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Abstract—Autonomous IoT systems require the development of
good automation algorithms capable of handling a huge number
of IoT devices such as in smart cities. Deep Reinforcement
Learning (DRL) is a powerful automation technique that can be
used in massive systems thanks to its ability to deal with big state
spaces. Moreover, it adapts quickly to changes in the system by
reinforcement learning, making the automation algorithm very
flexible. However, using DRL relies generally on centralized agent
architecture making it more exposed to communication failures.
In this paper, we propose a distributed architecture to solve
the task offloading problem in autonomous IoT systems where
learning is achieved in a master agent while decision making is
delegated to IoT devices. This architecture is more resilient as
decisions are made locally and interactions between IoT devices
and the master agent are less frequent and not blocking. We
tested this architecture in the ns3-gym environment and our
results show very good resilience of this architecture.

Index Terms—Distributed, Deep Reinforcement Learning, Task
offloading, Autonomous IoT systems

I. INTRODUCTION

IoT devices are widely present in modern systems and
are used in urban areas, for agriculture, in industry... The
advent of autonomous IoT systems is a natural evolution of
the increasing use of IoT device in all aspects of our modern
life. However, the development of autonomous IoT systems is
conditioned by the ability of providers to propose automation
techniques capable of handling their complexity and managing
their resources with minimum human interaction. In addition,
these techniques should be able to scale and handle millions of
devices in massive [oT systems. Deep Reinforcement Learning
(DRL) is one of those new techniques capable of dealing with
huge space states while offering powerful solutions to meet
the challenges raised by autonomous IoT systems. But DRL
implementations are often based on centralized architectures
where an agent gathers observation from the whole system,
trains an neural network, and takes actions before transmitting
them to local entities. While this architecture offers many
advantages such as providing enough computing power for
learning, it suffers from the position of the central agent as a
single point of failure (SPOF). Any communication problem
between the agent and local entities can seize up the whole
system.

In this paper, we propose a distributed architecture for DRL
in order to solve the task offloading problem in autonomous
IoT systems. Task offloading is a technique used to improve
the efficiency of a computational task by delegating that task
completely or partially to a remote entity [2]. Task offloading

requires collaboration between IoT devices and remote servers
(edge or cloud). Delegating the tasks generated by IoT devices
can be ordered if resources are missing on the device and the
cost of executing these tasks remotely is cheaper. However,
numerous parameters should be taken into account, such as
the bandwidth available to transmit tasks, the computation
capacity of remote servers, and the energy cost of the operation
to the device. We use a distributed DRL architecture to
solve this problem. Our solution offers optimal task offloading
algorithm, capable of handling big systems with very good
scalability and moreover a robust decision making mechanism
close to the devices.

The rest of this paper is organized as follows: in section 2 we
discuss related work, in section 3 we present an overview of
the problem, in section 4 we describe the proposed architecture
and in section 5 we present evaluation results, finally we
conclude in section 6 with future work.

II. RELATED WORK

Many recent works tried to provide solutions to the problem
of efficient task offloading in different contexts. In [8], a
three-layer infrastructure - vehicular fog (VF), fog server (FS)
and central cloud (CC)- is presented in which a vehicular
requester located in the VF has the option to send all or part
of its task (divisible task) to: i) a vehicular server located in
the same VF; ii) one of the fixed fog servers located along
the route or; iii) the cloud. Considering the task processing
time, the energy consumed and the financial cost of using the
resources, a mathematical formulation based on probabilities
of choosing an execution option is proposed and solved
by the ADMM-PSO algorithm that transforms the problem
into unconstrained sub-problems. Zhao et al. [16] adopted a
similar approach to [8] focusing only on task offloading from
one vehicle to another via a Multi-access Edge Computing
(MEC) server. They solve their formulation by the Newton
iteration algorithm. They were able to demonstrate a minimal
average delay of their system as well as a lower probability
of exceeding the deadline of a task.

In cellular networks, as in [10], strategies of task offloading are
studied. Authors considered energy constrained smart devices
(SDs) all connected to a base station attached to a MEC
platform with servers. The tasks arriving to the SDs are put in
their respective buffers for i) local processing or ii) processing
on the MEC servers. They formulated the problem to minimize
the overall end-to-end network delay, to ensure stability of



the SDs and MEC servers buffers and to minimize the energy
consumption of the SDs. They solve it using an online version
of Bandit Optimization, a technique that is not adapted for
online scenarios with time-varying resources.

