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OPTIMAL BOUNDS FOR BIT-SIZES OF STATIONARY
DISTRIBUTIONS IN FINITE MARKOV CHAINS

MATEUSZ SKOMRA

Abstract. An irreducible stochastic matrix with rational entries has a
stationary distribution given by a vector of rational numbers. We give
an upper bound on the lowest common denominator of the entries of
this vector. Bounds of this kind are used to study the complexity of
algorithms for solving stochastic mean payoff games. They are usually
derived using the Hadamard inequality, but this leads to suboptimal
results. We replace the Hadamard inequality with the Markov chain tree
formula in order to obtain optimal bounds. We also adapt our approach
to obtain bounds on the absorption probabilities of finite Markov chains
and on the gains and bias vectors of Markov chains with rewards.

1. Introduction

In this note, we study the following problem. Suppose that P ∈ [0, 1]n×n
is an irreducible stochastic matrix whose entries are rational numbers with a
common denominator M ∈ N. Then, the stationary distribution π ∈ ]0, 1]n
of P is a vector with rational entries. Our aim is to obtain an optimal upper
bound on the lowest common denominator of the numbers (πi)ni=1, which
bounds the number of bits needed to encode π.

1.1. Context and motivation. Our main motivation to study the problem
stated above comes from the area of stochastic mean payoff games, which
form a generalization of finite Markov decision processes. A stochastic mean
payoff game is a zero-sum game played by two players (Min and Max) who
move a token along the edges of a finite directed graph ~G = (V,E). Some
vertices of the graph are controlled by player Min, some are controlled by
player Max, and some are controlled by nature, which moves the token
according to some fixed probability distribution. Furthermore, each vertex
v of the graph is equipped with an integer payoff rv ∈ Z. The players
are supposed to play according to positional strategies, i.e., their decisions
depend only on the current position of the token. In particular, if the token
lands twice on the same vertex controlled by one of the two players, then
this player makes the same decision on both occasions. As a consequence,
once the strategies of the players are fixed, the movement of the token is
described by a Markov chain (X0, X1, . . . ) on V , where X0 is the starting
position of the token, and the randomness of this process comes only from
the random decisions made by the nature. The payoff of player Max is given
by the average reward criterion

lim
N→∞

1
N

E(rX0 + · · ·+ rXN
) .

1
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Player Max aims to maximize this quantity, while player Min wants to min-
imize it. It is known that stochastic mean payoff games have always have
optimal strategies [27]. In other words, there exists a vector χ ∈ RV , known
as the value of the game, such that player Max has a strategy that guaran-
tees that the payoff is not smaller than χv for all initial states v. Likewise,
player Min has a strategy that guarantees that the payoff is not greater
than χv. In particular, if both player play optimally, then the final payoff
is equal to χv. Stochastic mean payoff games attracted a significant inter-
est in the computer science literature thanks to their uncertain complexity
status. Even though optimal strategies exist, finding them algorithmically
is a nontrivial task. In particular, it is not known if these strategies can
be found in polynomial time and this problem has been open for 30 years,
even in some restrictive cases (deterministic mean payoff games and parity
games) [15, 22, 18]. We refer the reader to [6, 34, 14, 24, 10, 23, 11, 16, 19]
for more information about mean payoff games and the related algorithmic
issues. We also note that the one-player variant of these games is equiva-
lent to Markov decision processes with average reward criterion, studied for
instance in [29].

Numerous algorithms for solving stochastic mean payoff games that are
proposed in the literature, such as the value iteration algorithms or the
pumping algorithm, approximate the value χ without knowing the optimal
strategies of the game. When the value is approximated to a sufficient
precision, a rounding procedure is used to find χ exactly. We refer to [15, 24,
8, 10] for examples of such algorithms. In order to use a rounding procedure,
one needs to have a bound on the precision needed to recover χ. This is
done by bounding the denominators of χ. Such a bound can be obtained
using the Hadamard inequality, and this approach is used in [15, 8, 3, 10],
but it leads to suboptimal results in many cases of interest. In this note, we
propose to use a more combinatorial approach, based on the Markov chain
tree formula [12, Lemma 3.2], to obtain optimized bounds. As noted above,
χ is the payoff of player Max obtained when both players play optimally.
Let (X0, X1, . . . ) be the Markov chain obtained under the optimal strategies
and let P be its transition matrix. Our basic case of interest arises when P
is irreducible. Then, [29, Appendix A.4] shows that χ does not depend on
the initial state, χ = η(1, 1, . . . , 1), and η = rTπ, where π is the stationary
distribution of P . Thus, the denominator of η is not greater than the lowest
common denominator of (πv)v∈V , which leads to the problem stated in the
first paragraph of this note.

