes
that minimize the delay for all source-destination pairs. The
observation space of the DRL agent is represented by a Traffic
Matrix (TM) which is composed of the bandwidth requests
between each source-destination pair, the actions are based
on changing link weights and the average network delay
defines the reward. OMNeT++ discrete event simulator was
used to test the routing solution and showed that, after the
training process, the agent can define near-optimal routing
paths in a single step, making it more suitable for real networks
compared to traditional approaches, such as OSFP, which
needs several steps to converge. In [17] the authors presented
a DRL-based control framework, called DRL-TE, to solve the
TE (Traffic Engineering) problem (i.e., given several flows
find a routing solution that maximizes the utility function).
The authors propose two new techniques to optimize DRL
for TE: i) TE-aware exploration which leverages a good TE
solution as the baseline during exploration, and ii) Actor critic-
based prioritized experience replay. The observation space of
the DRL agent is composed of the throughput and delay of
each communication session, the actions are based on traffic
load split technique (i.e., specifies the amount of traffic load
going through each of the paths) and the reward uses a α-
fairness utility function which goal is to maximize the total
utility (i.e., the throughput and delay) of all the communication
sessions. They implemented DRL-TE in the NS-3 simulator
and conducted a comprehensive simulation study to evalu-
ate its performance in three network topologies: NSFNET,
ARPANET, and a random topology, proving that DRL-TE
improves the performance of certain traditional methods such
as Shortest Path (SP), Load Balance (LB), etc. In [19] the
authors state that routing optimization should be considered
as a continuous actions problem, so they propose DROM;
a centralized DRL agent for SDN that combines the DQN
method with DPG (i.e., DDPG) in an actor-critical framework.
The observation space of the DRL agent consists of a TM
containing information about the current network load, the
actions are based on the calculation of the link weights, which
causes the SDN-C to generate and configure new routes for
all considered flows. The reward is based on how well the
new routes maximize throughput and reduce delay throughout
the network. DROM was tested using OMNeT++, and the
results were compared to traditional approaches such as OSPF,
showing that it provides better routing configurations in terms
of delay reduction and performance improvement. In [8] the
authors propose a DRL routing optimization solution similar to
that of [19], i.e., a centralized DRL agent for SDN that is based
on neural networks of actors-critics and DDPG algorithm.
The observation space is an aggregated traffic volume matrix
(ATVM) which shows the traffic volume of each switch, and
the actions are based on link weights calculation. The goal



TABLE I: Related Articles on DRL and SDN for Routing Optimization Use Cases

Ref. DRL Algorithms Agent Deployment Observation Actions Reward Metrics
[13] DQN/actor-critic/DPG Centralized Traffic Matrix Link-weights Mean network delay
[17] DQN/actor-critic Centralized Throughput and delay Traffic load split Throughput and delay
[19] DQN/actor-critic/DDPG Centralized Traffic Matrix Link-weights Throughput and delay
[8] DQN/actor-critic Centralized Traffic Matrix Link-weights E2E delay and packet loss
[12] DQN/actor-critic/CNN/DDPG Centralized Traffic Matrix Link-weights Mean latency, packet loss
[2] DDQN Centralized Network topology, statistics E2E path Path cost
[5] DQN/Multi-Agent Distributed Buffer size of neighbor routers Next hop Congestion, number of hops

