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SIGNED TROPICAL HALFSPACES AND CONVEXITY

GEORG LOHO AND MATEUSZ SKOMRA

Abstract. We extend the fundamentals for tropical convexity beyond the

tropically positive orthant expanding the theory developed by Loho and Végh
(ITCS 2020). We study two notions of convexity for signed tropical numbers

called TO-convexity (formerly ‘signed tropical convexity’) and the novel notion

TC-convexity.
We derive several separation results for TO-convexity and TC-convexity.

A key ingredient is a thorough understanding of TC-hemispaces – those TC-

convex sets whose complement is also TC-convex. Furthermore, we use new
insights in the interplay between convexity over Puiseux series and its signed

valuation.
Remarkably, TC-convexity can be seen as a natural convexity notion for

representing oriented matroids as it arises from a generalization of the compo-

sition operation of vectors in an oriented matroid.

1. Introduction

Convexity is a powerful structure which is often behind the existence of efficient
algorithms. In this spirit, tropical convexity, arising from classical convexity by
replacing addition with maximization and multiplication by addition, found several
applications from optimization [11], phylogenetics [54] and machine learning [43].
While tropical convexity was mainly considered with a non-negativity constraint
for a long time, the recent paper [42] introduced a notion of signed tropical con-
vexity to overcome this restriction. In this paper, we extend the fundamentals of
signed tropical convexity and exhibit a slightly different version of signed tropical
convexity.

The crucial building blocks of the two versions of signed tropical convexity are
open and closed tropical halfspaces. We coin the name TO-convexity (tropical
open convexity) for the convexity in which the hull of finitely many points equals
the intersection of the open tropical halfspaces containing them. Additionally, we
define TC-convexity (tropical closed convexity) in such a way that the hull of finitely
many points equals the intersection of the closed tropical halfspaces containing
them. For technical reasons, we actually introduce it via the hull of only two points
first (Definition 3.5) and give the characterization for bigger sets by closed tropical
halfspaces as one of our main results.

Our main result is Theorem 6.1 which shows that the definition via hulls of only
two points is actually equivalent to the definition via intersection of closed tropical
halfspaces. This gives an analog of the hyperplane separation theorem for TC-
convexity. To arrive at this statement, we need to gather extensive insights into the
structure of TC-convex sets and their lifts to Puiseux series. We make explicit use
of the connection between separation of sets over Puiseux series and their signed
valuation established in Theorem 4.10. We use this to strengthen the separation
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results which we derive directly for TC-convex sets. The main insights for those is
the fundamental elimination property of TC-convexity given in Theorem 5.2. To
combine this with the separation properties for lifts, we investigate TC-hemispaces –
those TC-convex sets whose complement is also TC-convex. We show that they are
nearly tropical halfspaces in Theorem 5.10 and provide several structural insights on
their boundary. Along the way, we also give new separation results for TO-convex
sets including the Pasch & Kakutani properties (Theorem 3.3). Furthermore, we
derive Carathéodory-type results for TC-convexity. We finish with Minkowski–Weyl
theorems for finitely generated TC-convex sets (Theorem 6.3 and Theorem 6.4).

Comparison of TO-convexity and TC-convexity. From the viewpoint of ab-
stract convexity [51], TO-convexity is generated by open tropical halfspaces and
TC-convexity is generated by closed tropical halfspaces. This yields that TO-
convex sets are also TC-convex. While TO-convex sets still behave rather well
with the algebraic operations, as TO-convex hull can be written using (tropical)
convex combinations with hyperoperations, this structure is lost for TC-convexity.

To describe the latter, we use a non-commutative addition, which we call left
sum (Definition 2.11). It generalizes the composition of vectors in an oriented
matroid. In this way, this operation already appeared in work on Bergman fans
for matroid over hyperfields generalizing composition of sign vectors of an oriented
matroid [23, 15]. We will elaborate more about the implication of this connection
in upcoming work.

Another remarkable difference is the behavior with respect to lifts to Puiseux
series. In [42, Theorem 3.14], it was shown that the TO-convex hull of finitely many
points arises as union of the signed valuations of the convex hulls ranging over all
lifts. We show in Corollary 6.2, that the TC-convex hull arises as the intersection
of these lifts.

Motivation. Our work is motivated by the need for a better structural basis un-
derlying (recent) applications of tropical convexity. New insights on the complexity
of classical linear programming based on tropical geometry have been a great suc-
cess story in recent years [5, 10, 11, 14]. The point of origin for these advances is
the tropicalization of linear programs – where one always had to impose additional
nonnegativity constraints. A thorough foundation of signed tropical convexity will
allow to study the signed tropicalization of general linear programs.

Furthermore, tropical convexity has an intimate connection with mean payoff
games as the feasibility problem for tropical inequality systems (restricted to the
tropical nonnegative orthant) is equivalent to mean payoff games [2]. The latter
have an intriguing complexity status in the intersection of NP and co-NP while
no polynomial-time algorithm is known [57]; see the recent paper [26] for a good
overview including the flourishing advances on the subclass of parity games. Study-
ing the polar of a tropical polyhedron naturally leads to tropically convex sets with-
out a nonnegativity constraint which was modeled by pairs of nonnegative numbers
in former work [12]. We think that signed tropical convexity may enrich the insights
in the structure of these games.

Yet another motivation comes from interest in signed tropicalization of semialge-
braic sets [36]. The study of unsigned tropicalizations of semialgebraic sets already
lead to a fruitful connection between stochastic games and (non-Archimedean) semi-
definite programs [7]. In particular, the analysis of tropical cones arising in this
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work resulted in a recent universal complexity bounds on value iteration for a large
class of games in [6]. Our framework allows to capture also other classes of opti-
mization problems where the nonnegativity condition is a priori not satisfied.

Finally, already in [42], it was demonstrated that signed tropical linear inequality
systems with unit coefficients are the same as Boolean formulas. In this sense, more
general signed tropical linear inequality systems form a ‘quantitative’ generalization
of Boolean formulas. Therefore, the feasibility problem for linear systems over
signed tropical numbers is a natural generalization of SAT. Note that the solution
sets of these systems are actually not TO-convex. However, they are exactly the
finitely generated TC-convex sets.

Related work. We refer to the book [37] for a general overview on (unsigned)
tropical convexity. Different versions of separation theorems in the tropical convex-
ity have been obtained by numerous authors [56, 48, 25, 28, 22, 33]. Likewise, the
Carathéodory theorem for tropical convexity has been discovered independently in
different works [34, 21, 28]. The tropical analogue of the Minkowski–Weyl theorem
for was proven in [31]. In order to prove our main separation theorem, we rely
on works on abstract convexity, which were already applied to the usual tropical
convexity in [35]. Furthermore, our proof requires to give a partial characterization
of signed tropical hemispaces. A full characterization of tropical hemispaces in one
orthant is given in [22, 39, 30].

The link between the tropical convexity and convexity over Puiseux series was
established in the work [29] which studies the tropicalization of polyhedra. This
was later generalized to spectrahedra in [55, 13] and to convex semialgebraic sets
in [8]. The tropicalizations of general semialgebraic sets are studied in [4] and this
study is extended to signed tropicalizations in [36] and [13, Section 4].

Signed tropical numbers first appeared in the context of the symmetrized semir-
ing [1]. The idea that tropical convexity could be extended to signed tropical
numbers appeared already in [21, 20], where two such extensions (different than
the ones considered here) are introduced. Our work is most closely related to the
paper [42] which introduces and studies the TO-convexity.

2. Preliminaries on signed tropical numbers

We give a brief overview of necessary notions related to signed numbers; for
more see [3, 1, 42]. The signed tropical numbers T± are obtained by glueing two
copies of (R ∪ {−∞}) at the tropical zero element O = −∞ giving rise to the non-
negative tropical numbers T≥O = R ∪ {O} and the non-positive tropical numbers
T≤O = {	x | x ∈ R} ∪ {O}.

The signed numbers can be extended to the symmetrized semiring S, which forms
a semiring containing T±, by attaching balanced numbers T• = {•x | x ∈ R}∪{O}.
We will often use the norm | . | on T± which maps each element of T≥O to itself,
removes the 	 sign of an element in T≤O and the • from an element in T•. This
is complemented by the map tsgn from S to {⊕,	, •,O} keeping only the sign
information.

Throughout, we use the notation [d] = {1, 2, . . . , d} and [d]0 = [d] ∪ {0}. For
a vector z ∈ Td± we denote its support, positive support and negative support,
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respectively, by
supp(z) = { i ∈ [d] | zi 6= O}

supp⊕(z) = { i ∈ [d] | zi ∈ T>O}
supp	(z) = { i ∈ [d] | zi 6= T<O} .

(1)

For x, y ∈ S, the addition is defined by

x⊕ y =

{
argmaxx,y(|x|, |y|) if |χ| = 1

• argmaxx,y(|x|, |y|) else .
(2)

where χ = { tsgn(ξ) | ξ ∈ (argmax(|x|, |y|))}. The multiplication is given by

x� y = (tsgn(x) ∗ tsgn(y)) (|x|+ |y|) , (3)

where the ∗-multiplication table is the usual multiplication of {−1, 1, 0} for {	,⊕, •}
with the additional specialty that multiplication with O yields O. The operations
⊕ and � extend to vectors and matrices componentwise.

We use ⊕, 	 and • also as unary operations on S with 		 = ⊕, •	 = •• =
	• = • and where ⊕ just acts as identity. The fact that S with these operations
forms a commutative semiring justifies the name introduced above. We also point
out that balanced numbers in the symmetrized semiring are equivalent to the use
of a multivalued addition as in the theory of hyperfields [27, 17]. More precisely,
the addition in the symmetrized semiring is equivalent to the multivalued addition
in the real tropical hyperfield discussed in [36, 53].

Example 2.1. One has 2 � 	1 = 	3, (0 ⊕ 	0) � 	 − 1 = •0 � 	 − 1 = • − 1,
−1�−1 = −2, 	1�	1 = 2.

We recall some relations which serve to order the symmetrized semiring S. For
x, y ∈ S we set

x > y ⇔ x	 y ∈ T>O
x � y ⇔ x	 y ∈ T>O ∪ T•
x ≥ y ⇔ x > y ∨ x = y

(4)

For a ∈ S, we set

U(a) =

{
[	|a|, |a|] = {x ∈ T± | 	|a| ≤ x ≤ |a|} for a ∈ T•
{a} else

. (5)

We extend this to vectors by setting U(v) =
∏
i∈[d] U(vi).

Example 2.2. One has 2 > 	3 but •4 and 	3 are incomparable via ‘>’ since
•4		3 = •4⊕ 3 = •4 = 	4 • 4. Though it holds •4 � 	3 and 	3 � •4 and 3 � •4
showing, e.g., that ‘�’ is not anti-symmetric.

The signed tropical numbers are equipped with the order topology induced by
the strict order <. With this, T± is homeomorphic to R with the usual order
topology via

slog : R→ T±, slog(x) =


log(x) for x > 0

	 log(|x|) for x < 0

O for x = 0

.
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This extends to Td± via the product topology, in particular Td± is homeomorphic

to Rd. Hence, we can use all topological properties of Rd also for vectors of signed
tropical numbers.

Recall that a partial order on some set S is dense if for every two elements
x, y ∈ S such that x < y there exists z ∈ S that satisfies x < z < y. With this, the
order < on T± is dense.

2.1. Halfspaces. The different versions of halfspaces form the building blocks for
our convexity notions.

x1

x2

x1

x2

Figure 1. An open and a closed signed tropical halfspace.

Definition 2.3. For a vector (a0, a1, . . . , ad) ∈ Td+1
± such that (a1, . . . , ad) 6= O we

define the signed (affine) tropical hyperplane by

H(a) =

{
x ∈ Td±

∣∣∣∣ a� (0
x

)
∈ T•

}
, (6)

the open signed (affine) tropical halfspace by

H+(a) =

{
x ∈ Td±

∣∣∣∣ a� (0
x

)
∈ T>O

}
, (7)

the closed signed (affine) tropical halfspace by

H+
(a) =

{
x ∈ Td±

∣∣∣∣ a� (0
x

)
∈ T>O ∪ T•

}
, (8)

and the semi-closed signed (affine) tropical halfspace by

H̃+(a) =

{
x ∈ Td±

∣∣∣∣ a� (0
x

)
∈ T≥O

}
. (9)

If a0 = O, we call a tropical halfspaces linear instead of affine.

We denote H−(a) = H+(	a) and H−(a) = H+
(	a). Furthermore, given J ⊆

[d], we say that a tropical halfspace H+
(a) is of type J if J = { i ≥ 1 | ai ∈ T>O}.

To express H+
(a) using a more classical notation, we recall that max ∅ = −∞.

Then, we have x ∈ H+
(a) if and only if

max
(
a+

0 , max
tsgn(xi)=tsgn(ai)

(|ai|+ |xi|)
)
≥ max

(
a−0 , max

tsgn(xi)6=tsgn(ai)
(|ai|+ |xi|)

)
, (10)

where (a+
0 , a

−
0 ) = (a0,−∞) for a0 ∈ T≥O and (a+

0 , a
−
0 ) = (−∞, |a0|) otherwise. We

have x ∈ H+(a) if and only if the inequality in (10) is strict. The following lemma
gathers the basic topological properties of tropical halfspaces.
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Lemma 2.4. The set H+
(a) is closed, its interior is equal to H+(a), and the

closure of H+(a) is equal to H+
(a).

Proof. Equation (10) shows that the restriction of H+
(a) to any closed orthant of

Td± is closed. Therefore, H+
(a) is closed and H+(a) = Td± \ H

−
(a) is open. Also,

[42, Lemma 5.2] shows that H+
(a) is the closure of H+(a). In particular, H+(a)

is included in the interior of H+
(a). To finish, we note that the interior of H+

(a)

cannot contain any point that belongs to H(a) ⊆ H−(a) because H−(a) is the

closure of H−(a) and H+
(a) ∩H−(a) = ∅. �

2.2. Basic calculations in S. We collect and extend basic properties from [42].

Lemma 2.5 ([42, Lemma 2.6]). Let a, b, c, d ∈ S.

(a) a⊕ c � b⇔ a � b	 c
(b) a � b ∧ c � d ⇒ a⊕ c � b⊕ d.
(c) If c ∈ T±, then b � c and c � a imply b � a.
(d) a � b implies c � a ⊕ d � c � b ⊕ d for c ∈ T≥O and c � b ⊕ d � c � a ⊕ d for

c ∈ T≤O.

Lemma 2.6. Let a, b, c ∈ S. Then,

a	 c � O ∧ b⊕ c � O⇒ a⊕ b⊕ c � O ∧ a⊕ b	 c � O.

Proof. We distinguish two cases.
Case 1 (c ∈ T•) Adding the equivalent relations a � c and b � 	c side-wise

yields a ⊕ b � •c. This is equivalent to a ⊕ b • c � O and shows the required as in
this case •c = 	c = c.

Case 2 (c ∈ T±) Without loss of generality, we can assume that c ≥ O. With
a � c this implies |a| ≥ |c|. Combining a � c and c � 	b yields a ⊕ b � O in this
case. With

|a⊕ b| = |a| ⊕ |b| ≥ |a| ≥ |c|
we get a⊕b � c ≥ 	c by checking the two possibilities a⊕b ∈ T± or a⊕b ∈ T•. �

Lemma 2.7. Let u, v, w ∈ T±, q ∈ U(v ⊕ w), p ∈ U(u⊕ v).

(a) U(u⊕ q) ⊆ U(u⊕ v ⊕ w) and U(p⊕ w) ⊆ U(u⊕ v ⊕ w),
(b) U(u⊕ q) ∩ U(p⊕ w) 6= ∅.

Proof. For (a): By commutativity, it suffices to prove the first inclusion. For v⊕w ∈
T±, we have q = v ⊕ w and therefore U(u ⊕ q) = U(u ⊕ v ⊕ w). Otherwise, the
claim follows from the definition of U(.) using

|u⊕ q| = |u| ⊕ |q| ≤ |u| ⊕ |u⊕ w| = |u⊕ v ⊕ w|
by distinguising |u| > |v ⊕ w| and |u| ≤ |v ⊕ w|.

For (b):
Case 1 (U(v ⊕ w) or U(u ⊕ v) is singleton.) Assume without loss of generality

that U(v ⊕ w) is a singleton. This implies U(u ⊕ q) = U(u ⊕ v ⊕ w) ⊇ U(p ⊕ w),
where the inclusion follows from (a).

Case 2 (v⊕w and u⊕ v are balanced.) Here, we have u = 	v = w. This means
we have either p = 	w and, hence, U(p ⊕ w) = U(u ⊕ v ⊕ w), or p ⊕ w = w = u.
The same applies to q and u. Therefore, in each of the four combinations of the
two possibilities, one has a non-empty intersection. �
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As U(.) is defined componentwise, we obtain a higher-dimensional extension
of Lemma 2.7(b).

Corollary 2.8. For u, v, w ∈ Td± and q ∈ U(v ⊕ w), p ∈ U(u ⊕ v), one gets
U(u⊕ q) ∩ U(p⊕ w) 6= ∅.
Lemma 2.9 ([42, Lemma 3.5(b)]). If a ∈ U(x), b ∈ U(y), and c ∈ T±, then
U(c� a⊕ b) ⊆ U(c� x⊕ y).

Observation 2.10. Let a, b, µ ∈ T± and s, t ∈ S with a ∈ U(s) and b ∈ U(t). Then
µ� a ∈ U(µ� s) and a⊕ b ∈ U(s⊕ t).
2.3. Left sum. The following notion of one-sided addition of tropical signed num-
bers is crucial for our study of convexity over signed tropical numbers.

Definition 2.11. Given two tropical numbers x, y ∈ S we define their left sum as

x / y =

{
x if |x| = |y|,
x⊕ y otherwise.

We extend this definition to vectors x, y ∈ Sd by putting (x/y)k = xk /yk for every
k ∈ [d].

Remark 2.12. For the special case of vectors with entries in {O, 0,	0}, the left sum
operation is just the composition of sign vectors in an oriented matroid [19]. The
generalization to signed vectors with real entries already appears for the description
of real Bergman fans [23] and even more generally in the context of matroids over
tracts [15, Section 6.2]. From this point of view, later on in Proposition 3.17 we will
see an extension of the elimination property of oriented matroids. We will discuss
this connection further in upcoming work.