1.2. Main results. Throughout this note, we use the following notation.
We denote [m] = {1, . . . ,m} for m ∈ N. Furthermore, let P ∈ [0, 1]n be
a stochastic matrix with rational entries and let X := (X0, X1, . . . ) be a
Markov chain on the state space V := [n] with transition matrix P . In
general, we do not suppose that P is irreducible, since most of our results
do not require this assumption. For every i ∈ [n], let Mi be the lowest
common denominator of the entries in the ith row of P , and let M be the
lowest common denominator of all the entries of P . We also put

D := M1M2 . . .Mn .
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Moreover, we denote by C1, . . . , Cp ⊂ [n] the recurrent classes of X and, for
all ` ∈ [p], we denote by π(`) ∈ ]0, 1]C` the stationary distribution on C`.
Furthermore, let r ∈ Zn be a vector of integer numbers and let χ ∈ Rn be
the gain vector defined as

∀i, χi := lim
N→∞

1
N

E(rX0 + · · ·+ rXN
| X0 = i) .

We note that χ is well defined and given by

∀i, χi =
p∑
`=1

ψ(i, C`)η(`) , (1)

where ψ(i, C`) denotes the probability that the Markov chain starting at i
reaches C`, and η(`) :=

∑
j∈C`

rjπ
(`)
j for all ` ∈ [p]. The formula (1) follows

from the ergodic theorem of finite Markov chains, see [29, Appendix A.4] and
[13, Part I, §6–§9] for detailed information. Our main result is the following
theorem for irreducible matrices and its corollary, which holds even if P is
not irreducible.
Theorem 1.1. Suppose that P is irreducible and let π ∈ ]0, 1]n denote its
stationary distribution. Then, π is a vector of rational numbers whose lowest
common denominator is not greater than min{nD, nMn−1}.
Corollary 1.2. Suppose that χ = η(1, 1, . . . , 1) for some η ∈ R. Then, η is
a rational number with denominator not greater than min{nD, nMn−1}.

Before discussing these results, observe that M 6 D 6 Mk, where k is
the number of rows of P that have at least two nonzero entries, k := {i ∈
[n] : ∃j, 0 < Pij < 1}. In particular, we have the inequality

min{nD, nMn−1} 6 nMmin{k,n−1} . (2)
As noted above, our proof of Theorem 1.1 relies on a combinatorial for-

mula for stationary distributions, known as the Markov chain tree formula
[12, Lemma 3.2]. By comparison, [3, Lemma 4.10] uses the Hadamard in-
equality to obtain a bound nn/2Mn for the same problem. A more precise
application of the Hadamard inequality is used in [10, Lemma 6] to obtain
a bound of the form kn(2M)k+1. The inequality (2) shows that our esti-
mate is better than both of these bounds. Even more, in Proposition 3.2 we
show that our bound is essentially optimal, in the sense that it cannot be
improved even by a multiplicative constant. The proof of Proposition 3.2
also shows that this bound remains optimal even if we only want to bound
the denominators of πi separately. We also note that the interest of having
bounds that depend on k is that these types of bounds may be used for
stochastic mean payoff games with bounded number of states controlled by
nature, see [21, 24, 8, 10] for more discussion. Furthermore, we point out
that (1) shows that the assumption of Corollary 1.2 is satisfied if X is ir-
reducible or has only one recurrent class, but it may also be satisfied even
if X has multiple recurrent classes. We refer to [2, 10] for conditions that
ensure that a stochastic mean payoff game has a value that does not depend
on the initial state.

Our next result is especially useful in the situation in which X has an
absorbing state, Pjj = 1, and we put rj := 1 and ri := 0 for all i 6= j.
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In this case, (1) shows that the gain χi is equal to the probability that
the Markov chain starting at i reaches j. This situation arises in simple
stochastic games [15] and some of its generalizations [21, 8, 7]. In particular,
in order to bound the denominator of χi, we want to bound the denominators
of absorption probabilities (which are rational numbers). To do so, we use
an adaptation of the Markov chain tree formula to absorption probabilities,
following the approach presented in [12]. In order to state out estimate, let
T ⊂ [n] denote the set of transient states of the Markov chain X and put
DT :=

∏
i∈T Mi. Our approach gives the following result.