of the reward is to optimize end-to-end delay and network
packet loss. The novelty of this solution is the construction
of a model based on the M/M/1/K queue for offline training
of the DRL agent to avoid the long learning process of DRL
in case of topology change, thus preventing degradation of
the actual network performance. In [12] the authors propose
a centralized QoS-aware routing decisions method based on
actor-critic and DDPG framework for SDN networks. The
DRL agent uses a TM as an observation space which provides
the traffic demand of the flows in the network. Using this
TM, the DRL agent calculates the actions and arranges them
into a vector of link weights which defines the path that
optimizes the latency and packet loss for each flow. The main
contribution of this work is that it considers the influence that
a flow has on others; this is possible thanks to a multi-layer
convolutional module that learns the inter-flow impact when
making routing decisions on network elements (e.g., switches,
routers) shared by multiple flows. In [2], the authors propose
a routing algorithm based on DRL and SDN called DRSIR.
The centralized DRL uses Online and Target Neural Networks
(NNs) for reducing estimation errors, and Experience Replay
Memory to increase the pace of learning. The DQN algorithm
has an observation space that is based on path-state metrics
(i.e., path bandwidth, path delay, and path packet loss ratio).
The action space is used to create a routing plan, i.e., a specific
end-to-end path that connects the source and destination nodes
and that is chosen from a list of all possible paths between
that specific origin and destination. The DRSIR reward is
calculated based on how well the agent avoids packet loss
and delay by prioritizing routes that have more bandwidth
available to avoid congestion. Compared to other solutions
(e.g., RL-based routing solutions, Dijkstra’s algorithm, etc.),
the routes calculated by DRSIR are on average shorter and less
congested, so the mean delay and losses are also lower. In [5]
authors present a Deep Multi-Agent Reinforcement Learning
(MARL) packet routing solution that can be deployed on
different networks. They propose a distributed approach in
which each network element has a DRL agent to perform
routing decisions. The observation space is local to each
router/agent and consists of the size of the packet and its
destination, and the buffer capacity of the neighboring routers.
The action space allows each agent to choose the most proper
next-hop for the transmission of the packet. The packets are
then transferred to the chosen routers and the agent receives
the reward (i.e., how well that decision reduces the probability

of congestion and the number of hops to the destination)
and observation of the next hop routers. Tests showed that
this distributed DRL agent model reduces the computational
complexity compared to solutions using centralized agents,
and that the agents can improve network performance and the
probability of congestion under heavy traffic conditions.
In summary, most of the proposals (i.e., [13], [17], [19], [8],
[12] and [2]) use a centralized architecture for intelligent
routing management. In these proposals, a central DRL agent
is used, together with the SDN-C, to compute the routing
policy for the entire network. Obviously, this approach is not
scalable because as the network grows, so does the complexity
of the DRL agent, increasing the convergence time and the
computational resources needed. In contrast, our proposal
follows the distributed approach shown in [5], i.e., it is based
on multiple DRL agents distributed in the network elements,
each one making independent local decisions, which keeps
their level of complexity low, making it suitable for large-scale
networks. On the other hand, there is a tendency to use DRL
techniques based on actor-critics and DDPG algorithms (i.e.,
[13], [17], [19], [8] and [12]) that use continuous action spaces
which are difficult to implement in contrast to discrete action
spaces. In our case, we use Deep Double Q-Network algorithm
with discrete action spaces that eases the transformation of
these actions into network configurations. Furthermore, it is
worth noting that most of the proposals base their actions on
calculating link weights (i.e., [13], [19], [8], and [12]) which
makes them dependent on an underlying traditional routing
protocol that takes those weights and reconfigures the routing
tables (e.g., using OSPF). This approach does not have the best
performance in terms of convergence time, since in addition to
the link-weights computation time, the convergence time of the
underlying protocol must be added. To overcome this problem,
actions based on next-hop calculation [5] or on the choice
of the optimal path from the group of all possible paths [2]
have been proposed. Our approach does not rely on underlying
routing protocols, or on generating a list of all possible paths
with anticipation; rather, decisions are based on choosing the
outgoing interface for packets on each network element; a
simple but effective approach. Finally, it is common to see that
DRL agents are provided with complex observation spaces in
the form of a Traffic Matrix having specific information about
the entire network environment [i.e., [13], [19], [8] and [12]]
which in large-scale networks is difficult to handle; instead,
our proposal uses a simple observation space that still allow



agents to find optimal routes and keep them computationally
light (see Section Design of the DRL agent).