The left sum operation is not commutative as one can see on the example 0 ⊕
(	0) = 0 6= 	0 = (	0)⊕ 0. Nevertheless, it is associative and compatible with the
order on T±.

Observation 2.13. For every x, y, z ∈ Td± we have

(a) (x / y) / z = x / (y / z)
(b) |x / y| = |x| ⊕ |y|.
Lemma 2.14. Let a1, b1, a2, b2 ∈ T±.

(a) If a1 ≤ b1 and a2 ≤ b2, then a1 / a2 ≤ b1 / b2.
(b) if a1 < b1 and a2 < b2, then a1 / a2 < b1 / b2.
(c) if a1 ≥ b1 and a2 ≥ b2, then a1 / a2 ≥ b1 / b2
(d) if a1 > b1 and a2 > b2, then a1 / a2 > b1 / b2.

Proof. It is enough to prove (a) and (b) as (c),(d) follow by replacing (a1, a2, b1, b2)
with (	a1,	a2,	b1,	b2). Hence, we suppose that a1 ≤ b1 and a2 ≤ b2 (or a1 < b1
and a2 < b2). Let x = a1 / a2 and y = b1 / b2.

If (x, y) ∈ {(a1, b1), (a2, b2)}, then the claim is trivial.
If (x, y) = (a1, b2), then we have |b2| ≥ |b1| and |a1| ≥ |a2|. If b2 ≥ O, then

b2 ≥ b1 ≥ a2 (or b2 > a1 if a1 < b1). If b2 < O, then a2 ≤ b2 < O implies that
|a1| ≥ |a2| ≥ |b2| ≥ |b1|. Therefore, a1 ≤ b1 implies that a1 ≤ O. Since |a1| ≥ |a2|,
we get a1 ≤ a2 ≤ b2 (or a1 < b2 if a2 < b2).

If (x, y) = (a2, b1), then we have |a2| ≥ |a1|, |b1| ≥ |b2|, and an analogous proof
as above applies. �
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Lemma 2.15. Fix a, b ∈ T± with tsgn(a) = tsgn(b) and let x
(1)
1 , . . . , x

(1)
n ∈ T±,

x
(2)
1 , . . . , x

(2)
n ∈ T± be such that

a ≤ x(1)
1 / . . . / x(1)

n and b ≤ x(2)
1 / . . . / x(2)

n .

Then

a⊕ b ≤ w1 / . . . / wn

for all w1 ∈ U(x
(1)
1 ⊕ x

(2)
1 ), . . . , wn ∈ U(x

(1)
n ⊕ x(2)

n ).
By multiplying with 	0, the implication also holds if one replaces ‘≤’ by ‘≥’.

Proof. Let p, q ∈ [n] be the smallest indices such that x
(1)
1 / . . . / x

(1)
n = x

(1)
p and

x
(2)
1 / . . . / x

(2)
n = x

(2)
q . Then Lemma 2.14 implies that a / b ≤ x(1)

p / x
(2)
q and b / a ≤

x
(2)
q /x

(1)
p . Due to tsgn(a) = tsgn(b), this yields a⊕b ≤ min

(
x

(1)
p / x

(2)
q , x

(2)
q / x

(1)
p

)
.

By definition, for any s, t ∈ T±, the interval U(s ⊕ t) has the boundary points
s / t and t / s. There is a choice of orders τ1, . . . , τn ∈ Sym(2) which minimizes

the expression C
(
x

(τi(1))
i / x

(τi(2))
i

)
. By the former observation and Lemma 2.14

it is smaller than w1 / . . . / wn for all w1 ∈ U(x
(1)
1 ⊕ x

(2)
1 ), . . . , wn ∈ U(x

(1)
n ⊕ x(2)

n ).

Let x
(`)
j for j ∈ [n] and ` ∈ {1, 2} be the entry which defines the value of this

expression, which means the first summand with maximal absolute value. If ` = 1

then j = p, otherwise j = q. In either case, we get C
(
x

(τ(1))
i / x

(τ(2))
i

)
= x

(1)
p / x

(2)
q

or C
(
x

(τ(1))
i / x

(τ(2))
i

)
= x

(2)
q / x

(1)
p . In particular, we obtain

w1 / . . . / wn ≥ C
(
x

(τ(1))
i / x

(τ(2))
i

)
≥ min

(
x(1)
p / x(2)

q , x(2)
q / x(1)

p

)
≥ a⊕ b . �

Example 2.16. Let a = 0, b = 	0, x
(1)
1 = O, x

(1)
2 = 0, x

(2)
1 = 	0, x

(2)
2 = O,

w1 = 	0, w2 = 0. Then a ≤ x
(1)
1 / x

(1)
2 , b ≤ x

(2)
1 / x

(2)
2 , w1 = x

(1)
1 ⊕ x

(2)
1 ,

w2 = x
(1)
2 ⊕ x(2)

2 , but 0 = a / b > w1 / w2 = 	0. This example shows that the
assumption tsgn(a) = tsgn(b) cannot be omitted in the previous lemma.

3. Flavors of signed convexity

In [42], a notion of convexity for signed tropical numbers was introduced. We
revisit this notion under the name TO-convexity and give several new insights.
Furthermore, we establish a second notion of convexity for signed tropical numbers
in an equally natural way.

Recall that a cone is a set X ⊆ Td± such that λ�X ⊆ X for all λ ∈ T>O. Based
on the two convexity notions we will also consider cones over the respective convex
sets.

We will often identify a finite set with the columns of a matrix and vice versa.

3.1. TO-convexity. We collect several results from [42]. Note that TO-convexity
appears under the name ‘signed tropical convexity’ there.

The TO-convex hull of a matrix A ∈ Td×n± is

convTO(A) =
⋃U(A� x)

∣∣∣∣∣∣ x ∈ Tn≥O,
⊕
j∈[n]

xj = 0

 ⊆ Td± . (11)
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A set M ⊆ Td± is TO-convex if convTO(T ) ⊆ M for all finite T ⊆ M . The hull
operator extends by setting

convTO(M) =
⋂

M⊆S,S TO-convex

S

=
⋃

T⊆M,T finite

convTO(T ) .

For a vector s ∈ Sd with possibly balanced entries, the set U(s) ⊂ Td± can be
seen as a hypercube. If s has k entries in T• \ {O}, we say that the hypercube U(s)
has dimension k. Furthermore, we say that U(s′) is a face of U(s) if s′k = sk for
every k such that sk ∈ T± and |s′k| = |sk| for every other k. A face of dimension
zero is called a vertex of U(s). In particular, a hypercube of dimension k has 2k

vertices.
We recall a crucial property of TO-convexity.

Lemma 3.1 ([42, Proposition 3.6]). A subset U ⊆ Td± is TO-convex if and only if
convTO({p, q}) is contained in U for all p, q ∈ U .

The TO-convex hull of a finite set can also be given as intersection of open trop-
ical halfspaces. This is the origin of the name ‘TO-convex’ derived from ‘tropical
open’. Furthermore, it motivates the definition of the TC-convex hull (‘tropical
closed’) in Section 3.2.

Theorem 3.2 ([42, Theorem 5.1]). The TO-convex hull of a finite subset M ⊆ Td±
equals the intersection of all open halfspaces containing M , i.e.,

convTO(M) =
⋂

M⊂H+(a)

H+(a)

It turns out that TO-convexity has rather well-behaved separation properties: it
fulfills the Pasch property and the Kakutani property. For this, we need the notion
of a TO-hemispace, this is a TO-convex subset X ⊆ Td± for which also Td± \ X is
TO-convex. A similar statement was proven for the unsigned case in [35].

Theorem 3.3. TO-convexity has the Pasch property and the Kakutani property.
In other words,

(i) (Pasch property) if (a, b1, b2, c1, c2) ∈ Td± are such that b1 ∈ convTO(a, c1),
b2 ∈ convTO(a, c2), then convTO(c1, b2) ∩ convTO(c2, b1) 6= ∅;

(ii) (Kakutani property) if A,B ⊆ Td± are two disjoint TO-convex sets, then there

exists a TO-hemispace X ⊆ Td± such that A ⊆ X and B ⊆ (Td± \X).

Proof. For (i), we follow the proof of the Pasch property over arbitrary ordered
fields, see [51, I. Proposition 4.14.1]. Let (a, b1, b2, c1, c2) be as in (i). Then there
are s1, s2, s̄1, s̄2 ∈ T≥O such that

s1 ⊕ s̄1 = 0 , s2 ⊕ s̄2 = 0 (12)

and

b1 ∈ U(s1 � a⊕ s̄1 � c1) and b2 ∈ U(s2 � a⊕ s̄2 � c2) . (13)
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a

c1

c2
b1

b2

Figure 2. The Pasch property in the real plane.

We define
t1 = s2 � (s1 ⊕ s̄1 � s2)�−1

t̄1 = s1 � s̄2 � (s1 ⊕ s̄1 � s2)�−1

t2 = s̄1 � s2 � (s1 ⊕ s̄1 � s2)�−1

t̄2 = s1 � (s1 ⊕ s̄1 � s2)�−1 .

(14)

Using (12), we obtain

s2 ⊕ s1 � s̄2 = s1 � s2 ⊕ s̄1 � s2 ⊕ s1 � s̄2

= s1 � s2 ⊕ s1 � s̄2 ⊕ s̄1 � s2 = s1 ⊕ s̄1 � s2,

which implies

t1 ⊕ t̄1 = (s2 ⊕ s1 � s̄2)� (s1 ⊕ s̄1 � s2)�−1 = 0 .

Note that we also have t2 ⊕ t̄2 = 0. Hence, we obtain

U(t1�b1⊕ t̄1�c2) ⊆ convTO(b1, c2) and U(t2�c1⊕ t̄2�b2) ⊆ convTO(c1, b2) .

Multiplying by the denominator s1 ⊕ s̄1 � s2 in (14), we see that the intersection
convTO(b1, c2) ∩ convTO(c1, b2) is not empty if

U(s2 � b1 ⊕ s1 � s̄2 � c2) ∩ U(s̄1 � s2 � c1 ⊕ s1 � b2) 6= ∅ .

Scaling (13) to

s2 � b1 ∈ U(s2 � s1 � a⊕ s2 � s̄1 � c1) and s1 � b2 ∈ U(s1 � s2 � a⊕ s1 � s̄2 � c2)

allows to apply Corollary 2.8 by setting

v = s1 � s2 � a, q = s2 � b1, w = s̄1 � s2 � c1, p = s1 � b2, u = s1 � s̄2 � c2.

To prove (ii), we use [24, Theorem 5], which shows that the Pasch property
and the Kakutani property are equivalent for 2-ary convexities (see also [41, The-
orem 4.1] for a more recent improvement). TO-convexity is 2-ary by Lemma 3.1.
This concludes the proof. �

Example 3.4. Let a = (0,	0), b1 = (O,	0), b2 = (0, 0), c1 = (	0,	0), and
c2 = (O, 1). Figure 3 depicts this configuration of points. The TO-convex hull of
a and c1 is the straight line connecting them, so b1 ∈ convTO(a, c1). Furthermore,
(−1)� c2⊕ a = (0, •0), so b2 ∈ convTO(a, c2). One gets that the TO-convex hull of
b1 and c2 is the dashed line connecting them and the TO-convex hull of c1 and b2
is just the shaded whole square. Their non-empty intersection visualizes the Pasch
property in this example.
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x1

x2

c1

c2

ab1

b2

Figure 3. The Pasch property in the TO-convexity is satisfied.

x1

x2

c1

c2

ab1

b2

Figure 4. The Pasch property in the TC-convexity is not satis-
fied; see Example 3.16.

3.2. TC-convexity. While the structure of TO-convexity is heavily linked to open
tropical halfspaces, we introduce TC-convexity based on closed tropical halfspaces.
For technical reasons, we first only define the TC-convex hull of two points, and
then extend it to arbitrary sets using these TC-convex line segments. Later it
turns out that, for an arbitrary finite set, this is actually the same as just taking
the intersection of all closed tropical halfspaces containing it.

For basics on general convexity, we refer to [51]. We will mainly rely on the notion
of a convexity structure [51, §1.1]. In particular, we are interested in convexity
structures induced by an interval operator [51, §4.1].

Definition 3.5. We define the TC-convex hull of two points x, y ∈ Td± as

convTC(x, y) =
⋂

x,y∈H+
(a)

H+
(a) . (15)

Sets of this form are TC-convex intervals.

Definition 3.6. We say that a set X ⊂ Td± is TC-convex if convTC(x, y) ⊆ X for
all x, y ∈ X.

We have the following desirable properties.

Corollary 3.7. The TC-convex sets form a convexity structure. In particular,
TC-convex sets are closed by intersection and nested union.

The definition of TC-convexity directly gives two important classes of TC-convex
sets.

Corollary 3.8. A closed signed affine tropical halfspace and a signed affine tropical
hyperplane is TC-convex. TC-convex intervals, i.e. sets of the form convTC(x, y),
for x, y ∈ Td±, are TC-convex.
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Proof. Right from the definition we get that closed signed affine tropical halfspaces
are TC-convex. The TC-convexity of the other sets follows from the intersection
property. �

Corollary 3.7 allows us to extend the hull operator routinely to arbitrary sets
M ⊆ Td± by setting

convTC(M) =
⋂

M⊆S,S TC-convex

S .

In particular, this convexity structure is ‘domain finite’ by [51, Theorem 1.3]
which means the following.

Corollary 3.9. For an arbitrary set M ⊆ Td± we have

convTC(M) =
⋃

T⊆M,T finite

convTC(T ) .

Corollary 3.10. For an arbitrary set M ⊆ Td± we have convTC(M) ⊆ convTO(M).
Furthermore, each TO-convex set is also TC-convex.

Proof. For two point x, y ∈ Td±, [42, Theorem 5.4] implies that convTO(x, y) is
an intersection of finitely many closed halfspaces. Now, combining with the Def-
inition 3.5 yields convTC(x, y) ⊆ convTO(x, y). Therefore, by definition of a TC-
convex set via TC-convex intervals (Definition 3.6), each TO-convex set is also
TC-convex. Hence, using the extension of the hull operators for TO-convexity and
TC-convexity to not necessarily finite sets gives the first claim. �

x1

x2

(a) convTO((0, 0), (	− 2,	− 2))

x1

x2

(b) convTO((0, 0), (	− 3,	− 2))

x1

x2

(c) convTC((0, 0), (	− 2,	− 2))

x1

x2

(d) convTC((0, 0), (	− 3,	− 2))

Figure 5. TO-convex intervals and TC-convex intervals in the
plane (see Example 3.15)
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To describe the TC-convex hull explicitly, we need significantly more tools than
for the TO-convex hull.

Definition 3.11. Given a set of points X = {x1, . . . , xn} ∈ Td±, we define

Vert(X) = Vert(x1, . . . , xn) :=
{
xσ(1) / xσ(2) / . . . / xσ(n)

∣∣ σ ∈ Sym(n)
}
⊂ Td± ,

where Sym(n) denotes the group of permutations of [n]. Furthermore, we denote
by

Faces(X) := Faces(x1, . . . , xn)

the union of all faces of U(x1 ⊕ · · · ⊕ xn) (considering it as a hypercube) whose
vertices belong to Vert(x1, . . . , xn).

While the convex structure of cancellation for TO-convexity only depends on the
balanced outcome, the non-associative structure of TC-convexity is far more subtle.
Therefore, it is not enough to apply a univariate operator like U(.) but we have to
use the multivariate operator Faces(.). Though, equipped with this tool, we will be
able to describe the TC-hull also in terms of an analog of convex combinations.

Directly from the definition and Observation 2.13 we get the next.

Corollary 3.12. The set Vert(x1, . . . , xn) is a subset of vertices of the hypercube
U(x1 ⊕ · · · ⊕ xn). In particular, it contains at most 2d points.

Example 3.13. If we only consider two points, there are essentially three cases.
We illustrate them on small examples. In the first case, the sum does not have a
balanced entry.

Vert

((
0
	0

)
,

(
1
−1

))
=

{(
1
	0

)}
= Faces

((
0
	0

)
,

(
1
−1

))
.

In the second case, we have

Vert

((
0
	0

)
,

(
1
0

))
=

{(
1
	0

)
,

(
1
0

)}
which yields

Faces

((
0
	0

)
,

(
1
0

))
=

{(
1
s

)
: s ∈ [	0, 0]

}
.

In the last case, there is more than one balanced entry

Vert

((
0
	0

)
,

(
	0
0

))
=

{(
0
	0

)
,

(
	0
0

)}
= Faces

((
0
	0

)
,

(
	0
0

))
.

Proposition 3.14. We have

convTC(x, y) =
⋃
{Faces(λ� x, µ� y) | λ, µ ∈ T≥O, λ⊕ µ = 0} . (16)

Proof. By Corollary 3.10, we know that convTC(x, y) ⊆ convTO(x, y). With (11),
this implies that it suffices to consider which part of U(λ� x⊕ µ� y) is contained
in convTC(x, y) for each pair λ, µ ∈ T≥O, λ ⊕ µ = 0. Note that, for different such
pairs λ1, µ1 and λ2, µ2, the sets U(λ1�x⊕µ1�y) and U(λ2�x⊕µ2�y) are either
disjoint or identical. Therefore, it is enough to consider the sets U(λ� x⊕ µ� y)
for a fixed pair λ, µ. Hence, fixing such a pair, we distinguish three cases.

For a = (a0, ā) ∈ Td+1
± let H+

(a) be an affine halfspace containing x and y. This
means that

λ� a0 ⊕ ā� λ� x � O and µ� a0 ⊕ ā� µ� y � O . (17)
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Recall that at least one of λ, µ is 0.
Case 1 (λ � x ⊕ µ � y has no balanced entry. ) Adding the relations in (17)

yields

a0 ⊕ ā� (λ� x⊕ µ� y) � O .

That already concludes this case, where indeed λ � x ⊕ µ � y = λ � x / µ � y =
µ� y / λ� x.

Case 2 (λ�x⊕µ�y has exactly one balanced entry. ) Without loss of generality,
we assume that the d-th entry is balanced. Reformulating (17) implies

λ� a0 ⊕
d−1⊕
`=1

a` � λ� x` � 	λ� ad � xd

µ� a0 ⊕
d−1⊕
`=1

a` � µ� y` � 	µ� ad � yd .

Using b := λ� xd = 	µ� yd, the side-wise addition of the relations yields

a0 ⊕
d−1⊕
`=1

a` � (λ� x` ⊕ µ� y`) � ad ⊕ •b .