Theorem 1.3. The numbers
(
ψ(i, C`)

)
i∈[n],`∈[p] are rational and their lowest

common denominator is not greater that min{DT ,M
n−2}.

As previously, we have the inequality DT 6 MkT , where kT 6 k denotes
the number of rows of P that have at least two nonzero entries and represent
transient states of the Markov chain, i.e.,
kT = {i ∈ [n] : i is transient and there exists j ∈ [n] such that 0 < Pij < 1} .
In particular, we have

min{DT ,M
n−2} 6Mmin{kT ,n−2} (3)

and this bound improves the bounds obtained in the literature using the
Hadamard inequality [15, 8]. Furthermore, this bound is tight as shown in
Example 3.5. Combining Corollary 1.2, Theorem 1.3, and (1), we obtain
the following estimate on the gain vector in general chains.

Corollary 1.4. The numbers (χi)i∈[n] are rational and their lowest com-
mon denominator is not greater than 3s/2D, where s denotes the number of
recurrent states of a Markov chain with transition matrix P .

The main difference between the bounds of Corollary 1.2 and Corollary 1.4
is that the latter bound is exponential in s. The example presented in [9]
shows that this is unavoidable in general chains even if k = 1.

To state our final result, we recall the notion of a bias vector. Given P
and r, [29, Theorem 8.2.6] shows that the gain χ can be found by solving
the system of equalities {

Pχ = χ

Pu = χ+ u− r
(4)

in variables (χ, u) ∈ R2n. More precisely, (4) has a solution and any such
solution (χ′, u) satisfies χ′ = χ. If (χ, u) is a solution of (4), then we say
that u is a bias vector. In general, a bias vector is not unique, even up to an
additive constant. Bias vectors play an important role in the policy iteration
algorithms for Markov decision processes [29, Chapter 9] and for stochastic
mean payoff games [1]. Moreover, in a recent work, Allamigeon, Gaubert,
Katz, and Skomra proposed a condition number for stochastic mean payoff
games that governs the complexity of the value iteration algorithm [4, 5].
This condition number depends on the quantity infu ‖u‖H , where the in-
fimum goes over all bias vectors of the Shapley operator associated with
a stochastic mean payoff game, and ‖ · ‖H denotes the Hilbert seminorm,
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‖u‖H := maxi ui − mini ui. Since ‖u‖H 6 2‖u‖∞, one can use the supre-
mum norm to bound infu ‖u‖H . The complexity estimates on value iteration
obtained in [5] rely on Theorem 1.1 and on the following result.

Theorem 1.5. Suppose that u ∈ Rn is a bias vector of (r, P ). We have the
following estimates:

i) if for every ` ∈ [p] there exists i` ∈ C` such that ui` = 0, then ‖u‖∞ 6
2‖r‖∞nmin{D,Mn−1};

ii) if
∑
i∈C`

uiπ
(`)
i = 0 for all ` ∈ [p], then ‖u‖∞ 6 4‖r‖∞nmin{D,Mn−1}.

The discussion in [29, Section 8.2.3] implies that bias vectors of both
kinds exist for any pair (r, P ). Furthermore, these types of bias vectors are
particularly useful in the policy iteration algorithms for Markov decision
processes [29, Section 9.2].

A preliminary version of the results presented in this note appeared in the
PhD thesis of the author [32, Chapter 8]. We note that Theorem 1.3, which
was only briefly mentioned in [32, Remark 8.46], has since been obtained
independently by Auger, Badin de Montjoye, and Strozecki [7, Theorem 23],
using a similar technique (the proof in [7] is based on the matrix tree theo-
rem).

1.3. Organization of the paper. The rest of the paper is organized as
follows. In Section 2.1 we present the necessary notions on directed trees
and forests, which are used in the Markov chain tree formula. In Section 2.2
we present this formula and its adaptation to absorption probabilities. Sec-
tion 3.1 contains the proofs of Theorems 1.1 and 1.3 and their corollaries.
Finally, we present the proof of Theorem 1.5 in Section 3.2.

2. Preliminaries

2.1. Rooted trees and forests. Let ~G = (V,E) be a directed graph. In
this paper, we allow a directed graph to have loops, but not multiple edges,
i.e., we suppose that E is a subset of {(u, v) : u, v ∈ V }. If E′ ⊂ E is a subset
of edges, then we denote by ~G(E′) = (V,E′) the subgraph that consists of
all the vertices of ~G, but the edges taken only from E′.