III. OUR ARCHITECTURE

The proposed architecture is shown in Fig. 1. The control
plane contains the network elements that perform the basic
function of forwarding packets based on instructions from
the upper layers. The control plane, represented by the SDN
Controller, handles the logic by which the data plane behaves.
The SDN-C uses the OpenFlow protocol to send commands
to the network elements and install in them the necessary
flow tables to establish the appropriate policies that optimize
network operation. Likewise, the SDN-C oversees the collec-
tion of network monitoring metrics necessary to evaluate the
effectiveness of the optimization policies as well as the general
state of the network. It should be noted that both the data and
control plane have been implemented in the NS-3 environment.
Finally, at the top layer, we have the Management Plane, where
DRL agents work in a distributed fashion analyzing network
metrics, and autonomously making decisions on network re-
configuration actions needed to meet high-level optimization
objectives (e.g., guaranteeing QoS levels). In particular, for our
case study, each distributed agent (i.e., one DRL agent for each
community in Fig. 2 and for each class of traffic) receives the
network monitoring metrics, in the form of observations, and
through its artificial neural network structure, calculates the
best routing policy for each traffic class, in the form of discrete
actions that are transmitted to the SDN-C, which maps them to
specific commands that configure/reconfigure the flow tables
of the corresponding network elements. Once these actions are
applied, the environment is checked again to evaluate the effect
of the actions on the target metrics and provide feedback to
each DRL agent in the form of a reward. If the optimization
goals are not met, each agent adjusts its policy looking to
increase rewards in the long term.

A. Design of the DRL agent

The proposed DRL Agents are based on the Double DQN
(DDQN) algorithm, which uses two Neural Networks (NN)
for simultaneous calculation and evaluation of the values of
the actions (i.e., Q-values or Q(st, at)) through the loss
function (i.e., the difference between the predicted and the
actual value) [9]. Van Hasselt et al [15] proposed DDQN to
solve the overestimation of action values and low performance
typical of traditional Deep Q-Learning algorithms. Fig. 3
shows that the two NNs (i.e., the Main and Target NN) have
the same structure and are used to improve the learning process
and guarantee the stability of the algorithm (i.e., to avoid
oscillations and divergences of the policy) [11]. The Main
NN selects the at actions based on the ϵ-greedy strategy
and its current parameters (i.e., the weights θ1 of the NN),
and the Target NN (with weights θ2) calculate its own Q-
values. The difference between the Q-values predicted by the
Main and the Target NN is calculated by the Loss function;
then backpropagation and stochastic gradient descent (SGD)
algorithms are used to optimize this function and adjust the

parameters of the Main NN. The Target NN parameters are
copied from the Main NN and periodically updated every
certain number of steps.
Each action at calculated for the current state st is applied
to the environment and in return the next observation/state
st+1 and the immediate reward rt are received. These four
parameters form a tuple {st, at, rt, st+1} which is stored in the
Reply Memory as an experience. When there is an adequate
number of experiences, random mini-batches are taken from
the Reply Memory to train the NN, thus minimizing the
interactions of the DRL-agent with the environment [6] and
accelerating its learning process.

B. DRL agent for Routing Optimization

During the training process, the DRL agents learn through
direct interaction with the network environment by calculating
actions and executing them according to the ϵ-greedy with
linear decay policy mentioned before, which allows exploring
the environment with random actions (i.e., an action at is
randomly selected with probability ϵ) at the beginning and
then exploiting the learning gained and supplying actions
based on experience. The observation space (i.e., the current
observable state st of each DRL agent) represents the state
of the communication path set up for a traffic class/flow. This
state is defined by a vector of the form St={Fi, Rx, NEj=1,
Poutj=1, . . . , NEj=n, Poutj=n}, where Fi is the flow
identifier, Rx is a binary number whose value of one shows
that packets are reaching their destination on the current path,
NEj is the identifier of the jth network element (1≤j≤m; m
is the total number of NEs), and Poutj is the port identifier
of the jth NE port through which the packets of Fi are being
forwarded. The action space (i.e., at) represents the set of
possible actions that the agent can take given the state st,
in our case each agent chooses the output port Pk ∈ {0,
. . . , k}, where k is the number of interfaces of each NE,
through which the packets of the flow Fi should be sent.
This action is computed for each NE thus establishing a path
between source and destination. The reward rt that each agent
receives immediately after applying the actions is calculated
based on the target QoS metric, in our case based on the
average end-to-end delay for the flow Fi and the number of
packets received (i.e., an indirect measure of packet loss). The
monitoring module of our solution continuously measures the
number of packets received at the destination for each Fi and
the delay, and when a new path is defined by a DRL agent,
the average E2E delay (Dt) is calculated with the equation:
Dt=(DA-DL)/(RA-RL), where DA is the cumulative delay
of flow Fi packets, DL is the last delay measured before
changing the path, RA is the number of cumulative packets
received, and RL is the number of packets received before
changing the path. If Dt meets the target QoS levels (e.g.,
the delay for flow Fi is less than 10ms) the reward will be
positive otherwise negative.