Therefore, each point in

{(λ� x1 ⊕ µ� y1, . . . , λ� xd−1 ⊕ µ� yd−1, s) : s ∈ [	|b|, |b|]}

is contained as claimed. Furthermore, the latter set is indeed the line between
λ� x / µ� y and µ� y / λ� x.

Case 3 (λ � x ⊕ µ � y has more than one balanced entry. ) Without loss of
generality, exactly the coordinates k+1 to d of λ�x⊕µ�y are balanced. Then (17)
amounts to (

λ� a0 ⊕
k⊕
`=1

a` � λ� x`

)
⊕

(
d⊕

`=k+1

a` � λ� x`

)
� O

(
µ� a0 ⊕

k⊕
`=1

a` � µ� y`

)
⊕

(
d⊕

`=k+1

a` � µ� y`

)
� O .

Using Lemma 2.6 in the same way as we did for Case 2, we obtain that λ�x/µ�y
and µ� y / λ� x are also contained in H+

(a).
Up until now, we have proven the first inclusion. Now, we set b` = λ � x` =

	µ� y` for ` ∈ [d] \ [k]. We look at the halfspaces

H+
(	0,O, . . . ,O, ε1 � b�−1

k+1 , . . . , εd−k � b
�−1
d ) (18)

for each ε ∈ {	,⊕}d−k \ {(	, . . . ,	), (⊕, . . . ,⊕)}. By putting x and y in the
corresponding relation, we see that they are both contained.

Now let w1 = λ � x / µ � y and w2 = µ � y / λ � x. Note that w1 and x have
the same sign pattern on the coordinates k + 1 up to d, and the same for w2 and
y, respectively. We pick any point

z ∈ U(λ� x1 ⊕ µ� y1, . . . , λ� xk ⊕ µ� yk, •bk+1, . . . , •bd) \ {w1, w2}

Case 3a (z has the same sign pattern as w1 or w2. ) Without loss of generality,
we assume that z has the same sign pattern as w1. Then there is a coordinate of
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z, say the (k + 1)st, such that |zk+1| < |λ� xk+1| = |µ� yk+1|. We let

(ε1, . . . , εd−k) = (tsgn(zk+1),	 tsgn(zk+2), . . . ,	 tsgn(zd−k))

As |zk+1 � |bk+1|�−1| < 0, we get

	0⊕ ε1 � |bk+1|�−1 � zk+1 ⊕ · · · ⊕ εd−k � |bd|�−1 � zd−k < O.

Hence, there is a halfspace among those in (18) not containing z.
Case 3b (z has a different sign pattern from w1 and w2. ) We let

(ε1, . . . , εd−k) = (	 tsgn(zk+1), . . . ,	 tsgn(zd−k))

be the negative of the sequence of signs. Because of the relation

	0⊕ ε1 � |bk+1|�−1 � zk+1 ⊕ · · · ⊕ εd−k � |bd|�−1 � zd−k < O

there is a halfspace among those in (18) not containing z, as these include all sign
patterns except for those of x and y. �

Example 3.15. Figure 5 compares TC-intervals with TO-intervals in a plane. If
we take x = (0, 0) and y = (	 − 3,	 − 2), then for every λ, µ ∈ T≥O such that
λ⊕µ = 0 we have Faces(λ�x, µ�y) = U(λ�x⊕µ�y). In particular, in this case
the intervals coincide, convTO(x, y) = convTC(x, y). If we take y = (	− 2,	− 2)
instead, then the equality no longer holds. Indeed, for λ = −2, µ = 0 we have
U(λ� x⊕ µ� y) = U(•2, •2) = [	− 2,−2]× [	− 2,−2] and Faces(λ� x, µ� y) =
{(	− 2,	− 2), (−2,−2)}.

The next example shows that the TC-convexity does not have the Pasch property
or the Kakutani property. Nevertheless, in Section 5 we will show that the TC-
convexity satisfies a weaker separation property.

Example 3.16. As in Example 3.4, let a = (0,	0), b1 = (O,	0), b2 = (0, 0), c1 =
(	0,	0), and c2 = (O, 1). Figure 4 depicts this configuration of points. Note that
we have b1 ∈ Faces(a, c1) and b2 ∈ Faces(a,−1�c2), so that b1 ∈ convTC(a, c1), b2 ∈
convTC(a, c2). Nevertheless, the interval convTC(c1, b2) is reduced to two points,
convTC(c1, b2) = {c1, b2}, while convTC(c2, b1) = {O} × [	0, 1]. In particular, the
intersection convTC(c1, b2)∩ convTC(c2, b1) is empty, so the TC-convexity does not
have the Pasch property. This also shows that the TC-convexity does not have
the Kakutani property: there is no TC-hemispace that separates convTC(c1, b2)
from convTC(c2, b1), because the point a could not belong to either side of this
hemispace. Even further, we note that convTC(b1, c2) = convTO(b1, c2). Hence,
this example shows that the TO-convexity and TC-convexity do not satisfy the
Kakutani property for pairs of convexities studied in [41].

Proposition 3.17. A set M ⊆ Td± is TC-convex if and only if it is closed under
the following two operations:

(i) for x, y ∈M and λ, µ ∈ T≥O with λ⊕ µ = 0, we have

λ� x / µ� y ∈M ; (weighted left sum)

(ii) if (u, v, w), (u,	v, w) ∈ Tk±×T±×Td−k−1
± for k ∈ [d]0 are contained in M then

{u} × [	|v|, |v|]× {w} ⊆M. (local elimination)
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Proof. By Proposition 3.14, a TC-convex set fulfills these two properties.
It suffices to prove that the TC-convex hull of two points can be generated by

these two operations. So we fix two points x, y ∈ M ⊆ Td±. Let λ, µ ∈ T≥O
with λ ⊕ µ = 0. By the first property, Vert(λ � x, µ � y) is contained in M . If
Vert(λ� x, µ� y) do not form the vertices of a face of the respective hypercube, it
equals Faces(λ�x, µ� y). Otherwise Faces(λ�x, µ� y) is the line segment arising
from the second property. Now, Proposition 3.14 concludes the proof. �

Example 3.18. For (p, r), (q, r) ∈ T± × Td−1
± with p < q, one gets

convTC({(p, r), (q, r)}) = [p, q]× {r}. (19)

To see this, we first assume that p < q have the same sign, w.l.o.g. both are positive.
Then [p, q]×{r} = { (p, r) / λ� (q, r) | O ≤ λ ≤ 0}. Otherwise, assume that p < O
and |p| < q. Then (	p, r) = (q − |p|)� (q, r) / (p, r) and the claim follows with the
local elimination property. The other cases follow by suitably adapting the signs
and scalars.

For p, q ∈ Td± with p ≤ q (defined component-wise), we denote

[p, q] =
{
x ∈ Td±

∣∣ pi ≤ xi ≤ qi ∀i ∈ [d]
}
,

(p, q) =
{
x ∈ Td±

∣∣ pi < xi < qi ∀i ∈ [d]
}
.

Example 3.19. For p, q ∈ Td± with p ≤ q, one gets

convTC({p1, q1} × · · · × {pd, qd}) = [p, q]. (20)

To see this, we can fix all but one coordinate and then iteratively use Example 3.18.

Note that it also holds that

convTO({p1, q1} × · · · × {pd, qd}) = [p, q]. (21)

Let C be a subcomplex of the faces of [−1, 1]d with the property: if all vertices
of a face are contained in C then so is the face.

For ∼ ∈ {≤,≥}d, we define x ∼ y ⇔ (xk ∼k yk for all k ∈ [d]).

Lemma 3.20. A point z ∈ [−1, 1]d is contained in C if and only if for every
∼ ∈ {≤,≥}d there exists a vertex w of C such that z ∼ w.

Proof. With a point z ∈ [−1, 1]d, we associate a partition I ∪ J ∪K of [d] indexing
the coordinates of z which are +1, −1 or in the open interval (−1, 1). Then the set
I ∪ J uniquely defines the face F of the cube of smallest dimension containing z.

Assume that z is not contained in C. By the crucial property of C, there is a
vertex v of F which is not contained in C. With v we associate a vector ∼(v) ∈
{≤,≥}d by converting −1 to ≤ and +1 to ≥. Then v is the unique vertex of [−1, 1]d

with v ∼(v) z because there is a unique choice of τ ∈ {−1, 1} with τ ∼(v)
k zk for

k ∈ K. As v is not a vertex of C this concludes the first direction.

On the other hand, if a point z is contained in C then also the face F is contained
in C. Let ∼ ∈ {≤,≥}d be arbitrary. We define a vertex v of [−1, 1]d by v` = z` for
` ∈ I ∪ J and

vk =

{
1 if ∼k equals ≥,
−1 if ∼k equals ≤

for k ∈ K. By construction, v is a vertex of F and, hence, of C. Furthermore, we
get v ∼ z proving the claim. �
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Corollary 3.21. We have y ∈ Faces(x1, . . . , xn) if and only if for every ∼ ∈
{≤,≥}d there exists w ∈ Vert(x1, . . . , xn) such that yk ∼k wk for all k ∈ [d].

Proof. By Definition 3.11, the set Faces(x1, . . . , xn) forms a subcomplex of the faces
of the (stretched) hypercube U(x1⊕· · ·⊕xn) exactly with the property required of C
in Lemma 3.20. As Vert(x1, . . . , xn) select exactly the vertices of this subcomplex,
Lemma 3.20 gives the required equivalence. �

3.3. Fundamental properties of TC-convex sets. Fix finite sets X,Y ⊆ Td±.

Lemma 3.22. Let s, t ∈ S with |s| = |
⊕
X| and |t| = |

⊕
Y | such that U(s) ⊆

Faces(X) and U(t) ⊆ Faces(Y ). Then U(s / t) ⊆ Faces(X ∪ Y ).

Proof. Note that, by definition of s, we have the inclusion U(•s) ⊆ U(
⊕
X) and

further, using U(s) ⊆ Faces(X), that every vertex of U(s) is a vertex of U(
⊕
X).

Analogously, every vertex of U(t) is a vertex of U(
⊕
Y ).

Therefore as part of Faces(
⊕
X), all vertices of U(s) are of the form /Xσ for

some ordering σ of X, and analogously, all vertices of U(t) are of the form /Y τ for
some ordering τ of Y . Now, we consider a vertex u of U(s / t). We partition [d] in
two sets, I := {i : |ui| = |si|} and its complement.

By definition of the left sum, u is given by (signed versions of) the entries of s
on I and (signed versions of) the entries of t on [d] \ I. Let v be a vertex of U(s)
which agrees with u on I and let w be a vertex of U(t) which agrees with u on
[d] \ I. This just means that u = v / w. Furthermore, by construction, the latter
left sum lies in Vert(X ∪ Y ). As u belongs to Vert(X ∪ Y ), we get the inclusion
U(s / t) ⊆ Faces(X ∪ Y ) by definition of Faces(.). �

Lemma 3.23. The set Faces(X) is TC-convex.
In particular, we have Faces(X) = convTC(Vert(X))

Proof. Let x = |
⊕
X| and let xσ for σ ∈ {	,⊕}d denote a signed version of x.

Recall that the points Vert(X) are of the form xσ where σ ranges over a subset

Σ of {	,⊕}d. Let H+
τ = H+ (

0, (xτ1)�−1, . . . , (xτd)�−1
)

be the halfspace with its

‘apex’ at the point xτ for τ ∈ {	,⊕}d containing O and H−τ the opposite closed
one. Then the intersection

⋂
τ∈{	,⊕}d H

+
τ exactly yields the hypercube U(•x). If

we further intersect this with all halfspaces H−τ for τ ∈ {	,⊕}d\Σ we get Faces(X)
as H−τ exactly cuts off all faces of the cube containing xτ with τ not in Σ. Hence,
it is TC-convex as an intersection of TC-convex sets.

Now, we look at a face F of U(•x) for which all vertices V are contained in
Vert(X). Applying Proposition 3.14 iteratively on pairs of points, which only differ
in the sign of one component, we get Faces(V ) = F ⊆ convTC(V ). Ranging over all
faces in Faces(X) yields Faces(X) ⊆ convTC(X). But as Faces(X) is TC-convex,
we get an equality. �

Proposition 3.24. Let X ⊆ Td± be an n-element set interpreted as a matrix. Then

convTC(X) =
⋃{

Faces(X � diag(λ))

∣∣∣∣∣ λ ∈ Tn≥O,
⊕
i

λi = 0

}
. (22)

Proof. Let x1, . . . , xn ∈ X and λ1, . . . , λn ∈ T≥O be such that
⊕

i λi = 0. We will
start by showing that y = λ1� x1 / . . . / λn� xn belongs to convTC(X). The proof
goes by induction over n.
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The claim is trivial for n = 1. For higher n, let µ =
⊕

i>1 λi. The claim is
trivial if µ = O. Otherwise, let µi = λi − µ for every i > 1. Then, we have
λ1�x1/. . ./λn�xn = λ1�x1/µ�(µ2�x2/. . ./µn�xn). By the induction hypothesis,
the point z = µ2�x2/. . ./µn�xn belongs to convTC(X). Therefore, the point y =
λ1�x1/µ�z belongs to convTC(X) by Proposition 3.14. Thus, we have proven that
every point of the form λ1�x1 / . . . / λn�xn belongs to convTC(X). In particular,
the set Vert(X � diag(λ)) belongs to convTC(X). Hence, Lemma 3.23 implies that
Faces(X � diag(λ)) = convTC (Vert(X � diag(λ))) is contained in convTC(X).

To finish the proof, we will show that the set on the right-hand side of (22) is TC-
convex. To do so, suppose that a ∈ Faces(X�diag(λ)) and b ∈ Faces(X�diag(µ))
for some λi, µi ∈ T≥O and

⊕
i λi =

⊕
i µi = 0. Further, let α, β ∈ T≥O be

such that α ⊕ β = 0. By Lemma 3.22, the set Vert(α � a, β � b) is included in
Faces(α�X�diag(λ)∪β�X�diag(µ)). Hence, Faces(α�a, β�b) is also included
in this set by Lemma 3.23. Thus, by Proposition 3.14, convTC(a, b) is included in
the set defined on the right-hand side of (22) since Faces(α�X�diag(λ)∪β�X�
diag(µ)) = Faces(X � diag(ν)) with ν = α � diag(λ) ⊕ β � diag(µ), which fulfills
ν ∈ Tn≥O and

⊕
i νi = 0. �

Using the representation of the convex hull as union of finite convex hulls stated
in Corollary 3.9 we get the following.

Corollary 3.25. If X ⊆ Td±, then

convTC(X) =
⋃{

Faces(X � diag(λ))

∣∣∣∣∣ λ ∈ TX≥O,
⊕
i

λi = 0, | supp(λ)| < +∞

}
.

We now give estimates on the Carathéodory-number of TC-convexity. The core
case for this is the representation of vertices from a small set of generators.

Lemma 3.26. Let X = {x1, . . . , xn} ⊆ Td±. Then there is a subset Y ⊆ X with

|Y | ≤ d2d and Vert(X) ⊆ Vert(Y ), hence, Vert(X) = Vert(Y ).

Proof. Let y ∈ Vert(X) and let σ ∈ Sym(n) such that y = xσ(1) / . . . / xσ(n).
For every coordinate k ∈ [d] let jk ∈ [n] be the smallest number such that yk =
(xσ(jk))k and let Jy = {σ(jk) | k ∈ [d]} ⊆ [n]. Note that |Jy| ≤ d. Now, let
Iy = (i1, . . . , i|Jy|) be the ascending sequence of the elements in Jy. Observe that
for any set J with Jy ⊆ J ⊆ [n], it holds y = xi1 / . . . / x|Jy| / Ci∈J\Jyxi for any
order of the summands indexed by J \ Jy.

Finally, we define J to be the union
⋃
y∈Vert(X) Jy. By the above reasoning, we

have |J | ≤ d2d and Vert(X) ⊆ Vert(Y ). As each left-sum of the elements in Y
already defines a point for which the absolute values of the components equal the
components of •

⊕
X, we also get the reverse inclusion Vert(Y ) ⊆ Vert(X).

�

Proposition 3.27. If X ⊆ Td±, then

convTC(X) =
⋃{

Faces(X � diag(λ))

∣∣∣∣∣ λ ∈ TX≥O,
⊕
i

λi = 0, | supp(λ)| ≤ cd

}
,

where cd = d2d + 1.
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Proof. Let y ∈ convTC(X). By Corollary 3.25 there is some λ ∈ TX≥O with
⊕

i λi =

0 such that y ∈ Faces(X � diag(λ)).
Let j0 be an index with λj0 = 0. We derive a new coefficient vector µ from λ

with µj0 = 0, Vert(X�diag(λ)) = Vert(X�diag(µ)) and | supp(µ)| ≤ cd = d2d+1.
Lemma 3.26 implies that we can achieve this by setting all but cd entries of λ to O.

With Lemma 3.23, we obtain

y ∈ Faces(X � diag(λ)) = convTC(Vert(X � diag(λ)))

⊆ convTC(Vert(X � diag(µ))

= Faces(X � diag(µ)) .

Taking the subset Y of X given by the support of µ, one sees y ∈ convTC(Y ). �

While TC-convexity extends the ‘usual’ tropical convexity whose Carathéodory
number is d + 1 as discussed in [32], we already get an exponential lower bound
from a simple example.

Example 3.28. Let X = {	0, 0}d. Then, Lemma 3.23 shows that convTC(X) =
[	0, 0]d. In particular, we have O ∈ convTC(X). Moreover, if Y ( X is any strict
subset of X, then Lemma 3.23 shows that convTC(Y ) is the union of faces of [	0, 0]d

whose vertices belong to Y . In particular, O /∈ convTC(Y ). This example shows
the lower bound cd ≥ 2d for the Carathéodory number of TC-convexity. We do not
know what is the optimal value of cd.

Definition 3.29. Given an arbitrary set X ⊆ Td±, we denote

coneTC(X) = {λ� x | λ ∈ T≥O, x ∈ convTC(X)} .

Lemma 3.30. If X ⊆ Td±, then

coneTC(X) =
⋃{

Faces(X � diag(λ))
∣∣ λ ∈ TX≥O, | supp(λ)| < +∞

}
.