Definition 2.1. Let E′ ⊂ E. We say that the graph ~G(E′) is a rooted forest
if it does not have any directed cycles and every vertex of ~G(E′) has at most
one outgoing edge. We say that a vertex v ∈ V is a root of ~G(E′) if it has
no outgoing edges. We say that ~G(E′) is a rooted tree if it is a rooted forest
and has exactly one root.

(In Definition 2.1 we use the convention that a loop is a directed cycle,
so that a rooted forest does not have any loops.) Figure 1 depicts a rooted
forest. Before presenting the relationship between the rooted forests and
Markov chains, let us give a few comments about Definition 2.1. First, we
point out that a rooted forest is, indeed, a forest, i.e., it does not contain any
undirected cycle. This follows from the fact that any undirected cycle that
does not come from a directed cycle contains a vertex with two outgoing
edges. Second, we note that the number of connected components of a
rooted forest is equal to the number of its roots. This follows from the
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Figure 1. A rooted forest with two roots.

fact that from every vertex there is a unique directed path leading to a
root. In particular, a rooted tree has one connected component, i.e., it is a
tree. The following remark explains the vocabulary and conventions used in
Definition 2.1.

Remark 2.2. Since we suppose that ~G(E′) contains all the vertices of ~G,
the objects that we are considering are, in fact, spanning rooted forests
and trees. Since we never consider forests that are not spanning, we drop
the word “spanning” from the definition. We also point out that rooted
forests are also called branchings and rooted trees are called arborescences.
Furthermore, we note that in our definition, rooted forests are oriented in
such a way that every edge points “towards the root.” However, the opposite
convention is commonly used in the literature, cf. [17] or [30, Section 3.2].
The choice of orientation that we made in Definition 2.1 is justified by the
fact that the orientation “towards the root” corresponds to the direction of
transition between states in the Markov chains that we discuss in Section 2.2.

2.2. Combinatorial formulas for Markov chains. As in the introduc-
tion, we denote by X := (X0, X1, . . . ) a Markov chain on the space V := [n]
with transition matrix P . We start by recalling the definition of an open
set, see [25, § 3.5].

Definition 2.3. We say that a nonempty subset of sets W ⊂ V is open if
the chain starting at any state v ∈W can leaveW with nonzero probability,

∀v ∈W, P(∃`,X` /∈W | X0 = v) > 0 .

We note that the definition above does not imply that the chain cannot
come back toW after leaving it. In particular,W can contain some recurrent
states, but not a whole recurrent class. This also implies that the condition
of Definition 2.3 can be replaced by a stronger one—ifW is open and v ∈W ,
then the chain starting at v will leave W almost surely.

If W ⊂ V is open, we denote by τW := inf{` > 1: X` /∈ W} the moment
when the chain leavesW for the first time. Furthermore, for every v, w ∈W
we let

ζWvw := E
(τW−1∑
`=0

1{X`=w}

∣∣∣X0 = v
)
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be the expected number of visits in w before leaving W , provided that the
chain starts at v. The following result gives a formula for computing ζWvw.

Lemma 2.4 ([25, Theorem 3.5.4(1)]). Let P̂W×W denote the submatrix of
P formed by the rows and columns from W . Then, the matrix (I − P̂ ) is
invertible and (I − P̂ )−1

vw = ζWvw for all v, w ∈W .

An alternative combinatorial formula for ζWvw is given by Catoni in [12],
where it is used to derive the Markov chain tree formula. In order to in-
troduce it, we recall that a finite Markov chain is naturally associated with
a directed graph representing its transitions. More precisely, we define the
graph ~G = (V,E) by the condition (v, w) ∈ E ⇐⇒ Pvw > 0. We can
consider that this graph is weighted, with weights p(e) that correspond to
the probabilities of transitions, i.e., if e = (v, w) ∈ E, then p(e) := Pvw. We
also extend this definition to subsets of edges by taking the product. More
precisely, if E′ ⊂ E, then we define the weight of E′ as the product of the
weights of its elements,

p(E′) :=
∏
e∈E′

p(e) =
∏

(v,w)∈E′
Pvw .

The formulas that we present below consider only subsets of edges that give
rise to rooted forests and trees. To this end, we denote

F(R) := {E′ ⊂ E : ~G(E′) is a rooted forest
and its set of roots is equal to R} .