Fig. 2: Case Study Scenario: Multi-hop Topology Network for Rural Connectivity

Fig. 3: Structure of the neural network used in the DDQN
agent

C. Implementation framework

The framework used to implement our solution is ns3-
gym [7], a middle-ware between NS3 (Network Simulator
3), a discrete network simulation tool, and OpenAI Gym,

a Reinforcement Learning framework. In order to simulate
SDN, we opted for a community module OpenFlow1.3 [4] that
offers up to date implementation of the OpenFlow standard.
OpenAI Gym aims to implement DRL agents to interact with
independent environments (in our case NS3). To develop the
agent, we used an additional PyTorch-based library called
PFRL (version 0.3.0) that implements Deep Reinforcement
Learning algorithms.

IV. ARCHITECTURE EVALUATION

This section shows the results of the evaluation of our QoS-
aware Network Self-management Architecture adapted to our
case study for routing optimization, in the scenario of the
network for remote areas showed in Fig. 2. First, the case study
scenario is described, and then the simulation environment
setup. Finally, we show the performance of our architecture
and evaluate its effectiveness not only in calculating the
optimal routes for different classes of traffic considering their
QoS objectives, but its ability to self-optimize the network
configuration without human intervention.

A. Case Study Scenario

To test our routing optimization solution, we have consid-
ered the scenario shown in Fig. 2. The topology is inspired
by earlier work on connectivity in rural areas of the Amazon
region, such as the one presented in [10] that was implemented
in Peru, which is described as a multi-hop topology for the
backhaul network and has proven to be effective in reaching



very distant communities with minimal infrastructure invest-
ment. The backhaul network can be built over WiFi for Long
Distance (WiLD), WiMAX or any other wireless technology
that use a free license spectrum for costs savings. As can be
seen, each community has a base station (BS) that provides
local connectivity and at the same time serves as gateways
for communication to the central BS that has an Internet
connection. Each community is expected to have different net-
work services (aka traffic classes), among the most important
services we consider: telemedicine, remote monitoring of vital
signs (i.e., eHealth), virtual education, among others. Each of
these services demands different requirements from the net-
work in terms of delay, bandwidth, packet loss, etc., and shows
distinct levels of criticality as shown in Table II. The multi-
hop topology brings congestion problems due to the limitation
of resources (e.g., bandwidth, links, etc.), the confluence and
aggregation of traffic especially in the links to the central BS,
making it difficult to guarantee the QoS levels for all traffic
and requiring permanent adjustments to the network every time
there is congestion or environmental changes typical of the
Amazon climate. Therefore, our proposal is to deploy DRL
agents in a distributed manner in the network (i.e., one agent
per community for each traffic class), which can calculate the
best route for each class of traffic based on its criticality and
needed QoS level. The SDN-C, which is in the Central BS,
handles the implementation of the flow tables in each network
element based on the route calculated by the agents locally.

Fig. 4: OpenFlow message exchange in the Data Plane

B. Simulation environment Setup

The scenario presented earlier was implemented in the NS3
simulator with different traffic classes in each community (see
Table II). The DDQN agent was implemented in the NS3-Gym
framework and deployed in each community independently for
handling each traffic class. The simulated network has seven
network elements/nodes and nine links creating a partial-mesh
topology. The bandwidth of each link is fixed on 50 Mbps,
and the delay of each link varies between 0.5 ms and 10 ms,
therefore, there are routes that show a high delay and others a
lower one depending on the path defined and the confluence