Proof. By Proposition 3.24 we have the equality

coneTC(X)

=
⋃{

µ� Faces(X � diag(λ))

∣∣∣∣∣ µ ∈ T≥O, λ ∈ TX≥O,
⊕
i

λi = 0, | supp(λ)| < +∞

}

=
⋃{

Faces(X � diag(µ� λ))

∣∣∣∣∣ µ ∈ T≥O, λ ∈ TX≥O,
⊕
i

λi = 0, | supp(λ)| < +∞

}
Furthermore, if ξ ∈ TX≥O ξ 6= O has finite support, then we can write it as ξ = µ�λ,

where µ = ξ1⊕· · ·⊕ξd ∈ T≥O and λ ∈ TX≥O,
⊕

i λi = 0 is defined as λi = ξi�µ�−1

for all i. Therefore, we get

coneTC(X)

=
⋃{

Faces(X � diag(µ� λ))

∣∣∣∣∣ µ ∈ T≥O, λ ∈ TX≥O,
⊕
i

λi = 0, | supp(λ)| < +∞

}
=
⋃{

Faces(X � diag(λ))
∣∣ λ ∈ TX≥O, | supp(λ)| < +∞

}
. �

Corollary 3.31. The set coneTC(X) is the smallest TC-convex cone that contains
X and O.



20 GEORG LOHO AND MATEUSZ SKOMRA

Proof. We set X̃ = X ∪O and use the representation from Lemma 3.30 to get

coneTC(X)

=
⋃

µ∈T≥O

⋃{
Faces(X � diag(λ))

∣∣∣∣∣ λ ∈ TX≥O,
⊕
i

λi ≤ µ, | supp(λ)| < +∞

}

=
⋃

µ∈T≥O

⋃{
Faces(X̃ � diag(λ))

∣∣∣∣∣ λ ∈ TX̃≥O,
⊕
i

λi = µ, | supp(λ)| < +∞

}

=
⋃

µ∈T≥O

convTC

(
µ� X̃

)
.

As this is a nested union for increasing µ, it is a TC-convex set by Corollary 3.7.
Furthermore, let Z be the smallest TC-convex cone containing X̃. By defini-

tion of a cone, one gets µ � X̃ ⊆ Z for all µ > O and, by TC-convexity, also

convTC

(
µ� X̃

)
⊆ Z for all µ > O. Since O belongs to Z, the equality above

shows the minimality of coneTC(X). �

Lemma 3.32. Suppose that V,W ⊂ Td± are two nonempty finite sets. Let V̂ =

{ (v, 0) | v ∈ V }, Ŵ =
{

(w,O)
∣∣∣ w ∈ Ŵ}, and

X = convTC

(
{v / λ� w | v ∈ V,w ∈W,λ ∈ T≥O}

)
.

Then, we have the equality

{ (x, 0) | x ∈ X} = coneTC(V̂ ∪ Ŵ ) ∩ {xd+1 = 0} .

Proof. Let x ∈ X. By Proposition 3.27, we have

x ∈ Faces
(
µ1 � (v1 / λ1 � w1), . . . , µ` � (v` / λ` � w`)

)
for some µi ∈ T≥O,

⊕
i µi = 0, λi ∈ T≥O, vi ∈ V , wi ∈W . Denote ξi = µi � λi for

all i and observe that

Vert
(
µ1 � (v1 / λ1 � w1), . . . , µ` � (v` / λ` � w`)

)
= Vert(µ1 � v1 / ξ1 � w1, . . . , µ` � v` / ξ` � w`)
⊆ Vert(µ1 � v1, . . . , µ` � v`, ξi � w1, . . . , ξ` � w`) .

By Lemma 3.23 we get z ∈ Faces(µ1 � v1, . . . , µ` � v`, ξi � w1, . . . , ξ` � w`). Let

v̂i = (vi, 0) ∈ V̂ and ŵi = (wi,O) ∈ Ŵ for all i. Since
⊕

i µi = 0 we get

(x, 0) ∈ Faces(µ1 � v̂1, . . . , µ` � v̂`, ξi � ŵ1, . . . , ξ` � ŵ`) .

In particular, Lemma 3.30 implies that (x, 0) ∈ coneTC(V̂ ∪ Ŵ ). Conversely, sup-

pose that (x, 0) ∈ coneTC(V̂ ∪ Ŵ ). Then, Lemma 3.30 shows that there exist

µ ∈ T`≥O, ξ ∈ T`≥O, v̂i ∈ V̂ , ŵi ∈ Ŵ such that (x, 0) ∈ Faces(µ1 � v̂1, . . . , µ` �
v̂`, ξi � ŵ1, . . . , ξ` � ŵ`). Since the last coordinate of (x, 0) is 0, we get

⊕
i µi = 0.

Without loss of generality, we can suppose that µ1 = 0. Observe that

Vert(µ1 � v̂1, . . . , µ` � v̂`, ξi � ŵ1, . . . , ξ` � ŵ`)
= Vert(µ1 � v̂1, . . . , µ` � v̂`, (−1)� v̂1 / ξi � ŵ1, . . . , (−1)� v̂1 / ξ` � ŵ`)
= Vert(µ1 � v̂1, . . . , µ` � v̂`, (−1)� ẑ1, . . . , (−1)� ẑ`) ,
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where ẑ = v̂1 / (ξi + 1)� ŵi. Hence, by Lemma 3.23 we get

(x, 0) ∈ Faces(µ1 � v̂1, . . . , µ` � v̂`, (−1)� ẑ1, . . . , (−1)� ẑ`) .

For every i, let vi, zi ∈ Td± be the projection of v̂i, ẑi obtained by deleting the last
coordinate. Then, we have

{v1, . . . , v`, z1, . . . , z`} ⊆ {v / λ� w | v ∈ V,w ∈W,λ ∈ T≥O} .

Furthermore, since the last coordinate of every point v̂i, ẑi is equal to 0 and
⊕

i µi =
0, we get x ∈ Faces(µ1 � v1, . . . , µ` � v`, (−1) � z1, . . . , (−1) � z`). Therefore, by
Proposition 3.27 we have x ∈ X. �

4. Lifts of signed halfspaces

Some of our results rely on a correspondence between tropical halfspaces and
halfspaces defined over non-Archimedean valued fields. In the following, we consider
the field of (generalized) real Puiseux series K = R{t}, whose elements

γ =
∑

cit
ai , ai, ci ∈ R , a0 > a1 > a2 > . . . (23)

are formal power series with real exponents and such that the sequence (ai)i is
either finite or unbounded. The addition and multiplication of Puiseux series are
defined in the natural way. Furthermore, given a series γ as in (23), we say that c0
is its leading coefficient and we denote by lc : K→ R the map that sends a Puiseux
series to its leading coefficient, with the convention that lc(0) = 0. We also say γ is
positive if its leading coefficient is positive. This makes K an ordered field via γ > δ
if and only if γ − δ is positive. It is known that K is a real closed field [45] and
this remains true even if one considers a subfield formed by Puiseux series that are
absolutely convergent for sufficiently large t [52]. All our results are valid for both
of these fields. The crucial property of a real closed field is that for ‘well-structured’
statements (in the sense of model theory), they behave exactly as the ‘usual’ real
numbers via Tarski’s principle [50], [44, Corollary 3.3.16].

The field of Puiseux series is linked with signed tropical numbers via the signed
valuation map.

Definition 4.1. The map sval : K → T± sends a Puiseux series as in (23) to its
signed valuation,

sval(γ) =


a0 if γ > 0

O if γ = 0

	a0 if γ < 0

.

We extend sval to vectors in Kd componentwise by putting sval(x) =
(
sval(xi)i∈[d]

)
.

General properties of the images of semialgebraic sets under the signed valuation
map were studied in [36], see also [13, Section 4].

The following lemma summarizes basic properties of the signed valuation.

Lemma 4.2. The signed valuation map has the following properties:

(i) if x1,x2 ∈ K satisfy x1 ≥ x2, then sval(x1) ≥ sval(x2);
(ii) if x1, . . . ,xn ∈ K, then sval(x1 · · ·xn) = sval(x1)� · · · � sval(xn);

(iii) if x1, . . . ,xn ∈ Kd, then sval(x1 + · · ·+ xn) ∈ U
(
sval(x1)⊕ · · · ⊕ sval(xn)

)
.
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Proof. The first property is trivial if x1 ≥ 0 ≥ x2. Suppose that x1 ≥ x2 > 0 but
sval(x1) < sval(x2). Then, the leading coefficient of x2−x1 is equal to lc(x2) > 0,
so x2 − x1 > 0, which gives a contradiction. Analogously, if 0 > x1 ≥ x2, but
sval(x1) < sval(x2), then the leading coefficient of x2−x1 is equal to −lc(x1) > 0,
which gives a contradiction.

The second property for n = 2 follows from the definition of multiplication of
Puiseux series. The extension to n > 2 follows by an immediate induction.

To prove the third property, it is enough to consider the case d = 1 since sval
and U are defined componentwise. Furthermore, observe that if y, z ∈ K are
nonnegative (or nonpositive), then sval(y+z) = sval(y)⊕ sval(z) by the definition
of addition in Puiseux series. We can order x1, . . . ,xn in such a way that x1, . . . ,xk
are nonnegative and xk+1, . . . ,xn are negative. Let x+ = x1 + · · · + xk and
x− = xk+1 + · · · + xn. By the observation above, we have sval(x+) = sval(x1) ⊕
· · ·⊕sval(xk) and sval(x−) = sval(xk+1)⊕· · ·⊕sval(xn). If sval(x+) 6= 	 sval(x−),
then the definition of addition in Puiseux series implies that sval(x+ + x−) =
sval(x+)⊕ sval(x−). If sval(x+) = 	 sval(x−) = a, then the definition of addition
in Puiseux series implies that sval(x++x−) ∈ [	a, a] = U(sval(x+)⊕sval(x−)). �

The signed valuation map allows us to study sets defined over Kd by looking at
their images under sval. Conversely, it is sometimes useful to study a set defined
in Td± by looking at its ‘lift’ in the Puiseux series. Since sval is not bijective, we
have many possible choices for the lift. We now introduce different types of lifts
of points x ∈ Td± into Puiseux series that are used in this work. Similar lifts were

used in [9] to derive properties about lifts of tropical halfspaces within Td≥O. We
start with the simplest one, the canonical lift.

Definition 4.3. Given a point x ∈ Td± we define its canonical lift, cli(x) ∈ Kd, as
the point

∀i ∈ [d],
(
cli(x)

)
i

= σt|xi| ,

where σ ∈ {−, 0,+} is the “de-tropicalized” version of tsgn(xi) ∈ {	,O,⊕} and we
use the convention that tO = 0.

The canonical lifts are very simple, but it turns out that they are not particularly
well suited for our purposes. Instead, it is more useful for us to consider lifts that
vary from one orthant of Td± to another. To this end, we introduce the following
definition.

Definition 4.4. Given a point x ∈ Td± and a set J ⊆ [d] we define the lift of x of

type J , denoted liJ(x) ∈ Kd, by

∀i ∈ [d],
(
liJ(x)

)
i

=


(d+ 1)t|xi| if tsgn(xi) = ⊕ and i ∈ J,
−(d+ 1)t|xi| if tsgn(xi) = 	 and i /∈ J,
σt|xi| otherwise,

where σ is the “untropical” version of tsgn(xi).

In this way, li∅(x) coincides with cli(x) on the nonnegative orthant of Td±, li[d](x)

coincides with cli(x) on the nonpositive orthant of Td± and so on. Also, for every x

and J we have sval
(
liJ(x)

)
= x.
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4.1. Tropicalization of halfspaces. We now characterize the signed valuation
of halfspaces. This is a simple generalization of the characterization known for
tropical halfspaces in one orthant. To start, we fix our notation for halfspaces over
Puiseux series.

Definition 4.5. For a vector (a0,a1, . . . ,ad) ∈ Kd+1 such that (a1, . . . ,ad) 6= 0
we define the (closed affine) halfspace by

H+
(a) =

{
x ∈ Kd

∣∣∣∣ a · (0
x

)
≥ 0

}
. (24)

Furthermore, we denote H−(a) = H+
(−a).

The next lemma characterizes the signed valuation of halfspaces.

Lemma 4.6. For every halfspace H+
(a) we have sval

(
H+

(a)
)

= H+(
sval(a)

)
.

Proof. The proof proceeds as in the case of tropical halfspaces in one orthant,

cf. [29, Proposition 2.4]. Let a = sval(a). The inclusion sval
(
H+

(a)
)
⊆ H+

(a)

follows from the arithmetic properties of sval. Indeed, if x ∈ Kd is such that
y = a0 +a1x2 + · · ·+adxd ≥ 0 and we denote x = sval(x), then Lemma 4.2 shows
that sval(y) ≥ O and sval(y) ∈ U(a0 ⊕ a1 � x1 ⊕ · · · ⊕ ad � xd). Hence, we either
have a0 ⊕ a1 � x1 ⊕ · · · ⊕ ad � xd ∈ T• or a0 ⊕ a1 � x1 ⊕ · · · ⊕ ad � xd ∈ T>O.

Conversely, if x ∈ H+(a) and we let x = cli(x), then Lemma 4.2 shows that
sval(a0 +a1x2 + · · ·+adxd) ∈ U(a0⊕ a1�x1⊕ · · · ⊕ ad�xd), which is a singleton

in T>O, so x ∈ H+
(a). Hence H+(a) ⊆ sval

(
H+

(a)
)
⊆ H+

(a). Furthermore, the

set sval
(
H+

(a)
)

is closed by [36, Theorem 6.9] or, equivalently, [13, Corollary 4.11].

Therefore, Lemma 2.4 implies that sval
(
H+

(a)
)

= H+
(a). �

The next lemma gives a more explicit connection between tropical halfspaces of
type J and lifts of type J .

Lemma 4.7. Suppose that H+
(a) is a tropical halfspace of type J ⊆ [d]. Let

x ∈ H+
(a) and denote K = [d]0 \ J . Then liJ(x) ∈H+(

liK(a)
)
.

Before giving the proof, let us note that if x ∈ H+(a), then any lift of x belongs

to H+
(a) for any lift a of a. However, in order to lift the points that belong to the

boundary of H+
(a) we need to be more careful.

Proof. Let x = liJ(x) and a = liK(a). By definition, we have

a0 =

{
(d+ 1)ta0 if a0 ∈ T>O,

−t|a0| otherwise.

Also, for every i ∈ [d] we have ai = tsgn(ai)t
|ai| and

aixi =

{
(d+ 1)t|ai|+|xi| if tsgn(xi) = tsgn(ai),

−t|ai|+|xi| otherwise.

Therefore, we have a ·
(

0
x

)
≥ 0 if and only if

(d+ 1)
(
αt|a0| +

∑
tsgn(xi)=tsgn(ai)

t|ai|+|xi|
)
≥ βt|a0| +

∑
tsgn(xi)6=tsgn(ai)

t|ai|+|xi| , (25)
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where (α, β) = (1, 0) if a0 ∈ T>O and (α, β) = (0, 1) otherwise. Let y ∈ K denote
the series on the left-hand side of (10) and z ∈ K denote the series on the right-
hand side of (10). By Lemma 4.2 we have sval(y − z) ∈ U

(
sval(y) 	 sval(z)

)
=

U(a0 ⊕ a1 � x1 ⊕ · · · ⊕ ad � xd). If U(a0 ⊕ a1 � x1 ⊕ · · · ⊕ ad � xd) is a nonnegative
singleton, then y − z ≥ 0. Otherwise, we have sval(y) = sval(z) > O. In this case,
note that lc(y) ≥ d+ 1 and lc(z) ≤ d. Hence y − z ≥ 0. �

4.2. Separation over Puiseux series. We also need the following version of the
hyperplane separation theorem over Puiseux series. We recall that a setX ⊆ Kd is a
cone if λx ∈X for all x ∈X and λ > 0. We also recall that a setX is semialgebraic
if it is defined by a finite Boolean combination of polynomial inequalities. Since
the field of Puiseux series is real closed, the semialgebraic sets over Kd have similar
properties to the semialgebraic sets over Rd—we refer to [18] for more information
on this topic. For the sake of generality, we state the next two propositions for
semialgebraic sets, but the familiarity with semialgebraic sets is not necessary to
understand the other results of this paper—it is enough to admit that polyhedra are
semialgebraic. The first proposition is a hyperplane separation theorem for convex
semialgebraic sets.

Proposition 4.8. Suppose that X,Y ⊆ Kd are two nonempty convex semialgebraic

sets such that X ∩ Y = ∅. Then, there exists a halfspace H+
(a) such that X ⊆

H+
(a) and Y ⊆H−(a).

Proof. If we replace K by R, then the claim follows from the hyperplane separation
theorem in Rd, see, e.g., [47, Theorem 11.3 and Theorem 11.7]. Since the sets X,Y
are supposed to be semialgebraic, the claim for K follows from the completeness of
the theory of real closed fields, see, e.g., [44, Corollary 3.3.16] or [18, Theorem 2.80].
The argument is based on the existence of finite formulas for describing X and Y
and the existence of a separating hyperplane in a real closed field due to their
convexity; for more details see Appendix A. �

Remark 4.9. We note that the assumption that X,Y are semialgebraic cannot be
entirely skipped. Indeed, it is shown in [46] that R is the only ordered field that
admits the general hyperplane separation theorem. For the interested reader, we
adapt the example from [46] to K in Appendix A. We also note that a special case
of Proposition 4.8 is still valid for sets that are definable in definably complete
extensions of real closed fields, see [16, Corollary 2.20]. Also, [46] gives a version of
the separation theorem that is valid for arbitrary ordered fields.

The next proposition is an application of Proposition 4.8 that characterizes the
signed valuations.

Theorem 4.10. Suppose that X ⊆ Kd is a nonempty closed convex semialgebraic

set. Then, for every y /∈ sval(X) there exists a ∈ Kd+1 such that X ⊆H+
(a) and

y /∈ H+
(sval(a)). In particular, sval(X) is equal to the intersection of the closed

tropical halfspaces that contain it.

Proof. To prove the first part of the claim, let y /∈ sval(X). Since X is closed and
semialgebraic, sval(X) is also closed by [36, Theorem 6.9] or [13, Corollary 4.11].
Therefore, there exists an open neighborhood of y that does not intersect sval(X).
Since the order on T± is dense, we can find `1, . . . , `d, r1, . . . , rd ∈ T± such that

`1 < y1 < r1, `2 < y2 < r2, . . . , `d < yd < rd
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and such that the box B = [`1, r1]× [`2, r2]×· · ·× [`d, rd] does not intersect sval(X).
Consider the lifted box

B = [cli(`1), cli(r1)]× [cli(`2), cli(r2)]× · · · × [cli(`d), cli(rd)] ⊂ Kd .

