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Optimal bounds for bit-sizes of stationary distributions in finite Markov chains

An irreducible stochastic matrix with rational entries has a stationary distribution given by a vector of rational numbers. We give an upper bound on the lowest common denominator of the entries of this vector. Bounds of this kind are used to study the complexity of algorithms for solving stochastic mean payoff games. They are usually derived using the Hadamard inequality, but this leads to suboptimal results. We replace the Hadamard inequality with the Markov chain tree formula in order to obtain optimal bounds. We also adapt our approach to obtain bounds on the absorption probabilities of finite Markov chains and on the gains and bias vectors of Markov chains with rewards.

Introduction

In this note, we study the following problem. Suppose that P ∈ [0, 1] n×n is an irreducible stochastic matrix whose entries are rational numbers with a common denominator M ∈ N. Then, the stationary distribution π ∈ ]0, 1] n of P is a vector with rational entries. Our aim is to obtain an optimal upper bound on the lowest common denominator of the numbers (π i ) n i=1 , which bounds the number of bits needed to encode π.

1.1. Context and motivation. Our main motivation to study the problem stated above comes from the area of stochastic mean payoff games, which form a generalization of finite Markov decision processes. A stochastic mean payoff game is a zero-sum game played by two players (Min and Max) who move a token along the edges of a finite directed graph G = (V, E). Some vertices of the graph are controlled by player Min, some are controlled by player Max, and some are controlled by nature, which moves the token according to some fixed probability distribution. Furthermore, each vertex v of the graph is equipped with an integer payoff r v ∈ Z. The players are supposed to play according to positional strategies, i.e., their decisions depend only on the current position of the token. In particular, if the token lands twice on the same vertex controlled by one of the two players, then this player makes the same decision on both occasions. As a consequence, once the strategies of the players are fixed, the movement of the token is described by a Markov chain (X 0 , X 1 , . . . ) on V , where X 0 is the starting position of the token, and the randomness of this process comes only from the random decisions made by the nature. The payoff of player Max is given by the average reward criterion lim

N →∞ 1 N E(r X 0 + • • • + r X N ) .
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Player Max aims to maximize this quantity, while player Min wants to minimize it. It is known that stochastic mean payoff games have always have optimal strategies [START_REF] Liggett | Stochastic games with perfect information and time average payoff[END_REF]. In other words, there exists a vector χ ∈ R V , known as the value of the game, such that player Max has a strategy that guarantees that the payoff is not smaller than χ v for all initial states v. Likewise, player Min has a strategy that guarantees that the payoff is not greater than χ v . In particular, if both player play optimally, then the final payoff is equal to χ v . Stochastic mean payoff games attracted a significant interest in the computer science literature thanks to their uncertain complexity status. Even though optimal strategies exist, finding them algorithmically is a nontrivial task. In particular, it is not known if these strategies can be found in polynomial time and this problem has been open for 30 years, even in some restrictive cases (deterministic mean payoff games and parity games) [START_REF] Condon | The complexity of stochastic games[END_REF][START_REF] Gurvich | Cyclic games and finding minimax mean cycles in digraphs[END_REF][START_REF] Emerson | Tree automata, mu-calculus and determinacy[END_REF]. We refer the reader to [START_REF] Andersson | The complexity of solving stochastic games on graphs[END_REF][START_REF] Zwick | The complexity of mean payoff games on graphs[END_REF][START_REF] Comin | Improved pseudo-polynomial bound for the value problems and optimal strategy synthesis in mean payoff games[END_REF][START_REF] Ibsen-Jensen | Solving simple stochastic games with few coin toss positions[END_REF][START_REF] Boros | A pseudo-polynomial algorithm for mean payoff stochastic games with perfect information and few random positions[END_REF][START_REF] Halman | Simple stochastic games, parity games, mean payoff games and discounted payoff games are all LP-type problems[END_REF][START_REF] Calude | Deciding parity games in quasipolynomial time[END_REF][START_REF] Czerwiński | Universal trees grow inside separating automata: Quasi-polynomial lower bounds for parity games[END_REF][START_REF] Filar | Competitive Markov Decision Processes[END_REF] for more information about mean payoff games and the related algorithmic issues. We also note that the one-player variant of these games is equivalent to Markov decision processes with average reward criterion, studied for instance in [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF].