It is also useful to consider the forests that contain a directed path between
two fixed vertices. We denote

Fvw(R) := {E′ ∈ F(R) : ~G(E′) contains a directed path from v to w} .

We use the convention that if v = w, then Fvw(R) := F(R). If R = {w′} is a
singleton, then we use the notation F(w′) and Fvw(w′) instead of F({w′}),
Fvw({w′}). In this way, we can think of F(w′) as the set of rooted trees
whose root is w′.

Lemma 2.5 ([12, Lemma 3.1]). Suppose that W ⊂ V is open and denote
S := V \W . Then, for every v, w ∈W we have

ζWvw =
( ∑
E′∈Fvw(S∪{w})

p(E′)
)( ∑

E′∈F(S)
p(E′)

)−1
.

Remark 2.6. We note that Lemma 2.5 is stated in [12] only for nontriv-
ial subsets of irreducible chains, but the proof presented in [12] applies to
arbitrary open sets of finite Markov chains.

Lemma 2.5 leads to the following two corollaries. The first one character-
izes the stationary distributions of irreducible Markov chains. This corollary
is known as the Markov chain tree formula, and was discovered by numerous
authors [20, 26, 31, 33], see also [28] for more information. The second one
characterizes the probabilities of absorption in different recurrent classes.
We give the proof of the second corollary, since it is not stated in [12].
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Corollary 2.7 (Markov chain tree formula, [12, Lemma 3.2]). Suppose that
the Markov chain is irreducible. Then, its stationary distribution π ∈ ]0, 1]V
is given by the formula

∀w ∈ V, πw =
( ∑
E′∈F(w)

p(E′)
)(∑

v∈V

∑
E′∈F(v)

p(E′)
)−1

.

Corollary 2.8. Let S ⊂ V denote the set of all recurrent states of the
Markov chain and let C ⊂ S be a recurrent class. Suppose that v ∈ V is a
transient state and let ψ(v, C) be the probability that the chain starting at v
reaches C. Then, we have the equality

ψ(v, C) =
(∑
w∈C

∑
E′∈Fvw(S)

p(E′)
)( ∑

E′∈F(S)
p(E′)

)−1
.

Proof. LetW := V \S denote the set of transient states and fix w ∈ C. Then,
[25, Theorem 3.5.4] implies that the probability that the chain starting at
v ∈W goes to w when it leaves W is equal to∑

w′∈W
Pw′wζ

W
vw′ .

Moreover, by Lemma 2.5 we have∑
w′∈W

Pw′wζ
W
vw′ =

∑
w′∈W

Pw′w
( ∑
E′∈Fvw′ (S∪{w′})

p(E′)
)( ∑

E′∈F(S)
p(E′)

)−1

=
( ∑
w′∈W

∑
E′∈Fvw′ (S∪{w′})

Pw′wp(E′)
)( ∑

E′∈F(S)
p(E′)

)−1

=
( ∑
E′∈Fvw(S)

p(E′)
)( ∑

E′∈F(S)
p(E′)

)−1
.

We obtain the claimed result by summing over w ∈ C. �

3. Proofs of the main theorems

In this section, we give the proofs of our main theorems. Section 3.1
contains the proofs of Theorems 1.1 and 1.3 and Section 3.2 contains the
proof of Theorem 1.5.

3.1. Stationary distributions and absorption probabilities. The proof
of our main theorem for irreducible chains relies on the following observation.

Lemma 3.1. Let Q ∈ {D,Mn−1} and suppose that E′ ⊂ E is such that
~G(E′) is a rooted tree. Then, p(E′)Q is a natural number.

Proof. Since ~G(E′) has exactly n − 1 edges, p(E′) is a product of n − 1
rational numbers with common denominator M . Hence, p(E′)Mn−1 is a
natural number. Moreover, since every vertex of ~G(E′) has at most one
outgoing edge, the product in p(E′) involves at most one number taken
from the first row of P , at most one number taken from the second row of
P , at most one number taken from the third row of P and so on. Therefore,
p(E′)D is also a natural number. �
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1 2 n− 1 n

p1
M

pn−1
M

p2
M

pn−2
M

1

. . .

1− p1
M 1− p2

M 1− pn−1
M

Figure 2. An irreducible Markov chain from Proposition 3.2.

Proof of Theorem 1.1. Let Q ∈ {D,Mn−1}. By Corollary 2.7, for every
w ∈ V we have

πw =
Q
∑
E′∈F(w) p(E′)

Q
∑
v∈V

∑
E′∈F(v) p(E′)

.