To cope with scenarios having high time-varying resources,
other works use deep learning techniques. In [13] a collabo-
ration between a cloud server and an edge server is set where
tasks are received from mobile devices (MDs). An MD makes
a double decision about each task to be executed: i) process
it locally or offload it, ii) in case of offloading, send it to the
edge server or to the cloud. The authors introduced a deep
learning based optimization where S neural networks take as
input information about the tasks and the available resources
and generate binary decisions used to evaluate the formulated
multi-objective optimization function. A database stores these
evaluations and is used to train each of the neural networks.
Although it isn’t explicitly stated in [13], this approach is
very similar to the principle of reinforcement learning. Un-
fortunately, the authors do not give any information about
where the training will be done or where the database will
be stored. Since the neural networks share the same database,
it is difficult to have a distributed architecture at the risk of
over-consuming bandwidth due to the transit of data on the
network.

Zhou et al. [17] propose a distributed task offloading approach
where a unidirectional (i.e. source-to-destination) and perma-
nent offloading session is set up between pairs of devices
via a device-to-device (D2D) communication in the coverage
area of a base station. Having time divided into time-slots
of fixed A7 lengths, the source device decides at beginning
of each time-slot whether to send its current task to the
destination device or to execute it locally, depending on the
quality of the allocated bandwidth. Authors adopted a game-
theoretic approach using an improved version of Lagrangian
Optimization embedded in each device allowing it to make the
offloading decision autonomously. However, in this approach,
not only all devices make the intense computations of the
Lagrangian Optimization but in case of loss of the session,
there is no possibility to offload tasks. The distributed aspect
is also explored in [15] where authors propose TODG, a
distributed online task offloading algorithm. The edge servers
used in their approach deploy three types of virtual machines
(VM). Each VM handles a specific task from a device. Thus,
devices are also subdivided into 3 categories, each generating
tasks executed by a type of VM. The communication between
the devices and edge servers is ensured by a wireless link
with L channels. The problem is formulated with the objective
of maximizing the system long-term utility while satisfying
the worst-case delay constraints. It is decomposed into sub-
problems solved by TODG where each device computes and
finds the worst-case queuing delay and sends it to one server.
Servers then communicate between themselves to allocate
appropriate channels to devices who have just to set their
transmission rate and choose a server. The work in [7] has
a similar approach for task assignment in Industrial IoT using
classic Q-learning algorithm, but it neglects the distributed

aspect. Besides, numerous calculations are imposed to energy
constrained devices.

To automate task offloading, several works adopt the Deep
Reinforcement Learning technique. In [1], to maximize the
completed tasks number in a timely manner and minimize
the power consumption of user devices, a centralized deep
reinforcement learning agent based on double deep Q-network
(DDQN) [12] is proposed. It retrieves the network state,
communicates with MEC servers to obtain their workload
levels and with devices to obtain their offload task profiles
then decides which task should be executed by which MEC
server as well as the computational frequency to be allocated
to each task. It should be noted that the consistency of the
whole model relies on the centralized agent which should
never fall down otherwise the whole offloading system stops
and no more tasks are processed.

With DMRO, [9], Guanjin et al. employ a centralized rein-
forcement learning system consisting of two models: the first
is used to track the dynamic of the MEC environment; the
second to generate offloading decisions for tasks received from
IoT devices. The training of the agent is based on s parallel
dense neural networks (DNN). However, there is no mention
of the node that runs this agent which makes it difficult to
deploy their solution in a real scenario as training multiple
parallel DNNs requires a lot of computing resources.

Most DRL algorithms have a centralized operating mech-
anism. This constitutes a certain additional latency due to
the need to transmit observations and wait for offloading
decisions to be returned. A distributed DRL approach has
therefore been considered in [6] and [18]. Goudarzi et al. [6]
use a distributed version of Advantage Actor Critic (A2C)
[14]. The proposed architecture includes three layers (IoT,
Edge and Cloud layers). Access Points -brokers- located in
Edge layer allow IoT devices to choose the servers on which
the IoT application tasks should be executed. The actors are
implemented on these brokers and the learner is centralized.
During the training phase, each actor continuously sends pre-
stored experiences to the learner that uses them to update its
policy, and sharing it back with the actors. This approach
forces all actors (brokers) to store their experiences in their
internal buffers, thus considerably reducing the number of
processed tasks. Moreover, actors being on brokers, it is not
clear whether, for local executions, the task is first sent to the
broker which sends it back to the IoT device, neither under
which condition the device will execute its task locally without
going through a broker.