Numerous algorithms for solving stochastic mean payoff games that are proposed in the literature, such as the value iteration algorithms or the pumping algorithm, approximate the value χ without knowing the optimal strategies of the game. When the value is approximated to a sufficient precision, a rounding procedure is used to find χ exactly. We refer to [START_REF] Condon | The complexity of stochastic games[END_REF][START_REF] Ibsen-Jensen | Solving simple stochastic games with few coin toss positions[END_REF][START_REF] Auger | Finding optimal strategies of almost acyclic simple stochastic games[END_REF][START_REF] Boros | A pseudo-polynomial algorithm for mean payoff stochastic games with perfect information and few random positions[END_REF] for examples of such algorithms. In order to use a rounding procedure, one needs to have a bound on the precision needed to recover χ. This is done by bounding the denominators of χ. Such a bound can be obtained using the Hadamard inequality, and this approach is used in [START_REF] Condon | The complexity of stochastic games[END_REF][START_REF] Auger | Finding optimal strategies of almost acyclic simple stochastic games[END_REF][START_REF] Akian | Generic uniqueness of the bias vector of finite zero-sum stochastic games with perfect information[END_REF][START_REF] Boros | A pseudo-polynomial algorithm for mean payoff stochastic games with perfect information and few random positions[END_REF], but it leads to suboptimal results in many cases of interest. In this note, we propose to use a more combinatorial approach, based on the Markov chain tree formula [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF]Lemma 3.2], to obtain optimized bounds. As noted above, χ is the payoff of player Max obtained when both players play optimally. Let (X 0 , X 1 , . . . ) be the Markov chain obtained under the optimal strategies and let P be its transition matrix. Our basic case of interest arises when P is irreducible. Then, [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]Appendix A.4] shows that χ does not depend on the initial state, χ = η(1, 1, . . . , 1), and η = r T π, where π is the stationary distribution of P . Thus, the denominator of η is not greater than the lowest common denominator of (π v ) v∈V , which leads to the problem stated in the first paragraph of this note.

Main results.

Throughout this note, we use the following notation. We denote [m] = {1, . . . , m} for m ∈ N. Furthermore, let P ∈ [0, 1] n be a stochastic matrix with rational entries and let X := (X 0 , X 1 , . . . ) be a Markov chain on the state space V := [n] with transition matrix P . In general, we do not suppose that P is irreducible, since most of our results do not require this assumption. For every i ∈ [n], let M i be the lowest common denominator of the entries in the ith row of P , and let M be the lowest common denominator of all the entries of P . We also put

D := M 1 M 2 . . . M n .
Moreover, we denote by C 1 , . . . , C p ⊂ [n] the recurrent classes of X and, for all ∈ [p], we denote by π ( ) ∈ ]0, 1] C the stationary distribution on C . Furthermore, let r ∈ Z n be a vector of integer numbers and let χ ∈ R n be the gain vector defined as ∀i, χ i := lim

N →∞ 1 N E(r X 0 + • • • + r X N | X 0 = i) .
We note that χ is well defined and given by ∀i,

χ i = p =1 ψ(i, C )η ( ) , (1) 
where ψ(i, C ) denotes the probability that the Markov chain starting at i reaches C , and η ( ) := j∈C r j π ( ) j for all ∈ [p]. The formula (1) follows from the ergodic theorem of finite Markov chains, see [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]Appendix A.4] and [13, Part I, §6- §9] for detailed information. Our main result is the following theorem for irreducible matrices and its corollary, which holds even if P is not irreducible. Theorem 1.1. Suppose that P is irreducible and let π ∈ ]0, 1] n denote its stationary distribution. Then, π is a vector of rational numbers whose lowest common denominator is not greater than min{nD, nM n-1 }.

Corollary 1.2. Suppose that χ = η(1, 1, . . . , 1) for some η ∈ R. Then, η is a rational number with denominator not greater than min{nD, nM n-1 }.