By Lemma 3.1, the numerator and the denominator of the above fraction
are natural numbers. In particular,

Q
∑
v∈V

∑
E′∈F(v)

p(E′)

is a common denominator (πv)v. Furthermore, note that for every v ∈ V we
have ∑

E′∈F(v)
p(E′) 6

∏
w 6=v

(
∑
w′

Pww′) = 1 . (5)

Indeed,
∏
w 6=v(

∑
w′ Pww′) is the total weight of all graphs ~G(E′) in which v

has no outgoing edges and every other vertex has exactly one outgoing edge.
Since every tree rooted at v has these properties, we get (5). Therefore, the
lowest common denominator of (πv)v is not greater than

Q
∑
v∈V

∑
E′∈F(v)

p(E′) 6 nQ . �

The next proposition shows that the bound of Theorem 1.1 is optimal
for any fixed n. More precisely, let g(n,M) denote the optimal bound that
could be obtained in Theorem 1.1 for any fixed n,M , under the additional
assumption that D = Mn−1. Then, we have the following result.

Proposition 3.2. For every n > 2 we have

lim sup
M→+∞

g(n,M)
nMn−1 = 1 .

Proof. We have g(n,M) 6 nMn−1 by Theorem 1.1. To prove the opposite
inequality, fix n > 2 and ε > 0. The following construction shows that we
can find an arbitrarily large M > 1 and an irreducible Markov chain on
n states such that the lowest common denominator of (πv)v is not smaller
than (1 − ε)nMn−1. To do this, let (m1,m2, . . . ) = (2, 3, 5, . . . ) be the
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sequence of prime numbers and let δ > 0 be such that ( 1
1+δ )n−1 > 1 − ε.

For sufficiently large q > n we have mn 6 δ(mq!). Take any such q and let
M = mq! + mn, so that M 6 (1 + δ)mq!. Furthermore, let p1 = mq! + m1,
p2 = mq! + m2, . . . , pn = mq! + mn = M . We note that the numbers
(p1, . . . , pn) are pairwise coprime. Indeed, if a prime number m divides
mq! + mi and mq! + mj , then it also divides |mi −mj |. Since |mi −mj | is
smaller thanmn 6 mq, the numberm also dividesmq! and so it divides both
mi and mj , which is a contradiction. Consider the irreducible Markov chain
shown in Figure 2 and note that this chain satisfies D = Mn−1. Moreover,
in this chain every state v ∈ [n] is a root of exactly one rooted tree and the
weight of this tree is equal to

∏
w 6=v

pw

M . Hence, if we denoteQv = p1 . . . pn/pv
for all v, then Corollary 2.7 shows that the stationary distribution of this
chain is given by

∀v, πv = Qv∑
w∈V Qw

. (6)

We note that the numbers Qv are natural. Even more, the fraction in (6)
is simple. Indeed, if a prime number m divides Qv, then it divides exactly
one of p1, . . . , pn because these numbers are pairwise coprime. Suppose that
m divides pi. Then, m divides Qw for all w 6= i and it does not divide Qi.
In particular, m does not divide

∑
w∈V Qw, showing that the fraction in (6)

cannot be simplified. Therefore, the lowest common denominator of (πv)v
is equal to

∑
w∈V Qv. Furthermore, we have∑

w∈V
Qw > np1 . . . pn−1 > n(mq!)n−1 > n( 1

1 + δ
)n−1Mn−1 > (1− ε)nMn−1 .

�

Remark 3.3. The fact that the fractions in (6) are simple implies that the
bound of Theorem 1.1 remains optimal even if one only wants to bound the
denominators of πv separately.

The theorem for absorption probabilities follows by a similar argument.
The following lemma is analogous to Lemma 3.1.

Lemma 3.4. Let Q ∈ {DT ,M
n−2} and let S ⊂ V denote the set of recurrent

states of X . Suppose that |S| > 2 and that E′ ⊂ E is such that ~G(E′) is a
forrest rooted at S. Then, p(E′)Q is a natural number.