The set B is convex and semialgebraic. Moreover, we have X ∩ B = ∅ because
sval(X) ∩ sval(B) = sval(X) ∩ B = ∅. Hence, by Proposition 4.8, there exists

a ∈ Kd+1 such that X ⊆ H+
(a) and B ⊆ H−(a). Therefore B ⊆ H−(sval(a))

by Lemma 4.6. Since y belongs to the interior of B, Lemma 2.4 shows that y ∈
H−(sval(a)). In particular, we have y /∈ H+

(sval(a)). To prove the second part

of the claim, note that sval(X) ⊆ H+
(sval(a)) by Lemma 4.6. In other words,

the closed tropical halfspace H+
(sval(a)) contains sval(X) but not y. Since y was

arbitrary, we get that sval(X) is an intersection of some family of closed tropical
halfspaces. Therefore, it is also an intersection of all the closed tropical halfspaces
that contain it. �

Corollary 4.11. If X ⊆ Kd from Theorem 4.10 is a cone, we can choose the
tropical halfspaces to be linear.

Proof. To see that, suppose that a0 6= 0. Since 0 ∈ X, we have a0 > 0. Consider

â = (0,a1, . . . ,ad). Since H+
(â) ⊆H+

(a), we get y /∈ H+
(sval(â)) by Lemma 4.6.

It remains to show that X ⊆ H+
(â). Indeed, if there exists x ∈ X such that

xT â < 0, then for any λ > −a0/x
T â > 0 we have λx ∈ P but λx /∈ H+

(a),
which is a contradiction.

Therefore, we can suppose that a satisfies a0 = 0. �

Example 4.12. We note that neither of the assumptions of Theorem 4.10 can be
skipped. Indeed, the set X = {x ∈ K | x > 0} is semialgebraic and convex but
not closed. We have sval(X) = T>O, which is not an intersection of closed tropical
halfspaces. Likewise, the set Y = {x ∈ K | sval(x) > 0} is closed and convex,
but not semialgebraic. We have sval(Y ) = {x ∈ T± | x > 0}, which is not an
intersection of closed tropical halfspaces.

The following lemma gives a partial characterization of the intersection of all
closed tropical halfspaces that contain a given finite set.

Lemma 4.13. Given a finite set X = {x1, . . . , xm} ⊂ Td± we have⋂{
H+

(a)
∣∣∣ X ⊆ H+

(a)
}

=
⋂{

sval(X)
∣∣ X ⊆ Kd convex ∧X ⊆ sval(X)

}
=
⋂
J⊆[d]

sval
(

conv
(
liJ(x1), . . . , liJ(xm)

))
.

Proof. Denote

U =
⋂{

H+
(a)

∣∣∣ X ⊆ H+
(a)
}
,

V =
⋂{

sval(X)
∣∣ X ⊆ Kd convex ∧X ⊆ sval(X)

}
,

W =
⋂
J⊆[d]

sval
(

conv
(
liJ(x1), . . . , liJ(xm)

))
.
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We start by showing that

V =
⋂{

sval
(

conv
(
x1, . . . ,xm

)) ∣∣∣ ∀i, sval(xi) = xi

}
. (26)

Indeed, the inclusion ⊆ in (26) holds as we just range over a smaller set. To prove
the opposite inclusion, it is enough to observe that any convex set X such that
{x1, . . . , xm} ⊆ sval(X) contains some set of the form conv

(
x1, . . . ,xm

)
. Hence,

the equality (26) holds.
As conv(x1, . . . ,xm) is a closed convex semialgebraic set for each choice with

sval(xi) = xi for all i ∈ [m], we can apply Theorem 4.10 to each set in the inter-
section (26). This implies that V is an intersection of a family of closed tropical
halfspaces. Since X ⊆ V , all of these halfspaces contain X. Hence, U ⊆ V .

The inclusion V ⊆W is trivial. Therefore, it remains to prove that W ⊆ U . To

this end, take a point z /∈ U . By definition, there is a closed tropical halfspaceH+
(a)

that contains X with z /∈ H+
(a). Suppose that H+

(a) is of type J ⊆ [d] and let

K = [d]0 \J be its complement. Then, Lemma 4.7 shows that liJ(xi) ∈H+(
liK(a)

)
for every i ∈ [m]. Since the set H+(

liK(a)
)

is convex, we obtain

conv
(
liJ(x1), . . . , liJ(xm)

)
⊂H+(

liK(a)
)
.

Using the representation of the valuation of halfspace from Lemma 4.6, we get

W ⊆ sval
(
conv

(
liJ(x1), . . . , liJ(xm)

))
⊂ sval

(
H+(

liK(a)
))

= H+
(a).

In particular, we get z /∈W and so W ⊆ U as claimed. �

The next lemma strengthens the claim of Corollary 4.11 for polyhedral cones.

Lemma 4.14. Suppose that P ⊆ Kd is a polyhedral cone. Then, sval(P ) is an
intersection of finitely many linear closed tropical halfspaces.

Proof. Let P =
{
x ∈ Kd

∣∣ Ax ≥ 0
}

for some matrix A ∈ Kn×d. By Farkas’

lemma [49, Corollary 7.1h], for every a ∈ Kd we have the equivalence

P ⊆H+
(0,a) ⇐⇒ a ∈

{
yTA

∣∣ y ≥ 0
}
. (27)

The intersection of
{
yTA

∣∣ y ≥ 0
}

with any closed orthant Kd is a polyhedral
cone, and so it is generated by a finite family of rays by the Minkowski–Weyl
theorem [49, Corollary 7.1a]. For any closed orthant O ⊂ Kd, let UO ⊂ Kd be a
finite set such that

{
yTA

∣∣ y ≥ 0
}
∩O = cone(UO). Let U =

⋃
O UO be the set

of all rays obtained in this way. We claim that sval(P ) =
⋂

u∈U H
+

(O, sval(u)).
The inclusion “⊆” follows by combining (27) with Lemma 4.6.

To prove the opposite inclusion, let y /∈ sval(P ). By Theorem 4.10, there exists

a ∈ Kd+1 such that P ⊆ H+
(a) and y /∈ H+

(sval(a)). Since P is a cone, we can
choose a in such a way that a0 = 0 by Corollary 4.11; hence, we let a ∈ Kd.

Let O ⊂ Kd be a closed orthant such that a = (a1, . . . ,ad) ∈ O. By (27)
we have a ∈ cone(UO). Denote UO = {u1, . . . ,um}. Since the orthant O is
fixed, we have sval(a) ∈ coneTC (sval(UO)) by [8, Lemma 8]. Suppose that y ∈
H+

(O, sval(ui)) for all i ∈ [m]. Then, we also have sval(ui) ∈ H
+

(O, y) for all i ∈
[m]. As closed halfspaces are convex by Corollary 3.8, we get convTC (sval(UO)) =
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convTC

(
sval(u1), . . . , sval(um)

)
⊆ H+

(O, y). Furthermore, since the tropical halfs-

paceH+
(O, y) is linear, we get convTC (sval(UO)) ⊆ H+

(O, y). Therefore sval(a) ∈
H+

(O, y), which implies that y ∈ H+
(O, sval(a)), giving a contradiction.

Hence, there exists i ∈ [m] such that y /∈ H+
(O, sval(ui)). Since y was arbitrary,

we get
⋂

u∈U H
+

(O, sval(u)) ⊆ sval(P ). �

Lemma 4.15. Let X ⊆ Kd be an arbitrary set. Take λ ∈ K such that λ ≥ 0 and
denote sval(λ) = λ. Then, we have

sval
(
conv(λX)

)
= λ� sval

(
conv(X)

)
. (28)

In particular, we have the equality

sval
(
cone(X)

)
=
⋃{

sval
(
conv(tλX)

) ∣∣ λ ∈ T≥O
}
.

Proof. Let x ∈ sval
(
conv(λX)

)
. Since conv(λX) = λ conv(X), there exists y ∈

conv(X) such that x = sval(λy) = sval(λ)� sval(y) = λ� sval(y). Hence x ∈ λ�
sval

(
conv(X)

)
. Conversely, suppose that x ∈ λ�sval

(
conv(X)

)
. Then, there exists

y ∈ conv(X) such that x = λ�sval(y) = sval(λy), so that x ∈ sval
(
conv(λX)

)
. To

prove the second claim, note that (28) gives sval
(
conv(λX)

)
= sval

(
conv(tλX)

)
.

In particular, we get

sval
(
cone(X)

)
=
⋃{

sval
(
conv(λX)

) ∣∣ λ ≥ 0
}

=
⋃{

sval
(
conv(tλX)

) ∣∣ λ ∈ T≥O
}
. �

5. Separation and Hemispaces

A TC-hemispace is a TC-convex subset X ⊆ Td± for which also Td± \X is TC-
convex. The fundamental elimination property of TC-convexity (Theorem 5.2)
leads to a representation of a TC-convex set as intersection of its containing TC-
hemispaces (Theorem 5.3). Then, we identify that TC-hemispaces are close to
halfspaces (Theorem 5.10); based on a more thorough study of TC-hemispaces,
this leads to a representation of TC-hemispaces by convex lifts (Proposition 5.18).

5.1. Fundamental separation property. For ∼ ∈ {≤,≥}d, a point w with
yk ∼k wk for all k ∈ [d] is said to dominate y with respect to ∼.

Lemma 5.1. If µ ≤ 0 and w ∈ U(v1⊕µ�v2), then Faces(X∪v1)∩Faces(Y ∪v2) ⊆
Faces(X ∪ µ� Y ∪ w).

Proof. Let z be an arbitrary point in Faces(X ∪ v1) ∩ Faces(Y ∪ v2). Using Corol-
lary 3.21, for every ∼ ∈ {≤,≥}d, there exist vertices x̃1 / v

1 / x̃2 and ỹ1 / v
2 / ỹ2

in Vert(X ∪ v1) and Vert(Y ∪ v2), respectively, which dominate z with respect to
∼. Here, x̃1, x̃2 arise as left sum of points in X and ỹ1, ỹ2 arise analogously. As
x̃1 /µ� ỹ1 ∈ U(x̃1⊕µ� ỹ1), w ∈ U(v1⊕µ�v2) and x̃2 /µ� ỹ2 ∈ U(x̃2⊕µ� ỹ2), by
Lemma 2.15, x̃1/µ� ỹ1/w/x̃2/µ� ỹ2 dominates z with respect to ∼. Ranging over
all ∼, these points form a subset of Vert(X∪µ�Y ∪w). Again using Corollary 3.21,
z is contained in Faces(X ∪ µ� Y ∪ w). �

Theorem 5.2. Fix a set X = {x0, . . . , xn} ⊂ Td±. Then, for every y1, y2, z ∈ Td±
such that x0 ∈ convTO(y1, y2) we have the implication(

z ∈ convTC(X ∪ {y1}) ∧ z ∈ convTC(X ∪ {y2})
)

=⇒ z ∈ convTC(X) .
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Proof. Breaking the symmetry between y1 and y2, there is a µ ∈ T≥O with µ ≤ 0

such that x0 ∈ U(y1⊕µ�y2). So let λ(1) ∈ Tn+1
≥O , λ(2) ∈ Tn+1

≥O and and ρ1, ρ2 ∈ T≥O
with

⊕
λ(1) ⊕ ρ1 =

⊕
λ(2) ⊕ ρ2 = 0.

z ∈ Faces(diag(λ(1))�X ∪ ρ1 � y1) ∩ Faces(diag(λ(2))�X ∪ ρ2 � y2).

First, if ρ2 = O then z ∈ Faces(diag(λ(2)) � X) yields the desired contain-
ment. Furthermore, if µ = O then x0 = y1 which concludes the claim with
z ∈ Faces(diag(λ(1))�X ∪ ρ1 � y1).

Otherwise, let δ = ρ1 − ρ2 + µ = ρ1 � ρ�−1
2 � µ, or equivalently δ� ρ2 = ρ1 � µ.

We have to distinguish two cases, depending on the real sign of δ.
Case 1 (δ ≤ 0.) By Lemma 5.1, we obtain that

z ∈ Faces(diag(λ(1))�X ∪ δ � diag(λ(2))�X ∪ w)

for an arbitrary w ∈ U(ρ1 � y1 ⊕ δ � ρ2 � y2). With δ � ρ2 = ρ1 � µ, this implies
that

z ∈ Faces(diag(λ(1))�X ∪ δ � diag(λ(2))�X ∪ ρ1 � x0) .

In particular, this yields z ∈ convTC(X) since δ, ρ1 ≤ 0 and, therefore,
⊕
λ(1) ⊕

δ �
⊕
λ(2) ⊕ ρ1 =

⊕
λ(1) ⊕ ρ1 = 0.

Case 2 (δ > 0.) By Lemma 5.1, we obtain that

z ∈ Faces(δ�−1 � diag(λ(1))�X ∪ diag(λ(2))�X ∪ w)

for an arbitrary w ∈ U(δ�−1 � ρ1 � y1 ⊕ ρ2 � y2). With δ�−1 � ρ1 = ρ2 � µ�−1,
this implies that

z ∈ Faces(δ�−1 � diag(λ(1))�X ∪ diag(λ(2))�X ∪ ρ2 � µ�−1 � x0) .

In particular, this yields z ∈ convTC(X) since δ�−1, ρ2 ≤ ρ2�µ�−1 = δ�−1�ρ1 < 0
and, therefore,⊕

λ(2) ≤ δ�−1 � (
⊕

λ(1))⊕
⊕

λ(2) ⊕ ρ2 � µ�−1 ≤
⊕

λ(2) ⊕ ρ2 = 0 =
⊕

λ(2) ,

using δ�−1 � (
⊕
λ(1)) < 0 and ρ2 � µ�−1 < 0. �

The maximal set of elements which is tropically convex and does not contain a
fixed point is called semispace in [39]. This concept (for unsigned tropical convexity)
was used to study hemispaces. We use a similar idea in the following proof.

Theorem 5.3. Every TC-convex set G ⊆ Td± is an intersection of TC-hemispaces.
More precisely, each of these TC-hemispaces can be chosen such that its comple-

ment is TO-convex.

Proof. The proof is a variant of the argument given in [40, Thm. 5.2] and [51,
Thm. I.4.13]. If G ∈ {∅,Td±}, then the claim is trivial. Otherwise, let z /∈ G.
We want to prove that there exists a TC-hemispace H∗ such that G ⊆ H∗ and
z /∈ H∗. To do so, we consider the family F of TC-convex subsets S of Td± such
that G ⊆ S and z /∈ S. We partially order F by inclusion. Any chain C ⊆ F is
upper bounded by (

⋃
S∈C S) ∈ F using that TC-convexity is closed under arbitrary

nested unions. Therefore, the Kuratowski–Zorn lemma implies that F has at least
one maximal element H∗. By construction, H∗ is TC-convex; hence to prove that
H∗ is a TC-hemispace we show that Td± \H∗ is TO-convex. Note that this implies

that it is also TC-convex. Suppose that Td± \ H∗ is not TO-convex. Then, there

exist y1, y2 ∈ Td± \H∗ and x0 ∈ convTO(y1, y2) such that x0 ∈ H∗. Furthermore, by
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the maximality of H∗ we get z ∈ convTC(H∗ ∪ {y1}) and z ∈ convTC(H∗ ∪ {y2}).
Hence, by Proposition 3.24, there exist finite sets X1, X2 ⊆ H∗ such that z ∈
convTC(X1 ∪ {y1}) and z ∈ convTC(X2 ∪ {y2}). By putting X = {x0} ∪X1 ∪X2,
we get x0 ∈ convTO(y1, y2), z ∈ convTC(X ∪ {y1}), z ∈ convTC(X ∪ {y2}), and
z /∈ convTC(X) ⊆ H∗. This gives a contradiction with Theorem 5.2. Since z /∈ G
was arbitrary, we obtain that G is an intersection of TC-hemispaces. �

5.2. TC-hemispaces are nearly halfspaces. For a cone X ⊆ Td±, a relative

conic TC-hemispace w.r.t. X is a subset H ⊆ X ⊆ Td± such that H and X \H are
TC-convex cones.

Note that if G ⊆ Td± is a TC-hemispace as well as a cone and X ⊆ Td± is a
TC-convex cone then G ∩X is a relative conic TC-hemispace w.r.t. X.

We summarize a crucial insight on the structure of tropical hemispaces in the
non-negative tropical orthant Td≥O; see [22], [39, Section 4], [30, Section 4].

Proposition 5.4. If G ⊆ Td>O is a relative conic TC-hemispace w.r.t. Td>O and

G /∈ {∅,Td>O}, then there exists a vector (a1, . . . , ad) ∈ Td±, (a1, . . . , ad) 6= O, such

that H+(O, a) ∩ Td>O ⊆ G ⊆ H
+

(O, a) ∩ Td>O.

Proposition 5.4 can be extended to characterize relative hemispaces that are
included in the nonnegative orthant and contain (parts of) the boundary of Td≥O.
The next corollary gives one such extension that is needed in our proofs.

Corollary 5.5. Let X =
{
x ∈ Td≥O

∣∣ x1 > O
}

. If G ⊆ X is a relative conic TC-

hemispace w.r.t. X and G∩Td>O /∈ {∅,Td>O}, then there exists a vector (a1, . . . , ad) ∈
Td±, (a1, . . . , ad) 6= O, such that H+(O, a) ∩X ⊆ G ⊆ H+

(O, a) ∩X.

Proof. By Proposition 5.4, there exists a vector (a1, . . . , ad) ∈ Td±, (a1, . . . , ad) 6= O,

such that H+(O, a) ∩ Td>O ⊆ G ∩ Td>O ⊆ H
+

(O, a) ∩ Td>O. Let x ∈ H+(O, a) ∩X
be any point and let y ∈ Td>O be such that y /∈ G. Then, for sufficiently small

ω ∈ T>O, the point x / ω � y ∈ Td>O belongs to H+(O, a), which implies that it
belongs to G. Hence, by the TC-convexity of X \ G, we have x ∈ G. This shows
that H+(O, a) ∩ X ⊆ G. Analogously, we get H−(O, a) ∩ X ⊆ (X \ G), which

implies that G ⊆ H+
(O, a) ∩X. �

We note that the assumption G ∩ Td>O /∈ {∅,Td>O} implies that supp⊕(a) 6= ∅
and supp	(a) 6= ∅.