Before discussing these results, observe that M D M k , where k is the number of rows of P that have at least two nonzero entries, k := {i ∈ [n] : ∃j, 0 < P ij < 1}. In particular, we have the inequality min{nD, nM n-1 } nM min{k,n-1} .
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As noted above, our proof of Theorem 1.1 relies on a combinatorial formula for stationary distributions, known as the Markov chain tree formula [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF]Lemma 3.2]. By comparison, [START_REF] Akian | Generic uniqueness of the bias vector of finite zero-sum stochastic games with perfect information[END_REF]Lemma 4.10] uses the Hadamard inequality to obtain a bound n n/2 M n for the same problem. A more precise application of the Hadamard inequality is used in [START_REF] Boros | A pseudo-polynomial algorithm for mean payoff stochastic games with perfect information and few random positions[END_REF]Lemma 6] to obtain a bound of the form kn(2M ) k+1 . The inequality [START_REF] Akian | Ergodicity conditions for zero-sum games[END_REF] shows that our estimate is better than both of these bounds. Even more, in Proposition 3.2 we show that our bound is essentially optimal, in the sense that it cannot be improved even by a multiplicative constant. The proof of Proposition 3.2 also shows that this bound remains optimal even if we only want to bound the denominators of π i separately. We also note that the interest of having bounds that depend on k is that these types of bounds may be used for stochastic mean payoff games with bounded number of states controlled by nature, see [START_REF] Gimbert | Simple stochastic games with few random vertices are easy to solve[END_REF][START_REF] Ibsen-Jensen | Solving simple stochastic games with few coin toss positions[END_REF][START_REF] Auger | Finding optimal strategies of almost acyclic simple stochastic games[END_REF][START_REF] Boros | A pseudo-polynomial algorithm for mean payoff stochastic games with perfect information and few random positions[END_REF] for more discussion. Furthermore, we point out that [START_REF] Akian | Solving multichain stochastic games with mean payoff by policy iteration[END_REF] shows that the assumption of Corollary 1.2 is satisfied if X is irreducible or has only one recurrent class, but it may also be satisfied even if X has multiple recurrent classes. We refer to [START_REF] Akian | Ergodicity conditions for zero-sum games[END_REF][START_REF] Boros | A pseudo-polynomial algorithm for mean payoff stochastic games with perfect information and few random positions[END_REF] for conditions that ensure that a stochastic mean payoff game has a value that does not depend on the initial state.

Our next result is especially useful in the situation in which X has an absorbing state, P jj = 1, and we put r j := 1 and r i := 0 for all i = j.

In this case, [START_REF] Akian | Solving multichain stochastic games with mean payoff by policy iteration[END_REF] shows that the gain χ i is equal to the probability that the Markov chain starting at i reaches j. This situation arises in simple stochastic games [START_REF] Condon | The complexity of stochastic games[END_REF] and some of its generalizations [START_REF] Gimbert | Simple stochastic games with few random vertices are easy to solve[END_REF][START_REF] Auger | Finding optimal strategies of almost acyclic simple stochastic games[END_REF][START_REF] Auger | A generic strategy iteration method for simple stochastic games[END_REF]. In particular, in order to bound the denominator of χ i , we want to bound the denominators of absorption probabilities (which are rational numbers). To do so, we use an adaptation of the Markov chain tree formula to absorption probabilities, following the approach presented in [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF]. In order to state out estimate, let T ⊂ [n] denote the set of transient states of the Markov chain X and put D T := i∈T M i . Our approach gives the following result.

Theorem 1.3. The numbers ψ(i, C ) i∈[n], ∈[p]
are rational and their lowest common denominator is not greater that min{D T , M n-2 }.

As previously, we have the inequality D T M k T , where k T k denotes the number of rows of P that have at least two nonzero entries and represent transient states of the Markov chain, i.e.,

k T = {i ∈ [n] : i is transient and there exists j ∈ [n] such that 0 < P ij < 1} .
In particular, we have

min{D T , M n-2 } M min{k T ,n-2} (3) 
and this bound improves the bounds obtained in the literature using the Hadamard inequality [START_REF] Condon | The complexity of stochastic games[END_REF][START_REF] Auger | Finding optimal strategies of almost acyclic simple stochastic games[END_REF]. Furthermore, this bound is tight as shown in Example 3.5. Combining Corollary 1.2, Theorem 1.3, and (1), we obtain the following estimate on the gain vector in general chains.

Corollary 1.4. The numbers (χ i ) i∈ [n] are rational and their lowest common denominator is not greater than 3 s/2 D, where s denotes the number of recurrent states of a Markov chain with transition matrix P .

The main difference between the bounds of Corollary 1.2 and Corollary 1.4 is that the latter bound is exponential in s. The example presented in [START_REF] Boros | On discounted approximations of undiscounted stochastic games and Markov decision processes with limited randomness[END_REF] shows that this is unavoidable in general chains even if k = 1.