of more than one flow in the same link. A traditional FIFO
(First In First Out) queuing technique is implemented in each
NE interface. It should be noted that all NEs attempt to reach
the Internet through the central BS. The SDN-C functionality
and OpenFlow protocol have been integrated into the network
environment to add the programmability feature of the NEs.
The DPCTL (Data Parallel Control) commands contains the
instructions to configure the flow tables in each NE and
are generated by the SDN-C. The DPCTL commands are
transported by OpenFlow to the NEs where they are finally
converted into configurations. This command exchange can
be seen in Fig 4 which shows a capture of the OpenFlow
messages that the SDN-C sends to the NEs to reconfigure them
after the DRL agent made the calculation of the best route.
We also implemented a traffic management module to avoid
loops, incoming packet management module, among others,
as part of the SDN-C functionality. For traffic generation (i.e.,
to simulate different traffic classes) we used the NS-3 class
”OnOffApplications” which emulates a traffic source of any
type (e.g., TCP, UDP, etc.) and allows defining the bit rate,
packet size, among other options. In our case we use several
traffic sources with different rate settings depending on the
type of traffic (e.g., 100Kbps for Best Effort, 512Kbps for
Real-Time, etc.). Each DRL-agent manages two 3-layer neural
networks (i.e., the Main and Target NN). The hidden layer has
50 connections to the first and last layer. The size of the first
layer is flexible and depends on the size of the observation
space, likewise the last layer depends on the action space.
ReLU was used as an activation function. To reduce the error
rates during the training of the agents, the Adam optimizer
PyTorch was used with a value of eps = 1e − 2 which
provided better stability of the algorithm. The gamma discount
function was set to 0.9 to give value to future rewards. The ϵ-
greedy function was set to 1.0 (i.e., 100% chance of choosing
a random action at the beginning), a final value of 0.0 with
a decay of 0.99. Finally, the size of the Replay Memory was
fixed with a capacity of 10E6 transitions. For the training of
the DRL-agents, several episodes were run (e.g., up to 100
episodes for the first experiment, 20 episodes for the second
one, etc.) and each episode with at least 300 interactions with
the simulation environment.

C. Results

The first simulation results prove that the proposed archi-
tecture design, as well as the DRL agents converge to optimal
routes as can be seen in Fig. 5. To test this, a first experiment
was performed by generating one traffic flow from each NE
of each Community in Fig. 2. In this case, the distributed
DRL agents must find the best route for each flow trying to
meet the QoS condition, e.g., that the delay experienced by
the highest priority flow is no more than 10 ms. Fig. 5, shows
the reward received by an agent vs the number of episodes.
It can be seen that in the first episodes the agent does not
converge to an optimal route, therefore the Agent’s reward
remains low, but there is also an exponential growth of the
curve (i.e., the DRL-agent is learning quickly) until episode



TABLE II: Traffic Classes and QoS Demands

Class Priority Packet Loss Tolerance Delay Tolerance Bandwidth demands Jitter Tolerance
eHealth Very High Low Low Low Low

Telemedicine Very High Low Low High Low
Virtual education High Low Low High Low

Best Effort Low High High High High

10 when it obtains the maximum reward proving that it has
found the optimal route. Our architecture is not limited to the
computation of the optimal route, but to the implementation
of it in the network elements. In Fig. 4, it can be seen how the
SDN-C, once it receives the actions calculated by the DRL-
agent, converts them into DPCTL commands and reconfigures
the network through OpenFlow setting the output port on each
NE for the flow Fi.

Fig. 5: Agent Reward Sum in the One Flow per Community
Experiment

In a second experiment, we increase the complexity of the
agent’s task by implementing different traffic classes (i.e., real-
time (RT), best effort (BE)) in two different communities. Each
class contains two flows with the Internet as a destination (i.e.,
passing through the central BS). The BE flows belong to the
lower priority class, so no QoS level is guaranteed for them
and any route to reach the destination from any community
is valid, but they can affect the higher priority classes. As for
the RT class (e.g., telemedicine), the two flows generated, at
512kbps each, from Community B to central BS require the
delay to be less than 10 ms. Two DRL agents are created;
one to handle the RT class and the other for the BE. The
first one must calculate a path where the sum of the delays
of each link does not exceed the 10 ms delay limit, which is
not a trivial decision. Fig. 6a and Fig. 6b show the behavior
of the mean delay of the RT and BE classes, respectively, as
the number of episodes increases. It can be seen, in the case
of the agent for class RT (Fig. 6a), how the delay goes from
very high values (i.e. above 100ms) to values that meet the
QoS demands of the RT class (i.e. delay lower than 10 ms)