In order to prove our characterization of TC-hemispaces we need to general-
ize Corollary 5.5 to handle multiple orthants. We start by characterizing relative
hemispaces w.r.t. the halfspace X =

{
x ∈ Td±

∣∣ x1 > O
}

. To do so, in Lemmas 5.6
to 5.8 we suppose thatG is a relative conic TC-hemispace w.r.t.X. Furthermore, we
suppose that there exists an orthant O in cl(X) such that G∩ int(O) /∈ {∅, int(O)}.
Then, G ∩ O is a relative conic TC-hemispace w.r.t. O ∩ X. In particular, by
Corollary 5.5, there is a vector (a1, . . . , ad) ∈ Td± with (a1, . . . , ad) 6= O such that

H+(O, a)∩O∩X ⊆ G∩O ⊆ H+
(O, a)∩O∩X. Let Q be a neighboring orthant of

O in X, i.e., an orthant obtained from O by changing one sign (other than the sign
of the first coordinate). In the next two lemmas (Lemma 5.6 and Lemma 5.7), we
show that the relative TC-hemispaces G ∩ O in O and G ∩ Q in Q are essentially
determined by the same vector a.
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By suitably flipping signs and permuting variables, we can assume that O = Td≥O
and Q differs in the sign of the d-th component. We denote T = (O ∪Q) ∩X.

In the following proofs, ω ∈ T>O and Ω ∈ T>O will mean a sufficiently small and
sufficiently big number, respectively.

Lemma 5.6. There are exactly two possibilities for the part of the relative TC-
hemispace G in Q to be trivial:

(i) G ∩ int(Q) = int(Q)⇔ supp	(a) = {d} ⇔ {y ∈ Q ∩X | yd < O} ⊆ G,
(ii) G ∩ int(Q) = ∅ ⇔ supp⊕(a) = {d} ⇔ {y ∈ Q ∩X | yd < O} ∩G = ∅.

Proof. To start, suppose that G∩int(Q) = int(Q) but there is k ∈ supp	(a)∩[d−1].
As we assume that G ∩ int(O) /∈ {∅, int(O)}, there exists j ∈ supp⊕(a). We define
x ∈ O, y ∈ Q and derive x / y ∈ O via

xi =

{
Ω i = j

ω else
yi =


2Ω i = k

	ω i = d

ω else

(x / y)i =


2Ω i = k

Ω i = j

ω else

By construction, x, y ∈ G but x / y 6∈ G, as one can see from a � x > O and
a� (x/y) < O. This contradicts the fact that G is TC-convex. Hence, supp	(a) ⊆
{d} and as G ∩ int(O) /∈ {∅, int(O)} we get supp	(a) = {d}.

Now, assume that supp	(a) = {d} but there is a point y ∈ (Q ∩ X) \ G such
that yd < O. Consider two cases: if yk > O for some k ∈ supp⊕(a), then we define
x, z ∈ O ∩X via

xi =

{
Ω i = d

yi else
zi =

{
ω i = d

yi else

Then z is on the line segment between x and y, but x, y ∈ T \ G while z ∈ G.
This contradicts the fact that G is a relative TC-hemispace. If yk = O for every
k ∈ supp⊕(a), then we define x, z ∈ O ∩X via

xi =

{
|yd| i = d

ω else
zi =


2ω i = d

yi i 6= d, yi 6= O

ω else

We note that z ∈ Faces(x, y). Moreover, the assumption on y implies that a�z > O.
Hence, as above we have x, y ∈ T \ G while z ∈ G, contradicting the fact that
G is a relative TC-hemispace. The implication {y ∈ Q ∩X | yd < O} ⊆ G ⇒
G ∩ int(Q) = int(Q) is trivial, proving the first point of the lemma.

The second point follows analogously as it can be obtained by considering the
complement of G. �

Lemma 5.7. H+(O, a) ∩ T ⊆ G ∩ T ⊆ H+
(O, a) ∩ T .

Proof. The case of a trivial intersection of G with int(Q) follows directly from
Lemma 5.6. Hence, by Corollary 5.5, we can assume that there exists a vector

(b1, . . . , bd) ∈ Td± \ {O} such that H+(O, b) ∩Q ∩X ⊆ G ∩Q ⊆ H+
(O, b) ∩Q ∩X.

We show with an exhaustive case distinction that the defining vectors a and b agree
up to positive scaling; then this concludes the proof of the lemma.

Case 1 (Different sign pattern.)
Let j be the smallest index for which tsgn(aj) 6= tsgn(bj). Breaking the symme-

try in a and b, we can assume that j ∈ supp(a).
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By taking the complement in both orthants, we can assume that j ∈ supp⊕(a)
which means tsgn(bj) ∈ {O,	}.

Case 1a (j = d.)
Since the sign of a and b differ in d = j ∈ supp⊕(a), there is an r ∈ supp⊕(b)\{d}.

As the relative TC-hemispace in int(O) is not trivial, there is an index s ∈ supp	(a).
Note that r, s, d are pairwise different due to the minimality assumption on j. We
define x ∈ O, y ∈ Q and derive x⊕ y via

xi =


Ω i = s

2Ω i = d

ω else

yi =


0 i = r

	2Ω i = d

ω else

(x⊕ y)i =


0 i = r

Ω i = s

•2Ω i = d

ω else

.

By construction, a�x > O, b� y > O. Choosing z ∈ U(x⊕ y) with zd = ω, we get
a point in G. However, z ∈ O and a� z < O, a contradiction.

Case 1b (j 6= d.)
Let k = min supp	(a) (which cannot equal j then). As the relative TC-hemispace

in int(Q) is not trivial, there is an index r ∈ supp	(b) (which could equal j).
We define x ∈ O, y ∈ Q and derive x / y ∈ O via

xi =

{
0 i = k

ω else
yi =


Ω i = j

0 i = r, i 6= j

	ω i = d

ω else

(x / y)i =


Ω i = j

0 i = r, i 6= j

0 i = k

ω else

By construction, a� x < O, b� y < O but a� (x / y) > O, a contradiction to the
TC-convexity of G.

From the cases considered so far, we deduce that a and b have the same sign
pattern. Hence, only the following possibility is remaining.

Case 2 Now, we have that the sign patterns of a and b are the same.
If a and b are not the same up to scaling, then there are three indices i, j, k ∈ [d]

such that not all three signs of the respective components agree and among the
quotients ai � b�−1

i , aj � b�−1
j , ak � b�−1

k at least one has a different value from

the other two. Then there are indices p, q ∈ {i, j, k} with tsgn(ap) = tsgn(bp) = ⊕,
tsgn(aq) = tsgn(bq) = 	, and ap � bq 6= aq � bp.

Case 2a (d 6∈ {p, q}. )
By scaling a and b, we can assume that ap = bp = 0. By the symmetry in a and

b, we can assume that |aq| > |bq|.
We choose ξa, ξb ∈ T>O with ξa < |a�−1

q | < ξb < |b�−1
q |. With this, we define

x ∈ O, y ∈ Q and derive x / y ∈ O via

xi =


ξa i = q

0 i = p

ω else

yi =


ξb i = q

	ω i = d

0 i = p

ω else

(x / y)i =


ξb i = q

0 i = p

ω else

The choice of ξa and ξb yields |ξa�aq| < 0 and |ξb� bq| < 0 as well as |ξb�aq| > 0.
This implies that a� x > O, b� y > O and a� (x / y) < O, a contradiction.

Case 2b (d ∈ {p, q}. )
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By taking complements in both orthants, we can assume that d = p, so d ∈
supp⊕(a) = supp⊕(b). Since H+

(O, b) ∩ int(Q) 6= ∅, there is at least one r ∈
supp⊕(b) \ {d}. By scaling, we can assume that aq = bq = 	0. By the previous
case, we have ar = br. By the symmetry in a and b, we can suppose that |ad| > |bd|.
We choose ξr, ξq ∈ T>O with

ad > ξq > ξr � ar = ξr � br > bd .

With this, we define x ∈ O, y ∈ Q and z ∈ O via

xi =


ξq i = q

0 i = d

ω else

yi =


ξr i = r

	0 i = d,

ω else

zi =


ξq i = q

ξr i = r

ω else

We have z ∈ Faces(x, y). Moreover, a � x > O, b � y > O, but a � z < O, a
contradiction.

�

We now extend Lemma 5.7 from a union of two orthants to the entire set X.

Lemma 5.8. We have H+(O, a) ∩X ⊆ G ⊆ H+
(O, a) ∩X.

Proof. Let Q be any orthant in cl(X). We want to show that H+(a) ∩ Q ∩ X ⊆
G ∩ Q ⊆ H+

(a) ∩ Q ∩ X. Let ν ∈ {⊕,	}d be the sign vector corresponding
to Q, i.e., the vector such that int(Q) =

{
x ∈ Td±

∣∣ ∀k, tsgn(xk) = νk
}

. For the
purposes of this proof, we say that an orthant is good if H+(O, a) subdivides its
interior in a non-trivial way; that is if there exists a pair (k, l) ∈ supp(a) such that
νk tsgn(ak) 6= νl tsgn(al). Let r = | {k ∈ [d] | k ∈ supp(a), νk = 	} |. We divide
the proof into two cases.

Case 1 (We have | supp(a)| ≥ 3 or r ∈ {0, 1}.)
In this case, we start by proving that there exists a sequence of orthants Td≥O =

Q0, Q1, . . . , Qp = Q in cl(X) such that Qi, Qi+1 differ by flipping one sign and
the Qi are good for all i ≤ p − 1. Such a sequence can be obtained in the fol-
lowing way. The orthant Q0 is good by the assumption of the lemma. To go
from Q0 to Q, we first flip the signs in {k /∈ supp(a) | νk = 	} (in any order)
and note that all orthants obtained in this way are good. Then, we flip the
signs in {k ∈ supp(a) | νk = 	}. If r ∈ {0, 1}, then this already proves the ex-
istence of the sequence, because this step either does nothing or flips one sign. If
| supp(a)| ≥ 3 and r ≥ 3, then there are at most two orthants that are not good
and could be obtained at this step. However, since the graph of the r-dimensional
hypercube is r-vertex-connected and r ≥ 3, there is a way of flipping the signs
in {k ∈ supp(a) | νk = 	} that avoids going through these two orthants (except,
possibly, for the last step, since Q may be not good). If | supp(a)| ≥ 3 and r = 2,
then we let k, l be the two indices in supp(a) such that νk = νl = 	 and j be any
index in supp(a) such that νj = ⊕. If tsgn(aj) = tsgn(ak) or tsgn(ak) = tsgn(al),
then we first flip the sign of the component indexed by k and subsequently we flip
the sign of the component indexed by l. If tsgn(aj) = tsgn(al), then we start by
flipping the sign of the component indexed by l and subsequently we flip the sign
of the component indexed by k.

Given the sequence Q0, . . . , Qp we apply Lemma 5.7 to T = (Q0∪Q1)∩X. This

gives H+(a)∩Q1 ∩X ⊆ G∩Q1 ⊆ H
+

(a)∩Q1 ∩X. Furthermore, since Q1 is good,
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Lemma 5.6 implies that G∩int(Q1) 6= {∅, int(Q1)}. Hence, by applying Lemmas 5.6

and 5.7 to T = (Q1∪Q2)∩X we get thatH+(a)∩Q2∩X ⊆ G∩Q2 ⊆ H
+

(a)∩Q2∩X
and G ∩ int(Q2) 6= {∅, int(Q2)}. By repeating this reasoning, we obtain the claim.

Case 2 (We have | supp(a)| = r = 2.)
In this case, let {k, l} = supp(a) and let Q{k}, Q{l}, Q{k,l} be the orthants ob-

tained from Td≥O by flipping the signs of the components indexed by k and l. Since

Td≥O is good, we can suppose (up to permuting k and l) that tsgn(ak) = ⊕ and

tsgn(al) = 	. Then, Lemma 5.6 shows that G∩ int(Q{k}) = ∅ and G∩ int(Q{l}) =
int(Q{l}).

We first show that G ∩ int(Q{k,l}) /∈ {∅, int(Q{k,l})}. We define x ∈ Q{k,l}, y ∈
Td≥O and derive x / y ∈ Q{k} via

xi =


	ω i = k

	Ω i = l

0 else

yi =


0 i = k

Ω i = l

0 else

(x / y)i =


0 i = k

	Ω i = l

0 else

We have y /∈ G and x/y ∈ G. Therefore, x ∈ G∩ int(Q{k,l}). Similarly, if we define

xi =


	Ω i = k

	ω i = l

0 else

yi =


Ω i = k

0 i = l

0 else

(x / y)i =


	Ω i = k

0 i = l

0 else

then y ∈ G and x / y /∈ G. Hence, we have x /∈ G and x ∈ int(Q{k,l}). This implies
G ∩ int(Q{k,l}) /∈ {∅, int(Q{k,l})}.

Now, by Corollary 5.5, there exists a vector b ∈ Td± \ {O} such that H+(O, b) ∩
Q{k,l} ⊆ G∩Q{k,l} ⊆ H

+
(O, b)∩Q{k,l}. By applying Lemma 5.6 toQ{k,l}∪Q{k} and

Q{k,l} ∪Q{l} we get supp	(b) = supp	(a) = {l} and supp⊕(b) = supp⊕(a) = {k}.
By scaling a and b, we can assume that ak = bk = 0. We want to show that al = bl.
For contradiction, assume that |al| < η�−1 < ξ�−1 < |bl| for some η, ξ ∈ T>O. We
define x ∈ Q{k,`}, y ∈ T≥O and derive x / y ∈ Q{k} via

xi =


	0 i = k

	ξ i = l

ω else

yi =


0 i = k

η i = l

ω else

(x / y)i =


	0 i = k

η i = l

ω else

. (29)

We have x, y ∈ G (as b � x > O and a � y > O) but x / y /∈ G, which gives a
contradiction. Analogously, if |al| > η�−1 > ξ�−1 > |bl| for some ξ, η ∈ T>O,
and we define x, y as in (29), then x, y /∈ G but y / x ∈ G, giving a contradiction.
Therefore, we have a = b.

To finish the proof, note that we can go from Q{k,l} to Q by a sequence of good
orthants obtained by flipping the signs that do not belong to supp(a). This gives
the claim by the same reasoning as in Case 1. �

Example 5.9. We illustrate the last case in the proof of Lemma 5.8.
Let a = (0,	0) and b = (0,	3). We take η = −1, ξ = −2, so x = (	0,	(−2)),

y = (0,−1). Then a � y = 0, b � x = 1 so x, y ∈ G but x / y = (	0,−1) so
a� (x / y) = 	0, b� (x / y) = 	2 and x / y /∈ G.
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x1

x2

(0, 0)
(0,−1)

(	0,	− 3)
(	0,	− 2)

(	0,−1)

Figure 6. Sketch of the positions for the first part of Example 5.9.

Likewise, if a = (0,	3) and b = (0,	0), then we take η = −2, ξ = −1, so
x = (	0,	(−1)), y = (0,−2). We have a � y = 	1, b � x = 	0 so x, y /∈ G but
y / x = (0,	(−1)) satisfies a� (y / x) = 2, b� (y / x) = 0 and y / x ∈ G.

Now, we combine the last lemmas to prove that a TC-hemispace is nearly a
halfspace.

Theorem 5.10. If G ⊆ Td± is a TC-hemispace and G /∈ {∅,Td±}, then there exists

a vector (a0, . . . , ad) ∈ Td+1
± , (a1, . . . , ad) 6= O, such that H+(a) ⊆ G ⊆ H+

(a).

Proof. We consider two cases.
Case 1 (There exists an orthant O ∈ Td± such that G ∩ int(O) /∈ {∅, int(O)}.)
By flipping signs, we assume that O = Td≥O. Let X =

{
x ∈ Td+1

±
∣∣ xd+1 > O

}
.

We define two sets H,H ⊆ X by putting H = coneTC { (z, 0) | z ∈ G} \ {O} and
H = coneTC { (z, 0) | z /∈ G} \ {O}. Since both G and its complement are TC-
convex, we have

H = {λ� (z, 0) | λ ∈ T>O, z ∈ G} ,
H = {λ� (z, 0) | λ ∈ T>O, z /∈ G} .

In particular, H = coneTC { (z, 0) | z ∈ G} ∩ X, which implies that H is a TC-
convex cone. Analogously, H is a TC-convex cone.

Furthermore, we have H∪H = X because any point x = (x1, . . . , xd+1) in X can
be written as x = xd+1� (y1, . . . , yd, 0), where yi = xi� x�−1

d+1 and y either belongs

to G or not. Likewise, we have H ∩H = ∅ because if x ∈ H ∩H, then the point y
defined as above belongs both to G and its complement, which gives a contradiction.
Thus, H is a relative conic TC-hemispace w.r.t. X and H ∩ Td+1

>O /∈ {∅,Td+1
>O }.

Hence, by Lemma 5.8, there exists a vector (a1, . . . , ad+1) ∈ Td+1
± such that

(a1, . . . , ad+1) 6= O and H+(O, a) ∩X ⊆ H ⊆ H+
(O, a) ∩X. In particular,{

x ∈ Td±
∣∣ ad+1 ⊕ a1 � x1 ⊕ · · · ⊕ ad � xd > O

}
⊆ G

⊆
{
x ∈ Td±

∣∣ ad+1 ⊕ a1 � x1 ⊕ · · · ⊕ ad � xd � O
}
.

Since supp	(a) 6= ∅ and supp⊕(a) 6= ∅, we have (a1, . . . , ad) 6= O.
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Case 2 (G ∩ int(O) ∈ {∅, int(O)} for every orthant O ⊆ Td±.)
By taking suitable combinations, we see that G cannot only consist of parts of

coordinate hyperplanes. Hence, by flipping signs, we can assume that Td>O ⊆ G.
We show that there is a k ∈ [d] such that{

x ∈ Td±
∣∣ xk > O} ⊆ G ⊆ {x ∈ Td±

∣∣ xk ≥ O} . (30)

Suppose the right inclusion does not hold, then for each ` ∈ [d] there is an
orthant O(`) with int(O(`)) ⊆ G whose `-th component is negative. As each O(`)

contains points close to the negative of the `-th tropical unit vector, taking convex
combinations of these points and (0, . . . , 0) ∈ Td>O yields points in the interior of

every orthant in Td±. This would imply G = Td±, which was excluded. Hence, G ⊆{
x ∈ Td±

∣∣ xk ≥ O}. Therefore, for half of the orthants the interior is contained
in G and, by the same argument, for half of the orthants the interior is contained
in the complement G′ of G. But as G and G′ cover the whole space, we get that
G′ ⊆

{
x ∈ Td±

∣∣ xk ≤ O}. By taking again the complement, this concludes the
second case. �

As TO-hemispaces are also TC-hemispaces we immediately get the following.