To state our final result, we recall the notion of a bias vector. Given P and r, [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]Theorem 8.2.6] shows that the gain χ can be found by solving the system of equalities

P χ = χ P u = χ + u -r (4)
in variables (χ, u) ∈ R 2n . More precisely, (4) has a solution and any such solution (χ , u) satisfies χ = χ. If (χ, u) is a solution of ( 4), then we say that u is a bias vector. In general, a bias vector is not unique, even up to an additive constant. Bias vectors play an important role in the policy iteration algorithms for Markov decision processes [29, Chapter 9] and for stochastic mean payoff games [START_REF] Akian | Solving multichain stochastic games with mean payoff by policy iteration[END_REF]. Moreover, in a recent work, Allamigeon, Gaubert, Katz, and Skomra proposed a condition number for stochastic mean payoff games that governs the complexity of the value iteration algorithm [START_REF] Allamigeon | Condition numbers of stochastic mean payoff games and what they say about nonarchimedean semidefinite programming[END_REF][START_REF] Allamigeon | Universal complexity bounds based on value iteration and application to entropy games[END_REF]. This condition number depends on the quantity inf u u H , where the infimum goes over all bias vectors of the Shapley operator associated with a stochastic mean payoff game, and • H denotes the Hilbert seminorm,

u H := max i u i -min i u i . Since u H 2 u ∞ ,
one can use the supremum norm to bound inf u u H . The complexity estimates on value iteration obtained in [START_REF] Allamigeon | Universal complexity bounds based on value iteration and application to entropy games[END_REF] rely on Theorem 1.1 and on the following result. Theorem 1.5. Suppose that u ∈ R n is a bias vector of (r, P ). We have the following estimates: i) if for every ∈ [p] there exists i ∈ C such that

u i = 0, then u ∞ 2 r ∞ n min{D, M n-1 }; ii) if i∈C u i π ( ) i = 0 for all ∈ [p], then u ∞ 4 r ∞ n min{D, M n-1 }.
The discussion in [29, Section 8.2.3] implies that bias vectors of both kinds exist for any pair (r, P ). Furthermore, these types of bias vectors are particularly useful in the policy iteration algorithms for Markov decision processes [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]Section 9.2].

A preliminary version of the results presented in this note appeared in the PhD thesis of the author [START_REF] Skomra | Tropical spectrahedra: Application to semidefinite programming and mean payoff games[END_REF]Chapter 8]. We note that Theorem 1.3, which was only briefly mentioned in [START_REF] Skomra | Tropical spectrahedra: Application to semidefinite programming and mean payoff games[END_REF]Remark 8.46], has since been obtained independently by Auger, Badin de Montjoye, and Strozecki [7, Theorem 23], using a similar technique (the proof in [START_REF] Auger | A generic strategy iteration method for simple stochastic games[END_REF] is based on the matrix tree theorem).

1.3. Organization of the paper. The rest of the paper is organized as follows. In Section 2.1 we present the necessary notions on directed trees and forests, which are used in the Markov chain tree formula. In Section 2.2 we present this formula and its adaptation to absorption probabilities. Section 3.1 contains the proofs of Theorems 1.1 and 1.3 and their corollaries. Finally, we present the proof of Theorem 1.5 in Section 3.2.

Preliminaries

2.1. Rooted trees and forests. Let G = (V, E) be a directed graph. In this paper, we allow a directed graph to have loops, but not multiple edges, i.e., we suppose that E is a subset of {(u, v) : u, v ∈ V }. If E ⊂ E is a subset of edges, then we denote by G(E ) = (V, E ) the subgraph that consists of all the vertices of G, but the edges taken only from E . Definition 2.1. Let E ⊂ E. We say that the graph G(E ) is a rooted forest if it does not have any directed cycles and every vertex of G(E ) has at most one outgoing edge. We say that a vertex v ∈ V is a root of G(E ) if it has no outgoing edges. We say that G(E ) is a rooted tree if it is a rooted forest and has exactly one root.

(In Definition 2.1 we use the convention that a loop is a directed cycle, so that a rooted forest does not have any loops.) Figure 1 depicts a rooted forest. Before presenting the relationship between the rooted forests and Markov chains, let us give a few comments about Definition 2.1. First, we point out that a rooted forest is, indeed, a forest, i.e., it does not contain any undirected cycle. This follows from the fact that any undirected cycle that does not come from a directed cycle contains a vertex with two outgoing edges. Second, we note that the number of connected components of a rooted forest is equal to the number of its roots. This follows from the fact that from every vertex there is a unique directed path leading to a root. In particular, a rooted tree has one connected component, i.e., it is a tree. The following remark explains the vocabulary and conventions used in Definition 2.1.

Remark 2.2. Since we suppose that G(E ) contains all the vertices of G, the objects that we are considering are, in fact, spanning rooted forests and trees. Since we never consider forests that are not spanning, we drop the word "spanning" from the definition. We also point out that rooted forests are also called branchings and rooted trees are called arborescences. Furthermore, we note that in our definition, rooted forests are oriented in such a way that every edge points "towards the root." However, the opposite convention is commonly used in the literature, cf. [START_REF] Edmonds | Optimum branchings[END_REF] or [START_REF] Schrijver | Combinatorial Optimization. Polyhedra and Efficiency[END_REF]Section 3.2].