Proof. Since |S| > 2, the graph ~G(E′) has at least two roots, and so p(E′)
is a product of at most n − 2 rational numbers with common denominator
M . Thus, p(E′)Mn−2 is a natural number. Furthermore, p(E′) is a product
obtained by taking one number from each row of P that corresponds to a
transient state of X . Therefore, p(E′)DT is also a natural number. �

Proof of Theorem 1.3. Let S ⊂ V denote the set of recurrent states of X .
If X has exactly one recurrent state w ∈ V , then ψ(v, {w}) = 1 for all
v 6= w and the claim is trivial. From now on we suppose that |S| > 2. Let
Q ∈ {DT ,M

n−2}. Then, Corollary 2.8 shows that for every v ∈ V we have

ψ(v, C) =
Q
∑
w∈C

∑
E′∈Fvw(S) p(E′)

Q
∑
E′∈F(S) p(E′)

.
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1 2 n− 2 n

n− 1

1
M

1
M

1
M
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1− 1
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1− 1
M

. . .

1

1

Figure 3. A Markov chain from Example 3.5.

By Lemma 3.4, both the numerator and the denominator of the fraction
above are natural numbers. Furthermore, we have∑

E′∈F(S)
p(E′) 6

∏
w/∈S

(
∑
w′

Pww′) = 1 .

Hence, the lowest common denominator of
(
ψ(v, C)

)
v∈V,C∈C is not greater

than
Q

∑
E′∈F(S)

p(E′) 6 Q . �

The bound of Theorem 1.3 is attained for every value of n,M as shown
by the next example.

Example 3.5. Consider the Markov chain depicted in Figure 3. It is clear
that we have DT = Mn−2 and ψ(1, n) = 1/Mn−2, showing that the bound
of Theorem 1.3 is attained.

We now present the proofs of Corollaries 1.2 and 1.4.

Proof of Corollary 1.2. Let v ∈ V be a recurrent state of X belonging to
some recurrent class C ⊂ V . Then, (1) shows that η =

∑
w∈C rwπw, where

π ∈ RC is the stationary distribution of C. Hence, by applying Theorem 1.1
to C we get that η is a rational number and that its denominator is not
greater than min{nD, nMn−1}. �

Proof of Corollary 1.4. Let C1, . . . , Cp denote the recurrent classes of X .
Furthermore, for every ` ∈ [p] let π(`) ∈ RC` be the stationary distribu-
tion on C` and let D` ∈ N be defined as D` :=

∏
v∈C`

Mv. By combining
Theorems 1.1 and 1.3 we get that the lowest common denominator of the
numbers

((
ψ(v, C`)

)
v∈V,`∈[p],

(
π

(`)
v
)
`∈[p],v∈C`

)
is not greater than

|C1| . . . |Cp|D1 . . . DpDT = |C1| . . . |Cp|D .

Therefore, (1) implies that the numbers (χv)v∈V are rational and that their
lowest common denominator is not greater than |C1| . . . |Cp|D. By the in-
equality of arithmetic and geometric means we get |C1| . . . |Cp| 6 (s/p)p.
Furthermore, the function f : R>0 → R defined as f(p) := p ln(s) − p ln(p)
achieves its maximum when ln(p) = ln(s) − 1, i.e., p = s/e. Therefore, we
get (s/p)p 6 es/e. Since e1/e < 1.5 <

√
3, we obtain |C1| . . . |Cp| 6 3s/2,

which finishes the proof. �
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3.2. Estimating a bias vector. We now give our estimates concerning
bias vectors. Our proof of Theorem 1.5 is based on the following lemma.

Lemma 3.6. Suppose that W ⊂ V is open and let P̂W×W denote the sub-
matrix of P formed by the rows and columns from W . Then, we have
‖(I − P̂ )−1‖∞ 6

∏
w∈W Mw 6 min{D,Mn−1}.

Proof. Let DW :=
∏
w∈W Mw. We have DW 6 min{D,Mn−1} because W

has at most n − 1 states. By Lemma 2.4, we have (I − P̂ )−1
vw = ζWvw for

all v, w ∈ W . Fix v, w and let τW = inf{` > 1: X` /∈ W} denote the
moment when the Markov chain leaves W for the first time. Moreover, let
Z :=

∑τW−1
`=0 1{X`=w} denote the number of times the Markov chain visits

w before leaving W . Under this notation, we have ζWvw = E(Z|X0 = v).
Furthermore, let q ∈ [0, 1] denote the probability that the Markov chain
starting at w goes back to w before leaving W , i.e., q := P(Z > 2|X0 = w).
SinceW is open, there exists a simple path in ~G that starts in w and ends in
some state that is outsideW . The probability that the Markov chain starting
from w follows this path is not smaller than 1/DW . Therefore, q 6 1−D−1

W .
Furthermore, note that for all t > 1 we have P(Z > t|X0 = v) 6 qt−1,
because in order to achieve Z > t the chain starting from v has to reach w
and subsequently go back to w at least t− 1 times. Thus,

ζWvw = E(Z|X0 = v) =
∞∑
t=1

P(Z > t|X0 = v) 6
∞∑
t=1

qt−1 = 1
1− q 6 DW . �

To prove Theorem 1.5, we start with the irreducible case and then move
to the general case.