Corollary 5.11. If G ⊆ Td± is a TO-hemispace and G /∈ {∅,Td±}, then there exists

a vector (a0, . . . , ad) ∈ Td+1
± , (a1, . . . , ad) 6= O, such that H+(a) ⊆ G ⊆ H+

(a).

5.3. The boundary of TC-hemispaces. Before stating the next lemmas, we
introduce the following notation. If a = (a0, . . . , ad) ∈ Td+1

± and x ∈ Td±, then we
denote

Argmax(a, x) = {k ∈ [d]0 | ak � xk 6= O ∧ ∀` ∈ [d]0, |ak|+ |xk| ≥ |a`|+ |x`|}
= argmaxk∈[d]0 |ak � xk| ∩ supp(a) ∩ supp(x)

and

Argmax+(a, x) = {k ∈ Argmax(a, x) | ak � xk > O} ,
where we use the convention that x0 = 0. Note that

Argmax+(a, x) ⊆ Argmax(a, x) ⊆ supp(x) ∪ {0}.
For a fixed a, comprising the points with (1) the same set Argmax(a, x), (2) in

the same orthant yields a cell decomposition of Td±. Taking the common refinement
of the cell decompositions for several possible a yields a generalization of the decom-
position which was studied under the name ‘type decomposition’ [28] or ‘covector
decomposition’ [38].

Right from the definition, we obtain some basic properties.

Corollary 5.12. We have

(i) If 0 6∈ Argmax(a, x)∪Argmax(a, ρ�x), then Argmax(a, ρ�x) = Argmax(a, x)
for ρ ∈ T± \ {O};

(ii) Argmax(a, x) = ∅ if and only if a� (0, x) = O;
(iii) Argmax(a, x) = [d]0 if and only if |a0| = |a1|+ |x1| = · · · = |ad|+ |xd| 6= O.

For this subsection, we fix a TC-hemispace G ⊆ Td± with G 6= {∅,Td±} and

let (a0, . . . , ad) ∈ Td+1
± , (a1, . . . , ad) 6= O, such that H+(a) ⊆ G ⊆ H+

(a), which
exists by Theorem 5.10. Furthermore, we fix a point x ∈ G with Argmax(a, x) 6=



36 GEORG LOHO AND MATEUSZ SKOMRA

x1

x2

{1, 2}{1, 2}

{1, 2}{1, 2}

{0, 1}{0, 1}

{0, 2}

{0, 2}

{0} {1}{1}

{2}

{2}

x1

x2

{2}{1, 2}

{1}

{1}

{2}

{1}

{2}

∅

Figure 7. Argmax and Argmax+ for (	0,	− 1,−1)

∅. Observe that we have Argmax+(a, x) 6= ∅. Indeed, if Argmax(a, x) 6= ∅ and
Argmax+(a, x) = ∅, then x ∈ H−(a), giving a contradiction with x ∈ G.

We start with a statement that be seen orthantwise.

Lemma 5.13. For ρ ∈ R with Argmax(a, x) = Argmax(a, ρ�x), we have ρ�x ∈ G.

Proof. The claim is trivial for ρ = 0, so we start with ρ < 0. If 0 ∈ Argmax(a, x),
then the equality Argmax(a, x) = Argmax(a, ρ�x) implies that Argmax(a, ρ�x) =
{0} = Argmax+(a, ρ � x) and so ρ � x ∈ H+(a) ⊆ G. If 0 /∈ Argmax(a, x), then
we fix k ∈ Argmax+(a, x) ∩ [d] = Argmax+(a, x). We define a point y ∈ Td± as
y = ρ�xk�ek where ek is the k-th tropical unit vector. We have y ∈ H+(a) and so
y ∈ G. Furthermore, ρ�x = ρ�x/y and therefore ρ�x ∈ G by the TC-convexity
of G.

If ρ > 0, then we define x′ = ρ � x, G′ = Td± \ G, and a′ = 	a. Suppose that

x′ ∈ G′. Then, G′ is a TC-hemispace such that H+(a′) ⊆ G′ ⊆ H+
(a′) and we
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have x = (−ρ)� x′. Hence, the same reasoning as above shows that x ∈ G′, giving
a contradiction. �

Lemma 5.14. For y ∈ Td± with Argmax(a, y) = Argmax(a, x) and tsgn(yk) =
tsgn(xk) for all k ∈ Argmax(a, x) ∩ [d], we have y ∈ G.

Proof. As noted above, Argmax+(a, x) 6= ∅, so we fix k ∈ Argmax+(a, x) and
consider the following two cases.

Case 1 (yj = xj for all j ∈ Argmax(a, x) ∩ [d].)
Case 1a (|xj | ≤ |yj | for all j /∈ Argmax(a, x).)
Define M = 0 if k = 0 and M = 1 otherwise. Let z ∈ Td± be the point defined as

zi =

{
O if i ∈ Argmax(a, y) \ {k},
M � yi otherwise.

Then, z satisfies Argmax(a, z) = Argmax+(a, z) = {k} as one sees by taking scalar
product with a. In particular, we have z ∈ H+(a) ⊆ G. Moreover, |xj | ≤ |yj | for
all j /∈ Argmax(a, x) implies that y = (−M)� z / x, and so y ∈ G.

Case 1b (There exists an ` /∈ Argmax(a, x) such that |x`| > |y`|.)
Let u ∈ Td± be any point that satisfies uj = xj for all j ∈ Argmax(a, x) and

|uj | = |xj | otherwise. Then, we have Argmax(a, u) = Argmax(a, x) and u ∈ G
by the previous case. Since u was arbitrary, Example 3.19 implies that the point
v ∈ Td± defined as

vi =

{
xi if i ∈ Argmax(a, x),

O otherwise

belongs toG. Now we can apply the Case 1a with v instead of x sinceO = |vj | ≤ |yj |
for all j 6∈ Argmax(a, x). Hence, we obtain y ∈ G.

Case 2 (There exists an ` ∈ Argmax(a, x) ∩ [d] such that y` 6= x`.)
Let ρ = |y`| � |x`|�−1 ∈ R and consider the point x′ = ρ � x. Then, for each

j ∈ Argmax(a, x) ∩ [d] we have

|aj | � |x′j | = ρ� |aj | � |xj | = ρ� |a`| � |x`| = |a`| � |y`| = |aj | � |yj | . (31)

This yields x′j = yj for j ∈ Argmax(a, x) ∩ [d] because tsgn(xj) = tsgn(yj).
By the case assumption, we have maxk∈[d]0 |ak � xk| 6= maxk∈[d]0 |ak � yk| as

y` 6= x` but Argmax(a, y) = Argmax(a, x). In particular, 0 /∈ Argmax(a, y). Fur-
thermore, (31) gives |a0| < |a`| � |y`| = |a`| � |x′`|, so 0 6∈ Argmax(a, x′). This im-
plies that 0 6∈ Argmax(a, x) ∪ Argmax(a, x′). Therefore, we have Argmax(a, x′) =
Argmax(a, x) by Corollary 5.12 and Lemma 5.13 implies x′ ∈ G. Since x′j = yj for
all j ∈ Argmax(a, x) ∩ [d], Case 1 shows that y ∈ G. �

The structure of the boundary of TC-hemispaces relies heavily on the support
of the halfspaces sandwiching it. We discuss this in a simple example which is
visualized in Fig. 8.

Example 5.15. Suppose that G ⊂ T2
± is a TC-hemispace such that{

x ∈ T2
±
∣∣ x1 > 0

}
⊆ G ⊆

{
x ∈ T2

±
∣∣ x1 ≥ 0

}
. (32)

Furthermore, suppose that there is a point x ∈ G such that x1 = 0 and let y ∈ T2
±

be any point such that y1 = 0. Then, for a = (	0, 0,O) we get Argmax(a, x) =
{0, 1} = Argmax(a, y) and tsgn(x1) = tsgn(y1), so Lemma 5.14 implies that
y ∈ G. Hence, there are only two TC-hemispaces that satisfy (32), namely G =
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x ∈ T2

±
∣∣ x1 > 0

}
and G =

{
x ∈ T2

±
∣∣ x1 ≥ 0

}
. By contrast, suppose that G′ ⊂

T2
± is a TC-hemispace such that{

x ∈ T2
±
∣∣ x1 > O

}
⊆ G′ ⊆

{
x ∈ T2

±
∣∣ x1 ≥ O

}
. (33)

Furthermore, suppose that there is a point x′ ∈ G′ such that x′1 = O and let y ∈ T2
±

be any point such that y1 = O. Then, for a = (O, 0,O) we get Argmax(a, x) = ∅
so the assumption of Lemma 5.14 is not satisfied and we cannot deduce anything
about y using this lemma. Indeed, if y2 < x′2, then

G′ =
{
x ∈ T2

±
∣∣ x1 > O

}
∪
{
x ∈ T2

±
∣∣ x1 = O, x2 ≥ x′2

}
is a TC-hemispace that does not contain y and

G′ =
{
x ∈ T2

±
∣∣ x1 > O

}
∪
{
x ∈ T2

±
∣∣ x1 = O, x2 ≤ x′2

}
Is a TC-hemispace that contains y. In particular, there are infinitely many TC-
hemispaces that satisfy (33).

x1

x2

x1

x2

x1

x2

Figure 8. Possibilities of boundary of TC-hemispace sandwiched
between x1 ≥ 0 and x1 > 0 or x1 ≥ O and x1 > O.

Lemma 5.16. Define a point s ∈ Sd as

∀` ∈ [d], s` =

{
x` if ` ∈ Argmax+(a, x),

•x` otherwise,

then U(s) ⊆ G.

Proof. By Example 3.19, it is enough to show that the vertices of U(s) belong to G.
Note that the vertices of U(s) are precisely the points y ∈ Td± that satisfy |yj | = |xj |
for all j ∈ [d] and Argmax+(a, x) ⊆ Argmax+(a, y). To show that every such point
belongs to G, we proceed by induction over m = |Argmax+(a, y) \Argmax+(a, x)|.
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If m = 0, then we have yj = xj for all j ∈ Argmax(a, x) and so the claim follows
from Lemma 5.14.

If m > 0, there is a k ∈ Argmax+(a, y) \ Argmax+(a, x). Consider the point
z ∈ Td± defined as

zi =

{
xi if i = k,

yi otherwise.

Then, we have z ∈ G be the induction hypothesis. Furthermore, since |a0| <
1 + |ak|+ |yk|, the point w ∈ Td± defined as

wi =

{
1� yk if i = k,

O otherwise

belongs to H+(a). In particular, w ∈ G. Since y = (−1)�w / z, we get y ∈ G. �

Combining the previous lemmas leads to the following description, when two
points have the same Argmax(a, ·). It shows that the structure of hemispaces
behaves rather well with respect to fixing Argmax. In particular, the following
statement extends [30, Lemma 3.1].

Proposition 5.17. Let y ∈ Td± be such that Argmax(a, x) = Argmax(a, y) and

Argmax+(a, x) ⊆ Argmax+(a, y). Then, we have y ∈ G.

Proof. Consider the point z ∈ Td± defined as zj = tsgn(yj)|xj | for all j ∈ [d]. Since

Argmax+(a, x) ⊆ Argmax+(a, y), we have zj = xj for all j ∈ Argmax+(a, x). With
|zj | ≤ |xj | for all j ∈ [d], Lemma 5.16 implies z ∈ G. Furthermore, Argmax(a, z) =
Argmax(a, x) = Argmax(a, y) and tsgn(zj) = tsgn(yj) for all j ∈ Argmax(a, z)∩[d].
Hence, we have y ∈ G by Lemma 5.14. �

5.4. Lifts of TC-hemispaces. As a final ingredient for the proof of Theorem 6.1,
we relate TC-hemispaces with convex lifts. For this, we construct specific lifts in the
sense of Section 4 based on the structural insights for TC-hemispaces in Section 5
so far.

Proposition 5.18. If G ⊆ Td± is a TC-hemispace, then G = sval(G) for some

convex set G ⊆ Kd.

Proof. First, note that the claim is trivial if G ∈ {∅,Td±}. Otherwise, Theo-

rem 5.10 shows that there exists a = (a0, . . . , ad) ∈ Td+1
± , (a1, . . . , ad) 6= O such

that H+(a) ⊆ G ⊆ H+
(a).

We prove the claim by induction over d. If d = 1, then the claim follows from
the fact that, for any a ∈ T±, each set {x ∈ K | sval(x)∼a} with ∼ ∈ {≥, >,≤, <}
is convex.

If d > 1, then we let X =
{
x ∈ Td±

∣∣ Argmax(a, x) 6= ∅
}

and its complement

X ′ = Td± \X. Note that X ′ is essentially the set of points whose support is disjoint
from the support of a. We will construct a lift for the intersection of G with X and
X ′ and finish by taking their convex hull.

We start by showing that there exists a convex set G⊥ ⊆ Kd with sval(G⊥) =
G ∩ X ′. If X ′ = ∅, then we set G⊥ = ∅. Otherwise, let K = {k ∈ [d] | ak 6= O}
and note that we have a0 = O and X ′ =

{
x ∈ Td±

∣∣ xk = O ∀k ∈ K
}

.

If K = [d], then we take G⊥ = {0} if O ∈ G and G⊥ = ∅ otherwise. Note that
G∩X ′ and X ′\G are TC-convex as intersection of TC-convex sets. If K ( [d], then
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let π : Td± → Td−|K|± be the projection that forgets the coordinates from K. As the
components in K of G∩X ′, X ′\G ⊆ X ′ are all O, Proposition 3.17 implies that the

set π(G ∩ X ′) is a TC-hemispace in Td−|K|± . Hence, by the induction hypothesis,

we have π(G ∩ X ′) = sval(G′) for some convex set G′ ⊆ Kd−|K|. We embed the
set G′ into Kd by adding 0 coordinates to every point and this gives a convex set
G⊥ ⊆ Kd such that sval(G⊥) = G ∩X ′.

Next, we show that there exists a convex set G= ⊆ Kd with sval(G=) = G ∩X.
To construct an appropriate lift with Definition 4.4, let J = {k ∈ [d] | ak > O} be

such that H+
(a) is of type J . Set G= = conv(

{
liJ(x) ∈ Kd

∣∣ x ∈ G ∩X}). Then,
G= is convex and right from the definition we have G ∩X ⊆ sval(G=).

To prove that sval(G=) ⊆ G ∩ X, let y ∈ G= be arbitrary and y = sval(y).
Then, the Carathéodory theorem in Kd shows that

y = λ1liJ(y(1)) + · · ·+ λmliJ(y(m)) (34)

for some m ≤ d+ 1, y(1), . . . , y(m) ∈ G∩X, λ1, . . . ,λm > 0, and
∑
i λi = 1. As we

aim to prove that y ∈ G∩X, we will estimate the leading terms of the components
in the sum (34). For every i ∈ [m] let λi = sval(λi) > O and γi = lc(λi) > 0.
We assume that the points y(1), . . . , y(m) are labeled such that γ1 ≥ · · · ≥ γm. To
relate y with the hemispace property of G, we set

z = λ1 � y(1) / . . . / λm � y(m) . (35)

With
⊕

i λi = 0, the TC-convexity of G implies z ∈ G. Moreover, we also have

z ∈ X. Indeed, this is trivial if a0 6= O. Otherwise, because of y(1) ∈ X, it has a

component k ∈ [d] such that ak � y(1)
k 6= O and so ak � zk 6= O. Thus, z ∈ G ∩X.

We will prove that y ∈ G using Lemma 5.16. To do so, suppose that there exists
k ∈ Argmax+(a, z)∩ [d]. If ak > O and zk > O, then we define a vector u ∈ Rm by

ui =

{
lc
((

liJ(y(i))
)
k

)
if
∣∣∣λi � y(i)

k

∣∣∣ = |zk|,
0 otherwise.

Since k ∈ J , we have u ∈ {−1, 0, d+ 1}m. Moreover, since zk > O, the vector u is
nonzero. Let p ∈ [m] be the smallest index such that up 6= 0, which is exactly the

entry defining the kth component in the left sum (35). Hence, we have zk = λp�y(p)
k .

Now, zk > O implies y
(p)
k > O and therefore up = d+ 1 by the definition of the lift

of type J .
We are ready to estimate the sum of the leading coefficients of the dominating

terms in the sum λ1

(
liJ(x1)

)
k

+ · · ·+ λm
(
liJ(xm)

)
k
. This is just

γ1u1 + · · ·+ γmum ≥ (d+ 1)γp − γp+1 − · · · − γm
≥ (d+ 1)γp − (m− p)γp ≥ pγp > 0 .

(36)

Therefore, there is no cancellation of the leading terms in (34) which implies yk =
sval(yk) = zk. Analogously, we obtain yk = zk if ak < O and zk < O. In particular,
yk = zk for every k ∈ Argmax+(a, z) ∩ [d]. Furthermore, for every ` ∈ [d] we have
	|z`| ≤ y` ≤ |z`| by Lemma 4.2. Therefore, y ∈ G by Lemma 5.16.

Moreover, we have y ∈ X. Indeed, this is trivial if a0 6= O. Otherwise,
Argmax+(a, z) ∩ [d] 6= ∅ and so ak � yk 6= O for at least one k ∈ [d]. Thus,
we have sval(G=) = G ∩X.
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To finish the proof, let G = conv(G⊥ ∪G=) ⊆ Kd. Then, G is convex and G ⊆
sval(G). To prove that sval(G) ⊆ G, note that this inclusion is trivial if a0 6= O.
Otherwise, let z ∈ G. Then, there exist x ∈ G⊥,y ∈ G=,λ,µ ≥ 0,λ+µ = 1 such
that z = λx + µy. Denote z = sval(z), x = sval(x), y = sval(y), λ = sval(λ),
µ = sval(µ), and w = λ � x / µ � y ∈ G. If λ = O or µ = O, then we trivially
have z ∈ G. Otherwise, y ∈ X and µ 6= O imply that w ∈ X. Furthermore, x ∈ X ′
implies that zk = µ� yk = wk for all k ∈ K. Therefore, z ∈ G by Lemma 5.14. �

6. TC-hull as intersection of closed halfspaces

In Section 5, we prepared the crucial tools for proving the representation of the
TC-convex hull of finitely many points as the intersection of its containing closed
halfspaces. It relies on the understanding of the structure of TC-hemispaces and
a representation of those using insights on their lifts from Section 4. Finally, we
arrive at analogs of the Minkowski–Weyl theorem for polyhedra.