In [11], a distributed DNN training is set where an edge server
helps one or more mobile devices to train their embedded
neural networks. That allows devices to have reliable way
of choosing offloading decisions. Nevertheless, each training
is done independently from others leading to an overload of
edge nodes training two or more DNNs. Moreover, authors
use LSTM layers in DNNs architectures making it necessary
to have enough computing power on edge servers otherwise
training becomes too long.

In our solution, we deal with the above mentioned problems



by: 1) implementing a cloud-based agent in charge exclusively
of training and learning optimal task offloading policy; 2)
embedding a neural network in each IoT device giving it abil-
ity to always take accurate offloading decisions internally; 3)
allowing IoT devices to share their experiences less frequently
in order to avoid energy waste due to data transmission; 4)
copying weights and biases from cloud-based agent to neural
networks in IoT devices so they can act without having to
train locally; 5) providing a Generative Adversarial Network
(GAN) to the cloud-based agent allowing it to grow its training
database and hence mitigating the effects of less frequent
sharing of experiences by IoT devices.

III. OVERVIEW

A. IoT environment

We consider an IoT system composed of N IoT devices con-
nected wirelessly via a smart access point (SAP) to Z servers
as shown in figure 1. Each IoT device has M computation
tasks of different sizes, and can execute only one task at a
time. For each task the IoT device has two possibilities: either
to execute it locally or to offload it to a remote server (an
edge server or the cloud). The offloading decision is based
on the available capacity of the device, its energy level and
the available bandwidth. Devices tasks are independent and
the decision concerning one task cannot be changed during its
execution.

B. Task offloading model

The tasks generated by IoT devices can be modeled by their

data size .S; or the computational resources necessary for their
execution D;. These values are proportional S; = 0 x D;
The execution time of a task depends on the CPU processing
delay. Let f be the number of CPU cycles required to process
one bit. The execution time of a Task can be then expressed
as in equation (1):

T, =— (D

The value of f/°T on an IoT device is generally greater than
the value of f°°"*" on an edge/cloud server.

The energy consumption cost E; to execute one task can be
expressed as in equation (2):

Where e is the energy consumed to process one bit. This value
is noted respectively e’°7, eS¢™¢" for the IoT device, or an
edge/cloud server.

When a task is offloaded, the transmission delay to the remote
server T¢™¢" should be added to the processing delay on the
remote server Tiifm” to obtain the total execution time of the
task.

Server __ mServer Server
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C. Problem statement

According to previous notations let the cost function of
executing M tasks in N IoT devices with Z servers be
C(Zmnz), this functions can be expressed as in equation (4):

Z N M
Z Z Z [amnz(EyInag;(l - zmnz) + E;s;ﬂ?erxmnz)“i’
z=1ln=1m=1

/anz (xnsz;if;ver + (1 - xmnz)T»,{;)nj;)]

“)
Tmn denotes the execution choice of the task; its value is 0
for local execution and 1 for remote computing. c,,. and
Bmn- are weighing factors. All variables in this equation are
positive values. Minimizing this cost function min(C(Zmnz)
defines the optimization problem to resolve in order to get
the best offloading decision.

IV. PROPOSED ARCHITECTURE

The studied IoT system contains a huge number of IoT
devices that interact with a big number of local edge servers
and remote cloud server. Minimizing the cost equation (4) in-
volves an important state space that can be efficiently resolved
with a deep reinforcement learning approach. We implemented
an algorithm based on double deep Q-network (DDQN) [12].
Usually the DDQN is implemented as a central agent. In such
case, decision making will be centralized and constitutes a
single point of failure (SPOF) of the solution. We choose
to implement it differently using a distributed approach with
centralized learning mechanism and localized decision making
logic. Our solution offers a resilient architecture well adapted
to massive IoT systems as explained in next sections.