from the fourth episode and remains stable until the end of the
simulation. On the other hand, for the BE class the agent is
able to find an optimal path that does not affect the RT class
and achieves an acceptable delay for best effort flows above
the 10ms threshold. In Fig. 6c and Fig. 6d, we can see the
reward received by the RT and BE class agent respectively; it
is possible to notice that for the latter the convergence is much
faster starting with a value of 50 compared to -300 for the RT
agent. This is because the BE class has no QoS constraints
so it is simpler to find a route to transport these flows. In
contrast, the RT class has a significant delay constraint (i.e.,
a maximum delay of 10ms), which forces the agent to try
various combinations of routes until it finds the optimal one.
In conclusion, although RT traffic had to be routed together
with BE flows, both agents were able to converge to optimal
routes demonstrating that our architecture is able to satisfy
the QoS demands of priority flows while avoiding the adverse
effect of less important traffic.

Finally, a third scenario was implemented to test the effect
of having two agents working on two classes in the same
NE (i.e., in the same Community). In this scenario, we added
one more BE class in the first Community with two flows
compared to the previous scenario. Again, our architecture
proved to be effective, as the agents converged for all flows
of all the classes, finding optimal routes even in the presence
of several BE flows.

D. Discussion

The DRL agent model proposed in this paper is the best
design we obtained, but it is not the only design we tested
in our simulations. The first model we tried took as an input
the “Flow ID”, the “Network Element ID”, the “Input Port”
of the NE, the “Output Port” of the NE and the measured
“Flow Delay” as a QoS parameter. It is notable to state
that the configuration of the simulation was also different as
the model was receiving the different possible combinations
of the configuration of the NEs. This approach, although it
yielded positive results, was discarded because it required
the generation of all possible configuration combinations.
Furthermore, this approach is not scalable because adding
another community (i.e., another NE in the backhaul) to our
network requires manual adjustments in the generation of the
above mentioned combinations.
The second model we implemented followed a traditional
scheme where the agent receives only the observation of the
environment and takes actions accordingly. Even though this
approach gave good results, it took a lot of time for the model
to converge. By removing the “Input Port” as an input and
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Fig. 6: Results for the Second Experiment: Real-Time and Best-Effort classes

adding the received packet information instead, the speed of
convergence of the model was improved. However, the agent
showed signs of anomalies as the “Flow Delay” input swayed
the model away from choosing optimal routes.
Essentially, in the first steps of the simulation, when the agent
found valid routes with non optimal delays, it focused on
those configurations rather than finding optimal routes. By
removing the “Flow Delay” from the input, and using it only to
attribute rewards to the agent after applying actions, we finally
produced a viable agent that could find optimal routes that
respect QoS levels. This model could be qualified as scalable
as it can be used in any kind of topology regardless of the
number of NEs and the QoS criteria of every class of traffic.

V. CONCLUSIONS

In this paper we presented a QoS-aware Network Self-
management Architecture based on DRL agent and SDN with
a special focus on remote areas. The architecture was tested
in a routing optimization case study, where the DRL-agents
act in a distributed manner without any prior knowledge of
possible routes in the environment. Based on QoS demands,

our solution proposes optimal routes for the flows of each
traffic class. The agents adapt easily to the change of QoS
constraints and flows number. In future work we would like
to test the scalability of our architecture and extend the func-
tionalities of DRL-agents to implement more advanced traffic
engineering mechanisms such as Call Admission Control
(CAC), queuing techniques, traffic shaping, etc., that allow not
only optimization of traffic routes but also granular control of
network resource consumption (i.e., bandwidth, queue space,
etc.). Finally, the proposed architecture can be considered as
a framework not only for solving the routing optimization
problem, but also for implementing other AI algorithms that
leverage the self-management approach and autonomously
solve complex network problems, such as computational of-
floading, security, resource scheduling, etc.
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