Theorem 6.1. For every x1, . . . , xn ∈ Td± we have

convTC(x1, . . . , xn) =
⋂

a∈Td+1
±

{
H+

(a)
∣∣∣ {x1, . . . , xm} ⊆ H

+
(a)
}
.

Proof. The inclusion ⊆ follows from Corollary 3.8.
For the reverse direction, Lemma 4.13 shows the equality⋂
a∈Td+1

±

{
H+

(a)
∣∣∣ {x1, . . . , xm} ⊆ H

+
(a)
}

=
⋂{

sval(X)
∣∣ X ⊆ Kd is convex and {x1, . . . , xm} ⊆ sval(X)

}
⊆
⋂{

sval(X)
∣∣ X ⊆ Kd convex, {x1, . . . , xm} in TC-hemispace sval(X)

}
.

By Proposition 5.18, every TC-hemispace containing {x1, . . . , xn} arises in the lat-
ter intersection. Combined with Theorem 5.3, this yields⋂{

sval(X)
∣∣ X ⊆ Kd convex, {x1, . . . , xm} in TC-hemispace sval(X)

}
=
⋂
{G | G TC-hemispace with {x1, . . . , xm} ⊆ G}

= convTC(x1, . . . , xn) . �

Combining Theorem 6.1 and Lemma 4.13 we obtain the following corollary, which
is an analog of [42, Theorem 3.14] for TC-convexity.

Corollary 6.2. For every x1, . . . , xn ∈ Td± we have

convTC(x1, . . . , xn) =
⋂{

sval
(
conv(x1, . . . ,xm)

) ∣∣ ∀i, xi ∈ sval−1(xi)
}

=
⋂
J⊆[d]

sval
(

conv
(
liJ(x1), . . . , liJ(xm)

))
.

Based on the description of the TC-convex hull by closed halfspaces, we obtain
several further insights on TC-convex hulls. We start with a conic version.

Theorem 6.3. Let X ⊆ Td± be an arbitrary set. Then, the following are equivalent:

(i) X is an intersection of finitely many closed linear tropical halfspaces.
(ii) X = coneTC(x1, . . . , xm) for a finite collection of points {x1, . . . , xm}.
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(iii) There exists a finite collection of polyhedral cones P1, . . . ,Pm ⊆ Kd such that⋂
i

sval(Pi) = X .

(iv) There exists a finite collection of linear halfspaces H1, . . . ,Hm ⊆ Kd such that⋂
i

sval(Hi) = X .

Proof. To prove the implication (i) ⇒ (iv), suppose that X =
⋂m
i=1H

+
(ai) for

some a1, . . . , am ∈ Td+1
± . For every i ∈ [m], let Hi = H+(

cli(ai)
)
. By Lemma 4.6

we have X =
⋂m
i=1H

+
(ai) =

⋂m
i=1 sval(Hi).

The implication (iv) ⇒ (iii) is trivial and the implication (iii) ⇒ (i) follows
from Lemma 4.14.

To prove the implication (i)⇒ (ii), we use the tropical Minkowski–Weyl theorem
for unsigned tropical convexity [31, Theorem 1]. This theorem implies that for
every closed orthant O of Td± there exists a finite set UO ⊂ O such that X ∩
O = coneTC(UO). Let U =

⋃
O UO. We will show that X = coneTC(U). Since

coneTC(UO) ⊆ coneTC(U) for every O, we get X ⊆ coneTC(U). To prove the
opposite inclusion, note that U ⊆ X implies convTC(U) ⊆ X by Corollary 3.8.
Since X is an intersection of linear tropical halfspaces, we get coneTC(U) ⊆ X.

To finish the proof, it is enough to show the implication (ii) ⇒ (iii). To do so,
let

PJ = cone
(
liJ(x1), . . . , liJ(xm)

)
for all J ⊆ [d]. We will show that X =

⋂
J⊆[d] sval(PJ). If x ∈ X, there exists

λ ∈ T≥O such that x ∈ λ � convTC(x1, . . . , xm). By combining Theorem 6.1 with
Lemma 4.13, for all J ⊆ [d], we get

convTC(x1, . . . , xm) ⊆ sval
(

conv
(
liJ(x1), . . . , liJ(xm)

))
.

Hence, by Lemma 4.15 we have

λ� convTC(x1, . . . , xm) ⊆ λ� sval
(

conv
(
liJ(x1), . . . , liJ(xm)

))
= sval

(
conv

(
tλliJ(x1), . . . , tλliJ(xm)

))
⊆ sval(PJ)

and x ∈
⋂
J⊆[d] sval(PJ). Conversely, if x ∈

⋂
J⊆[d] sval(PJ) then, by Lemma 4.15,

for every J ⊆ [d] there exists λJ ∈ T≥O such that

x ∈ sval
(

conv
(
tλJ liJ(x1), . . . , tλJ liJ(xm)

))
= sval

(
conv

(
liJ(λJ � x1), . . . , liJ(λJ � xm)

))
.

Hence, by combining Theorem 6.1 with Lemma 4.13 and Lemma 3.30 we get

x ∈
⋂
J

sval
(

conv
{
liJ(λJ̃ � xi)

∣∣∣ J̃ ⊆ [d], i ∈ [m]
})

= convTC

({
λJ̃ � xi

∣∣∣ J̃ ⊆ [d], i ∈ [m]
})

⊆ coneTC(x1, . . . , xm) = X . �

Establishing an affine version of the former theorem requires us to come up with
an appropriate concept of dehomogenization.
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Theorem 6.4. Let X ⊆ Td± be an arbitrary set. Then, the following are equivalent:

(i) X is an intersection of finitely many closed tropical halfspaces.
(ii) There exist two finite sets V,W ⊂ Td± such that

convTC

(
{v / λ� w | v ∈ V,w ∈W,λ ∈ T≥O}

)
= X .

(iii) There exists a finite collection of polyhedra P1, . . . ,Pm ⊂ Kd such that⋂
i

sval(Pi) = X .

(iv) There exists a finite collection of affine halfspaces H1, . . . ,Hm ⊆ Kd such that⋂
i

sval(Hi) = X .

Proof. The theorem is trivial if X is empty. From now on we suppose that X is
nonempty.

The implication (i) ⇒ (iv) follows by the same argument as in the proof of
Theorem 6.3.

The implication (iv)⇒ (iii) is trivial.
To prove that (iii) ⇒ (ii), for every i ∈ [m], let Qi = {(λx,λ) : λ ≥ 0,x ∈

Pi} ⊆ Kd+1. The set Qi is a polyhedral cone. Furthermore, we have the equality

sval(Qi) ∩ {xd+1 = 0} = { (x, 0) | x ∈ sval(Pi)} . (37)

Indeed, if x ∈ sval(Pi), then there exists x ∈ Pi such that sval(x) = x. Therefore,
(x, 1) ∈ Qi and (x, 0) ∈ sval(Qi). Conversely, if (x, 0) ∈ sval(Qi), then there exist
λ ≥ 0 and x ∈ Pi such that sval(λ) = 0 and x = sval(λx) = sval(λ) + sval(x) =
sval(x). Therefore x ∈ sval(Pi) and (37) is satisfied. Let Y =

⋂m
i=1 sval(Qi) ⊆

Td+1
± . By (37), we get

Y ∩ {xd+1 = 0} = { (x, 0) | x ∈ X} . (38)

Applying Theorem 6.3 to the set Y , there exists a finite set U = {u1, . . . , un} ⊂
Td+1
± such that Y = coneTC(U). Since Y is a cone, we can suppose that U contains
O. Moreover, we have yd+1 ≥ O for every y ∈ Y . Hence, we can scale every point

u(i) ∈ U in such a way that u
(i)
d+1 ∈ {O, 0}. Thus, we can write U = V̂ ∪Ŵ where V̂

contains the elements of U whose last coordinate is 0 and Ŵ contains the elements
whose last coordinate is O. Since U contains O, the set Ŵ is nonempty. Since X
is nonempty, (38) implies that V̂ is also nonempty. Therefore, by combining (38)
with Lemma 3.32 we get

X = convTC

(
{v / λ� w | v ∈ V,w ∈W,λ ∈ T≥O}

)
,

where V,W are the projections of V̂ , Ŵ obtained by deleting the last coordinate.
To prove the implication (ii) ⇒ (i), we define V̂ = {(v, 0) : v ∈ V } and Ŵ =

{(w,O) : w ∈ Ŵ}. By Theorem 6.3, we have

coneTC(V̂ ∪ Ŵ ) =

n⋂
i=1

{
x ∈ Td+1

±
∣∣ ai,1 � x1 ⊕ · · · ⊕ ai,d+1 � xd+1 � O

}
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for some finite set {a1, . . . , an} ∈ Td+1
± \ {O}. By Lemma 3.32 we have the equality

{(x, 0) : x ∈ X} = coneTC(V̂ ∪ Ŵ ) ∩ {xd+1 = 0} and therefore

X =

n⋂
i=1

{
x ∈ Td+1

±
∣∣ ai,d+1 ⊕ ai,1 � x1 ⊕ · · · ⊕ ai,d � xd � O

}
. �

We conclude with a strengthening of the separation theorems in [42, Section 5]
using the Pash property of TO-convexity shown in Theorem 3.3.

Theorem 6.5. Suppose that a set X ⊆ Td± is TO-convex. Then, the set cl(X) is
equal to the intersection of closed tropical halfspaces that contain it.

Furthermore, if X is a nonempty TO-convex cone, then cl(X) is equal to the
intersection of linear closed tropical halfspaces that contain it.

Proof. Let X be a TO-convex set. It is obvious that cl(X) is included in the
intersection of closed tropical halfspaces that contain it. To prove the opposite
inclusion, let y /∈ X. We can find `1, . . . , `d, r1, . . . , rd ∈ T± such that

`1 < y1 < r1, `2 < y2 < r2, . . . , `d < yd < rd

and such that the box B = [`1, r1]× [`2, r2]× · · · × [`d, rd] does not intersect cl(X).
Since B and X are TO-convex and disjoint, Theorem 3.3 implies that there exists
a TO-hemispace G such that X ⊆ G and B ⊆ Td± \G. Therefore, by Theorem 5.10,

there exists a closed tropical halfspace H+
(a) such that cl(X) ⊆ H+

(a) and B ⊆
H−(a). Furthermore, y belongs to the interior of B and so we have y ∈ H−(a) by
Lemma 2.4. Since y was arbitrary, we get the first claim.

To prove the second claim, suppose that X is a nonempty TO-convex cone and
let y /∈ cl(X). By the first part of the theorem, there exists a ∈ Td+1

± such that

cl(X) ⊆ H+
(a) and y ∈ H−(a). Since X is a nonempty cone, we have O ∈ cl(X).

In particular, a0 ≥ O. Let ã = (O, a1, . . . , ad). Then, y ∈ H−(ã). Suppose that

x ∈ cl(X) is such that x /∈ H+
(ã). Then, a1 � x1 ⊕ · · · ⊕ ad � xd < O and so

λ � x ∈ H−(a) for a sufficiently large λ > O. This gives a contradiction with

cl(X) ⊆ H+
(a). Hence, we have cl(X) ⊆ H+

(ã), which finishes the proof. �

7. Conclusion

One of our main results is the representation of a finitely generated TC-convex
set as an intersection of closed tropical halfspaces in Theorem 6.1. Furthermore,
we show in Theorem 4.10 that also the valuation of a closed convex semialgebraic
set has such a representation. This motivates the following.

Conjecture 7.1. For all closed TC-convex sets, we have

X =
⋂

a∈Td+1
±

{
H+

(a)
∣∣∣ X ⊆ H+

(a)
}
. (39)

Such a more general statement could be deduced from a more direct proof of
the representation by halfspaces. On one hand, it would be interesting to get
stronger separation without relying on the separation results over Puiseux series by
using Lemma 4.13 in the proof of Theorem 6.1. On the other hand, the proof of
Theorem 5.3 uses the Kuratowski–Zorn lemma which is highly non-constructive.

Question 7.2. How can one deduce Theorem 6.1 in a more constructive way?
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Example 3.28 discusses the Carathéodory number cd of TC-convexity. The ex-
amples gives a lower bound cd ≥ 2d complementing the upper bound cd ≤ d2d + 1
given in Proposition 3.27. Recall that TC-convexity extends the ‘usual’ tropical
convexity which has Carathéodory number d+ 1 as already shown in [34, 28, 21].

Question 7.3. What is the Carathéodory number of TC-convexity?

An approach for the former question would be via a better understanding of
the operator Faces(·). In Definition 3.11, we introduced it as a crucial building
block for the structure of TC-convex sets. On a more abstract level, the operator
produces certain cubical subcomplexes of the cubical complex formed by the faces
of a hypercube. A better understanding of these complexes might lead to a better
bound.
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[42] Georg Loho and László A. Végh. Signed Tropical Convexity. In Thomas Vidick, editor, 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020), volume 151 of Leibniz



SIGNED TROPICAL HALFSPACES AND CONVEXITY 47

International Proceedings in Informatics (LIPIcs), pages 24:1–24:35, Dagstuhl, Germany,

2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[43] Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. Tropical geometry and
machine learning. Proceedings of the IEEE, 109:728–755, 2021.

[44] D. Marker. Model Theory: An Introduction, volume 217 of Grad. Texts in Math. Springer,

New York, 2002.
[45] T. Markwig. A field of generalised Puiseux series for tropical geometry. Rend. Semin. Mat.,

Univ. Politec. Torino, 68(1):79–92, 2010.

[46] R. O. Robson. Separating points from closed convex sets over ordered fields and a metric for

R̃n. Trans. Amer. Math. Soc., 326(1):89–99, 1991.

[47] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1972.
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Appendix A. Details on semialgebraic sets

We give more explanations for the statement and proof of Proposition 4.8. We
refer to [44, Corollary 3.3.20] for another example of a proof that works in the same
way.

Extended proof of Proposition 4.8. Recall that X,Y ⊆ Kd are two nonempty con-
vex semialgebraic sets such that X ∩ Y = ∅. Since X, Y are semialgebraic, there
exist two first-order formulas φ(x1, . . . , xd, y1, . . . yn1), ψ(x1, . . . , xd, y1, . . . , yn2) in
the language of ordered fields and two vectors r ∈ Kn1 , s ∈ Kn2 such that

X = {x ∈ Kd : φ(x, r) is true in K} ,

Y = {x ∈ Kd : ψ(x, s) is true in K} .

For every w ∈ Kn1 , z ∈ Kn2 , let Xw,Yz be the semialgebraic sets defined as

Xw = {x ∈ Kd : φ(x,w) is true in K} ,

Yz = {x ∈ Kd : ψ(x, z) is true in K} .

Now, the statement

“For every w, z such that Xw,Yz are nonempty, convex, and dis-

joint, there exists a vector a such that Xw ⊆ H+
(a) and Yz ⊆

H−(a)”



48 GEORG LOHO AND MATEUSZ SKOMRA

can be written as sentence in the language of ordered fields. This sentence is true
over R by the hyperplane separation theorem, and so it is true over K by the
completeness of the theory of real closed fields. By taking (w, z) = (r, s) we obtain
the claim. �

Example A.1. The assumption that both sets X, Y are semialgebraic cannot be
dropped from Proposition 4.8 as the following example, taken from [46], shows.
Let A = {z ∈ K | z ≥ 0 ∧ val(z) < 0} and B = {z ∈ K | z ≥ 0 ∧ val(z) ≥ 0}. In
this way, A ∪B is the set of nonnegative Puiseux series, A does not have a least
upper bound in K, B does not have a greatest lower bound in K, and a < b for all
a ∈ A, b ∈ B. Let X = X1 ∪X2, where

X1 =
{

(x,y) ∈ K2
∣∣ x ≥ 0 ∧ (∀z ∈ B, y ≤ zx)

}
.

X2 =
{

(x,y) ∈ K2
∣∣ x ≤ 0 ∧ (∀z ∈ A, y ≤ zx)

}
.

We note that X is nonempty because it contains (0, 0). Also, both X1 and X2

arise as intersections of closed convex sets, so X1 and X2 are both convex and
closed. Hence X is closed. To see that X is also convex, let (x1,y1) ∈ X1

and (x2,y2) ∈ X2 be such that x1 > 0 and x2 < 0. Pick λ ∈ [0, 1] such that
λx1 + (1 − λ)x2 = 0 and let z = max(0,y1/x1). Since z is a lower bound for B,
we have z ∈ A. Hence λy1 + (1− λ)y2 ≤ z(λx1 + (1− λ)x2) = 0. Therefore, the
point λ(x1,y1) + (1 − λ)(x2,y2) belongs to both X1 and X2. Hence, the whole
segment between these two points belongs to X.

Despite the fact that X is closed and convex, it cannot be separated by a
hyperplane from any point w /∈ X. To see that, suppose that (c0, c1, c2) is
such that (c1, c2) 6= (0, 0) and c0 + c1x + c2y ≥ 0 for all (x,y) ∈ X. Since
(tx, 0), (0,−tx), (−tx,−tx), (tx, tx−0.5) ∈ X for arbitrarily large values of x > 0,
we have c1 > 0 and c2 < 0. Let z = c1/|c2|. If z ∈ A, then by taking any
z′ ∈ A that is greater than z and considering the points (tx, z′tx) ∈ X we get
c0 + c1t

x + c2z
′tx ≥ 0 ⇐⇒ z′ ≤ z + (c0/|c2|)t−x, which is a contradiction for x

large enough. Likewise, if z ∈ B, then by taking any z′ ∈ B that is smaller than
z and considering the points (−tx,−z′tx) ∈X we get c0 − c1t

x − c2z
′tx ≥ 0 ⇐⇒

z′ ≥ z − (c0/|c2|)t−x, which is a contradiction for x large enough.
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