A. Double deep Q-network

The processing of DRL algorithm is based on three vari-
ables: the observations sent from the environment to the agent
as state values, the actions decides by the agent to apply to
the environment and the reward that the agent will get as a
consequence of these actions.

1) Observations: for each IoT device, the observations re-
flect the state of that device in its environment. It is composed
of two parts:

o IoT device state: computation capacity per bit, energy
consumption per bit, generated task size and link capacity
between the device and the smart access point (SAP).

« Remote servers state: server computation capacity, energy
consumption if applicable, and link capacity between the
SAP and the server.

2) Actions: For each task, the agent will take a decision
based on the transmitted observation, either to execute the task
locally or on a remote server. Actions are applied to the ns-3
environment and new state observations are gathered.
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Fig. 1. IoT system

3) Reward function: Once the actions are applied, the
environment measures the consequence of these actions and
delivers a reward to the agent. The goal of the agent is to
minimize the cost function defined in (4). We use the same
function to quantify the reward. If the actions taken by the
agent succeed to reduce the cost function, those actions need
to be reinforced so the reward should be bigger. On the other
hand, if the cost function increases, the reward must be smaller.
In other words the reward is inversely proportional to the value
of the cost function. It is defined in equation (5)

R=(-1)*C(zmnz) 5)

We implement this algorithm in two parts: cloud based-agent
and IoT devices internal decision making mechanism.

B. Cloud-based agent

The cloud based-agent is responsible of 1) processing tasks
sent to it and sending back results; 2) ensuring the agent’s
DDQN learning logic. The agent is equipped with basic replay
memory (BRM) and augmented replay memory (ARM). It
receives experiences from IoT devices and stores them into
BRM. Then it uses tabular GAN [3] (a variant of GAN [5])
to generate more experiences which are stored together with
original ones into ARM. The cloud agent focuses only on
the DDQN neural networks training part. Hence, by using
samples from ARM, the agent trains its neural networks
through gradient descent algorithm. After 7" training iterations,
the agent sends its evaluation network parameters to the SAP
which in turn shares them with IoT devices. The architecture
of the implemented agent is illustrated in figure 1 and we
provide in algorithm 1 the pseudo-code for the DRL agent on
the cloud.

C. IoT device internal decision mechanism

We embedded in each IoT device a deep neural network
with the same architecture as the cloud-based agent’s evalua-
tion network. Each device is then capable of making offloading

decisions locally. The device receives periodically from the
SAP the state of the environment i.e. bandwidths, delays and
servers computing levels. Those information combined with
the task size are the input of the local neural network. When
the decision taken is to compute locally, the task is processed
locally using the device CPU with energy consumption as
expressed in equations (1) and (2), otherwise, the task is sent
to a remote server. Then the IoT device computes the reward
based on equation (5) setting M = 1 and N = 1 as the reward
is for current task generated in current device.

The device receives periodically the cloud agent’s evaluation
network parameters, then it updates its local neural network
to enhance accuracy of future decisions. This way even if the
connection is lost with cloud agent, the device still has the pos-
sibility to take offloading decisions. We provide in algorithm
2 the pseudo code of the internal decision mechanism.

D. Smart access point

The SAP plays an important role in the proposed au-
tonomous IoT system. Not only it ensure connectivity between
all devices, but it’s also responsible for sending devices
experiences to cloud agent and sharing back its evaluation
network parameters with [oT devices. It tracks major changes
in the system resources and notifies them to each IoT device.
This notification includes loss of connection with a node.
When an IoT device decides to offload its task to a server,
the SAP ensures the task transmission to the chosen server
and result retrieval. To strengthen the resilience of the system,
we use a redundant connection between the SAP and the cloud
agent.