The choice of orientation that we made in Definition 2.1 is justified by the fact that the orientation "towards the root" corresponds to the direction of transition between states in the Markov chains that we discuss in Section 2.2.

Combinatorial formulas for Markov chains.

As in the introduction, we denote by X := (X 0 , X 

∀v ∈ W, P(∃ , X / ∈ W | X 0 = v) > 0 .
We note that the definition above does not imply that the chain cannot come back to W after leaving it. In particular, W can contain some recurrent states, but not a whole recurrent class. This also implies that the condition of Definition 2.3 can be replaced by a stronger one-if W is open and v ∈ W , then the chain starting at v will leave W almost surely.

If W ⊂ V is open, we denote by τ W := inf{ 1 : X / ∈ W } the moment when the chain leaves W for the first time. Furthermore, for every v, w ∈ W we let

ζ W vw := E τ W -1 =0 1 {X =w} X 0 = v
be the expected number of visits in w before leaving W , provided that the chain starts at v. The following result gives a formula for computing ζ W vw .

Lemma 2.4 ([25, Theorem 3.5.4(1)]). Let P W ×W denote the submatrix of P formed by the rows and columns from W . Then, the matrix (I -P ) is invertible and (I -P ) -1 vw = ζ W vw for all v, w ∈ W . An alternative combinatorial formula for ζ W vw is given by Catoni in [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF], where it is used to derive the Markov chain tree formula. In order to introduce it, we recall that a finite Markov chain is naturally associated with a directed graph representing its transitions. More precisely, we define the graph G = (V, E) by the condition (v, w) ∈ E ⇐⇒ P vw > 0. We can consider that this graph is weighted, with weights p(e) that correspond to the probabilities of transitions, i.e., if e = (v, w) ∈ E, then p(e) := P vw . We also extend this definition to subsets of edges by taking the product. More precisely, if E ⊂ E, then we define the weight of E as the product of the weights of its elements,

p(E ) := e∈E p(e) = (v,w)∈E P vw .
The formulas that we present below consider only subsets of edges that give rise to rooted forests and trees. To this end, we denote

F(R) := {E ⊂ E : G(E ) is a rooted forest
and its set of roots is equal to R} .

It is also useful to consider the forests that contain a directed path between two fixed vertices. We denote

F vw (R) := {E ∈ F(R) : G(E ) contains a directed path from v to w} .
We use the convention that if v = w, then F vw (R) := F(R). If R = {w } is a singleton, then we use the notation F(w ) and F vw (w ) instead of F({w }), F vw ({w }). In this way, we can think of F(w ) as the set of rooted trees whose root is w .

Lemma 2.5 ([12, Lemma 3.1]). Suppose that W ⊂ V is open and denote

S := V \ W . Then, for every v, w ∈ W we have ζ W vw = E ∈Fvw(S∪{w}) p(E ) E ∈F (S) p(E ) -1 .
Remark 2.6. We note that Lemma 2.5 is stated in [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF] only for nontrivial subsets of irreducible chains, but the proof presented in [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF] applies to arbitrary open sets of finite Markov chains. Lemma 2.5 leads to the following two corollaries. The first one characterizes the stationary distributions of irreducible Markov chains. This corollary is known as the Markov chain tree formula, and was discovered by numerous authors [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF][START_REF] Kohler | The frequency of cyclic processes in biological multistate systems[END_REF][START_REF] Shubert | A flow-graph formula for the stationary distribution of a Markov chain[END_REF][START_REF] Solberg | A graph theoretic formula for the steady state distribution of finite Markov processes[END_REF], see also [START_REF] Pitman | Tree formulas, mean first passage times and Kemeny's constant of a Markov chain[END_REF] for more information. The second one characterizes the probabilities of absorption in different recurrent classes. We give the proof of the second corollary, since it is not stated in [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF]. Corollary 2.7 (Markov chain tree formula, [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF]Lemma 3.2]). Suppose that the Markov chain is irreducible. Then, its stationary distribution π ∈ ]0, 1] V is given by the formula

∀w ∈ V, π w = E ∈F (w) p(E ) v∈V E ∈F (v) p(E ) -1 .
Corollary 2.8. Let S ⊂ V denote the set of all recurrent states of the Markov chain and let C ⊂ S be a recurrent class. Suppose that v ∈ V is a transient state and let ψ(v, C) be the probability that the chain starting at v reaches C. Then, we have the equality