Lemma 3.7. Theorem 1.5 is true when P is irreducible.

Proof. We start by proving the case i). Let u ∈ RV be a bias vector such
that un = 0 (the proof if analogous if uv = 0 for some other v ∈ V ). Denote
W := V \{n} and let P̂ ∈ RW×W be the matrix obtained from P by deleting
the last row and column. Likewise, let û, r̂ ∈ RW be the vectors obtained
from u, r by deleting their last coordinates. Let π ∈ ]0, 1]V be the stationary
distribution of P and denote η =

∑
v∈V πvrv ∈ R, so that χ = η(1, 1, . . . , 1).

We note that |η| 6 ‖r‖∞. The definition of the bias vector and the fact
that un = 0 imply the equality P̂ û = η + û − r̂. Since W is an open set,
Lemma 2.4 gives û = (I − P̂ )−1(−η + r̂). Hence, Lemma 3.6 shows that

‖û‖∞ 6 2‖r‖∞(n− 1) min{D,Mn−1} 6 2‖r‖∞nmin{D,Mn−1} .
To prove the second case, note that the kernel of the matrix (I−P ) is equal
to {λ(1, 1, . . . , 1) : λ ∈ R}. Therefore, the set of bias vectors of (r, P ) is given
by {λ+u : λ ∈ R}, where u is a bias such that un = 0. Thus, all bias vectors
have the same Hilbert seminorm and the previous case gives

‖u‖H = ‖u‖H 6 2‖u‖∞ 6 4‖r‖∞nmin{D,Mn−1} .
Since πTu = 0, for all v ∈ V we get

|uv| = |
∑
w∈V

πw(uv−uw)| 6 max
w∈V
|uv−uw| 6 ‖u‖H 6 4‖r‖∞nmin{D,Mn−1} .

�
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Proof of Theorem 1.5. The proof of both cases follows from Lemma 3.7 us-
ing the same argument, so we focus only on i). Let S := ∪p`=1C` denote
the set of recurrent states of X and W := V \ S denote the set of transient
states. For every `, let P (`) ∈ RC`×C` denote the submatrix of P formed
by the rows and columns with indices in C`, and let u(`), r(`) ∈ RC` denote
the restrictions of u, r to the indices from C`. The equations (1) and (4)
imply that u(`) is a bias of (r(`), P (`)). Therefore, Lemma 3.7 implies that
for all ` ∈ [p] we have ‖u(`)‖∞ 6 2‖r‖∞|S|min{D,Mn−1}. Let P ∈ RW×S
denote the submatrix of P formed by the rows from W and columns from
S and P̂ ∈ RW×W denote the submatrix of P formed by the rows and
columns from W . Define a vector u ∈ RS as ∀v ∈ S, uv := u

(`)
v , where ` is

such that v ∈ C`. Furthermore, let χ̂, û, r̂ ∈ RW denote the vectors χ, u, r
restricted to the coordinates from W . By the definition of the bias vector
we have P̂ û + Pu = χ̂ + û − r̂. Since W is an open set, Lemma 2.4 gives
û = (I − P̂ )−1(−χ̂ + r̂ + Pu). Moreover, (1) implies that ‖χ‖∞ 6 ‖r‖∞.
Hence, by Lemma 3.6 we get

‖(I − P̂ )−1(−χ̂+ r̂)‖∞ 6 2‖r‖∞|W |min{D,Mn−1} .

Furthermore, let R := (I − P̂ )−1P ∈ RW×S . By [25, Theorem 3.5.4], for
every w ∈ W, v ∈ S, Rwv is the probability that the Markov chain starting
at w goes to v when it leaves W . Hence Rwv > 0 and

∑
v∈S Rwv = 1 for all

w ∈W . Therefore, we get

‖(I − P̂ )−1Pu‖∞ 6 ‖u‖∞ 6 2‖r‖∞|S|min{D,Mn−1}

and so ‖û‖∞ 6 2‖r‖∞nmin{D,Mn−1}. �
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