V. EVALUATION

A. Evaluation framework

We use the ns3-gym framework [4] to implement both our
IoT system scenario and the DDQN algorithm. ns3-gym is a
toolkit that introduces two middle-ware components provided
as add-ons to the ns-3 network simulator and OpenAl Gym



Algorithm 1: Pseudo-code of cloud based-agent

1: Initialize BRM (basic replay memory) capacity

2: Initialize ARM (augmented replay memory) capacity
3: Initialize evaluation network with random weights

4: Clone evaluation network into target network

5: Initialize BS = batch Size

6: Initialize T = frequency of weights transfer to the SAP
7: Initialize t = number of training iterations

8

9

: Continuously:
If newExperiences received from smart acces point:

10: Store newExperiences in BRM

11:  If size of BRM > 0O:

12: Sample random batch from BRM

13: Generate Experiences via Input of batch to tabGAN

14: Store random batch + gen. Experiences into ARM

15:  If size of ARM >= BS:

16: Sample random batch from ARM

17: Preprocess states from batch

18: Pass preprocessed states to evaluation network

19: Calculate loss between output (QP"¢) and target
(Q%") Q-values

20: Update evaluation network weights through
Gradient Descent

21: After time steps, copy weights of evaluation
network to target network

22: Sett=t+1

23:  If tequals T:

24: Send evaluation network weights to the SAP

25: Sett=0

framework. These components ensure communication between
the scenario implemented as an environment inside ns-3 and
the learning agent implemented in OpenAl Gym. The envi-
ronment provides state values (observations) while the agent
calculates appropriate actions based on these observations.
Applying the actions to the environment results in a reward to
return to the agent to reinforce those actions or discard them.

The scenario is implemented in ns-3 while the agent is
implemented OpenAl gym using Pytorch. The local copy of
the evaluation network in IoT devices is implemented in C++
inside the ns-3 simulator.

B. Convergence

The convergence of the DRL agent is measured by the
reward sum. As the goal of the agent is to minimize the cost
function, its reward is inversely proportional to the cost. So
during training when it converges its rewards will be better
and the cumulative reward sum will increase until reaching
a maximum indicating that the agent always takes the best
decision. In figure 2 we show the reward sum curve for real
data (no GAN is used) compared to using GAN with different
frequencies. For example, when GAN = 1/5, that means the
observations are sent from the environment only once of each
five iterations. So the GAN compensates for the 4 missing

Algorithm 2: Pseudo-code of internal decision mech-
anism

1: Initialize local network

2: Initialize SF = frequency of sending experience

3: Initialize cSF = counter for SF

4: Retrieve RES = servers + bandwidth resources level
5: Generate task

6: While battery level > 0:

7. If new weights received:

8: Update local network weights

9:  Input RES+task size to local network

10:  Retrieve offloading decision from local network
11:  If decision equals local computing:

12: Execute task locally

13:  If decision different from local computing:

14: Send task+chosen server index to the SAP

15:  Generate new task
16:  If cSF equals SF:

17: Generate R = reward based on equation (5)
18: If received new RES:

19: Update RES

20: Send experience to the SAP

21: Set cSF =0

22:  Else

23: Set ¢SF = cSF + 1

entries. Our simulations show that for a GAN frequency
greater than 1/10 the agent does not converge anymore. Figure
2 depicts the evolution of error during training, using real data
leads to fast convergence but using GAN we can reduce real
data while the agent can always converge. Figure 3 illustrates
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Fig. 2. Cumulative reward sum

the evolution of error during the learning phase of the agent.

C. Resilience

The advantage of our solution is that decisions are done
locally by IoT devices. To illustrate the benefit of this archi-
tecture we compare the number of tasks that will be dropped
in both architectures, normal centralized implementation and
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our distributed implementation, against the DRL loop latency
that represents the duration of communication failure between
the agent and IoT devices. The result is shown in figure 4.
While in a centralized architecture the number of dropped
tasks explodes when the latency of the loop increases, using
our solution IoT devices can decide autonomously and tasks
are executed without loss.
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Fig. 4. Dropped tasks vs DRL loop latency

VI. CONCLUSION

In this paper we presented a distributed architecture to
implement a deep reinforcement agent capable of solving the
task offloading problem in an autonomous [oT system. Our
solution can perform task offloading with an agent based on
the cloud while task offloading decisions are made locally in
IoT devices. It shows very good resilience to communication
failures between the IoT devices and the agent. The execution
of the agent on the cloud ensures efficient learning while
copying the evaluation network in IoT devices allows local
decision making. The use of GAN compensates for the missing
data in the replay memory used to train the agent. In our future

work, we would like to compare other DRL algorithms with
the double deep Q-network and deploy the solution on a real
platform.
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