ψ(v, C) = w∈C E ∈Fvw(S) p(E ) E ∈F (S) p(E ) -1 .
Proof. Let W := V \S denote the set of transient states and fix w ∈ C. Then, [START_REF] Kemeny | Finite Markov Chains[END_REF]Theorem 3.5.4] implies that the probability that the chain starting at v ∈ W goes to w when it leaves W is equal to

w ∈W P w w ζ W vw .
Moreover, by Lemma 2.5 we have

w ∈W P w w ζ W vw = w ∈W P w w E ∈F vw (S∪{w }) p(E ) E ∈F (S) p(E ) -1 = w ∈W E ∈F vw (S∪{w }) P w w p(E ) E ∈F (S)
p(E )

-1 = E ∈Fvw(S) p(E ) E ∈F (S) p(E ) -1
.

We obtain the claimed result by summing over w ∈ C.

Proofs of the main theorems

In this section, we give the proofs of our main theorems. Section 3.1 contains the proofs of Theorems 1.1 and 1.3 and Section 3.2 contains the proof of Theorem 1.5.

Stationary distributions and absorption probabilities.

The proof of our main theorem for irreducible chains relies on the following observation.

Lemma 3.1. Let Q ∈ {D, M n-1 } and suppose that E ⊂ E is such that G(E ) is a rooted tree. Then, p(E )Q is a natural number.
Proof. Since G(E ) has exactly n -1 edges, p(E ) is a product of n -1 rational numbers with common denominator M . Hence, p(E )M n-1 is a natural number. Moreover, since every vertex of G(E ) has at most one outgoing edge, the product in p(E ) involves at most one number taken from the first row of P , at most one number taken from the second row of P , at most one number taken from the third row of P and so on. Therefore, p(E )D is also a natural number.

1 2 n -1 n p 1 M p n-1 M p 2 M p n-2 M 1 . . . 1 -p 1 M 1 -p 2 M 1 -p n-1 M Figure 2. An irreducible Markov chain from Proposition 3.2.
Proof of Theorem 1.1. Let Q ∈ {D, M n-1 }. By Corollary 2.7, for every w ∈ V we have

π w = Q E ∈F (w) p(E ) Q v∈V E ∈F (v) p(E )
.

By Lemma 3.1, the numerator and the denominator of the above fraction are natural numbers. In particular,

Q v∈V E ∈F (v) p(E )
is a common denominator (π v ) v . Furthermore, note that for every v ∈ V we have

E ∈F (v) p(E ) w =v ( w P ww ) = 1 . (5) 
Indeed, w =v ( w P ww ) is the total weight of all graphs G(E ) in which v has no outgoing edges and every other vertex has exactly one outgoing edge. Since every tree rooted at v has these properties, we get [START_REF] Allamigeon | Universal complexity bounds based on value iteration and application to entropy games[END_REF]. Therefore, the lowest common denominator of (π v ) v is not greater than

Q v∈V E ∈F (v) p(E ) nQ .
The next proposition shows that the bound of Theorem 1.1 is optimal for any fixed n. More precisely, let g(n, M ) denote the optimal bound that could be obtained in Theorem 1.1 for any fixed n, M , under the additional assumption that D = M n-1 . Then, we have the following result. Proposition 3.2. For every n 2 we have lim sup

M →+∞ g(n, M ) nM n-1 = 1 .
Proof. We have g(n, M ) nM n-1 by Theorem 1.1. To prove the opposite inequality, fix n 2 and ε > 0. The following construction shows that we can find an arbitrarily large M 1 and an irreducible Markov chain on n states such that the lowest common denominator of (π v ) v is not smaller than (1 -ε)nM n-1 . To do this, let (m 1 , m 2 , . . . ) = (2, 3, 5, . . . ) be the sequence of prime numbers and let δ > 0 be such that ( 1 1+δ ) n-1 1 -ε. For sufficiently large q n we have m n δ(m q !). Take any such q and let M = m q ! + m n , so that M

(1 + δ)m q !. Furthermore, let p 1 = m q ! + m 1 , p 2 = m q ! + m 2 , . . . , p n = m q ! + m n = M . We note that the numbers (p 1 , . . . , p n ) are pairwise coprime. Indeed, if a prime number m divides m q ! + m i and m q ! + m j , then it also divides |m i -m j |. Since |m i -m j | is smaller than m n m q , the number m also divides m q ! and so it divides both m i and m j , which is a contradiction. Consider the irreducible Markov chain shown in Figure 2 and note that this chain satisfies D = M n-1 . Moreover, in this chain every state v ∈ [n] is a root of exactly one rooted tree and the weight of this tree is equal to w =v pw M . Hence, if we denote Q v = p 1 . . . p n /p v for all v, then Corollary 2.7 shows that the stationary distribution of this chain is given by

∀v, π v = Q v w∈V Q w . ( 6 
)
We note that the numbers Q v are natural. Even more, the fraction in ( 6) is simple. Indeed, if a prime number m divides Q v , then it divides exactly one of p 1 , . . . , p n because these numbers are pairwise coprime. Suppose that m divides p i . Then, m divides Q w for all w = i and it does not divide Q i .

In particular, m does not divide w∈V Q w , showing that the fraction in ( 6) cannot be simplified. Therefore, the lowest common denominator of (π v ) v is equal to w∈V Q v . Furthermore, we have

w∈V Q w np 1 . . . p n-1 n(m q !) n-1 n( 1 1 + δ ) n-1 M n-1 (1 -ε)nM n-1 .
Remark 3.3. The fact that the fractions in [START_REF] Andersson | The complexity of solving stochastic games on graphs[END_REF] are simple implies that the bound of Theorem 1.1 remains optimal even if one only wants to bound the denominators of π v separately.

The theorem for absorption probabilities follows by a similar argument. The following lemma is analogous to Lemma 3.1. Lemma 3.4. Let Q ∈ {D T , M n-2 } and let S ⊂ V denote the set of recurrent states of X . Suppose that |S| 2 and that E ⊂ E is such that G(E ) is a forrest rooted at S. Then, p(E )Q is a natural number.

Proof. Since |S| 2, the graph G(E ) has at least two roots, and so p(E ) is a product of at most n -2 rational numbers with common denominator M . Thus, p(E )M n-2 is a natural number. Furthermore, p(E ) is a product obtained by taking one number from each row of P that corresponds to a transient state of X . Therefore, p(E )D T is also a natural number.

Proof of Theorem 1.3. Let S ⊂ V denote the set of recurrent states of X . If X has exactly one recurrent state w ∈ V , then ψ(v, {w}) = 1 for all v = w and the claim is trivial. From now on we suppose that |S| 2. Let Q ∈ {D T , M n-2 }. Then, Corollary 2.8 shows that for every v ∈ V we have We now present the proofs of Corollaries 1.2 and 1.4.

ψ(v, C) = Q w∈C E ∈Fvw(S) p(E ) Q E ∈F (S) p(E ) . 1 2 n -2 n n -1 1 M 1 M 1 M 1 M 1 -1 M 1 -1 M 1 -1 M . . .
Proof of Corollary 1.2. Let v ∈ V be a recurrent state of X belonging to some recurrent class C ⊂ V . Then, [START_REF] Akian | Solving multichain stochastic games with mean payoff by policy iteration[END_REF] shows that η = w∈C r w π w , where π ∈ R C is the stationary distribution of C. Hence, by applying Theorem 1.1 to C we get that η is a rational number and that its denominator is not greater than min{nD, nM n-1 }. =0 1 {X =w} denote the number of times the Markov chain visits w before leaving W . Under this notation, we have ζ W vw = E(Z|X 0 = v). Furthermore, let q ∈ [0, 1] denote the probability that the Markov chain starting at w goes back to w before leaving W , i.e., q := P(Z 2|X 0 = w).

Since W is open, there exists a simple path in G that starts in w and ends in some state that is outside W . The probability that the Markov chain starting from w follows this path is not smaller than 1/D W . Therefore, q 1 -D -1 W . Furthermore, note that for all t 1 we have P(Z t|X 0 = v) q t-1 , because in order to achieve Z t the chain starting from v has to reach w and subsequently go back to w at least t -1 times. Thus,

ζ W vw = E(Z|X 0 = v) = ∞ t=1 P(Z t|X 0 = v) ∞ t=1 q t-1 = 1 1 -q D W .
To prove Theorem 1.5, we start with the irreducible case and then move to the general case. Lemma 3.7. Theorem 1.5 is true when P is irreducible.

Proof. We start by proving the case i). Let u ∈ R V be a bias vector such that u n = 0 (the proof if analogous if u v = 0 for some other v ∈ V ). Denote W := V \{n} and let P ∈ R W ×W be the matrix obtained from P by deleting the last row and column. Likewise, let û, r ∈ R W be the vectors obtained from u, r by deleting their last coordinates. Let π ∈ ]0, 1] V be the stationary distribution of P and denote η = v∈V π v r v ∈ R, so that χ = η(1, 1, . . . , 1). We note that |η| r ∞ . The definition of the bias vector and the fact that u n = 0 imply the equality P û = η + ûr. Since W is an open set, Lemma 2.4 gives û = (I -P ) -1 (-η + r). Hence, Lemma 3.6 shows that û ∞ 2 r ∞ (n -1) min{D, M n-1 } 2 r ∞ n min{D, M n-1 } .

To prove the second case, note that the kernel of the matrix (I -P ) is equal to {λ(1, 1, . . . , 1) : λ ∈ R}. Therefore, the set of bias vectors of (r, P ) is given by {λ + u : λ ∈ R}, where u is a bias such that u n = 0. Thus, all bias vectors have the same Hilbert seminorm and the previous case gives

u H = u H 2 u ∞ 4 r ∞ n min{D, M n-1 } .
Since π T u = 0, for all v ∈ V we get

|u v | = | w∈V π w (u v -u w )| max w∈V |u v -u w | u H 4 r ∞ n min{D, M n-1 } .

Figure 1 .

 1 Figure 1. A rooted forest with two roots.
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 13 Figure 3. A Markov chain from Example 3.5.
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 2361 Estimating a bias vector. We now give our estimates concerning bias vectors. Our proof of Theorem 1.5 is based on the following lemma. Suppose that W ⊂ V is open and let P W ×W denote the submatrix of P formed by the rows and columns from W . Then, we have(I -P ) -w∈W M w min{D, M n-1 }. Proof. Let D W := w∈W M w . We have D W min{D, M n-1 } because W has at most n -1 states. By Lemma 2.4, we have (I -P ) -1 vw = ζ W vw for all v, w ∈ W . Fix v, w and let τ W = inf{ 1 : X / ∈ W } denote the moment when the Markov chain leaves W for the first time. Moreover, let Z := τ W -1

  Proof of Corollary 1.4. Let C 1 , . . . , C p denote the recurrent classes of X . Furthermore, for every ∈ [p] let π ( ) ∈ R C be the stationary distribution on C and let D ∈ N be defined as D := v∈C M v . By combining Theorems 1.1 and 1.3 we get that the lowest common denominator of the numbers ψ(v, C ) v∈V, ∈[p] , π |C 1 | . . . |C p |D 1 . . . D p D T = |C 1 | . . . |C p |D . Therefore, (1) implies that the numbers (χ v ) v∈V are rational and that their lowest common denominator is not greater than |C 1 | . . . |C p |D. By the inequality of arithmetic and geometric means we get |C 1 | . . . |C p | (s/p) p . Furthermore, the function f : R >0 → R defined as f (p) := p ln(s) -p ln(p) achieves its maximum when ln(p) = ln(s) -1, i.e., p = s/e. Therefore, we get (s/p)

	( ) v	∈[p],v∈C	is not greater than

p e s/e . Since e 1/e < 1.5 < √ 3, we obtain |C 1 | . . . |C p | 3 s/2 , which finishes the proof.

Proof of Theorem 1.5. The proof of both cases follows from Lemma 3.7 using the same argument, so we focus only on i). Let S := ∪ p =1 C denote the set of recurrent states of X and W := V \ S denote the set of transient states. For every , let P ( ) ∈ R C ×C denote the submatrix of P formed by the rows and columns with indices in C , and let u ( ) , r ( ) ∈ R C denote the restrictions of u, r to the indices from C . The equations ( 1) and ( 4) imply that u ( ) is a bias of (r ( ) , P ( ) ). Therefore, Lemma 3.7 implies that for all

denote the submatrix of P formed by the rows from W and columns from S and P ∈ R W ×W denote the submatrix of P formed by the rows and columns from W . Define a vector u ∈ R S as ∀v ∈ S, u v := u ( ) v , where is such that v ∈ C . Furthermore, let χ, û, r ∈ R W denote the vectors χ, u, r restricted to the coordinates from W . By the definition of the bias vector we have P û + P u = χ + ûr. Since W is an open set, Lemma 2.4 gives û = (I -P ) -1 (-χ + r + P u). Moreover, (1) implies that χ ∞ r ∞ . Hence, by Lemma 3.6 we get

Furthermore, let R := (I -P ) -1 P ∈ R W ×S . By [START_REF] Kemeny | Finite Markov Chains[END_REF]Theorem 3.5.4], for every w ∈ W, v ∈ S, R wv is the probability that the Markov chain starting at w goes to v when it leaves W . Hence R wv 0 and v∈S R wv = 1 for all w ∈ W . Therefore, we get

and so û ∞ 2 r ∞ n min{D, M n-1 }.