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Set-Theoretic Estimation of Hybrid
System Configurations

Emmanuel Benazera and Louise Travé-Massuyès, Senior Member, IEEE

Abstract—Hybrid systems serve as a powerful modeling par-
adigm for representing complex continuous controlled systems
that exhibit discrete switches in their dynamics. The system and
the models of the system are nondeterministic due to operation
in uncertain environment. Bayesian belief update approaches to
stochastic hybrid system state estimation face a blow up in the
number of state estimates. Therefore, most popular techniques
try to maintain an approximation of the true belief state by
either sampling or maintaining a limited number of trajectories.
These limitations can be avoided by using bounded intervals to
represent the state uncertainty. This alternative leads to splitting
the continuous state space into a finite set of possibly overlapping
geometrical regions that together with the system modes form con-
figurations of the hybrid system. As a consequence, the true system
state can be captured by a finite number of hybrid configurations.
A set of dedicated algorithms that can efficiently compute these
configurations is detailed. Results are presented on two systems of
the hybrid system literature.

Index Terms—Configurations, estimation, hybrid systems,
numerically bounded uncertainty.

I. INTRODUCTION

THIS PAPER is concerned with the state estimation of
plants that are modeled as hybrid systems with uncer-

tainty. It is targeted at the monitoring and diagnosis of these
plants. Most of the modern controlled systems exhibit contin-
uous dynamics with abrupt switches. These systems can be
modeled with a mixture of discrete and continuous variables.
The discrete dynamics evolve according to the switches that
are represented by transitions among a set of discrete modes.
The behavioral continuous dynamics are modeled within each
mode, often by a set of discrete-time equations. In general, the
full hybrid state remains only partially observable. Depending
on the level of abstraction of the model, or because of phys-
ical or design impediments, some switches cannot directly be
observed neither. The estimation of the hybrid state is the oper-
ation that reconstructs the whole hybrid state based on a stream
of measurements and the knowledge of the hybrid model. This
is also known as hybrid state filtering, and the module that
performs this operation is called a filter. Most plants operate
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in uncertain environments and are not accurately known due
to the presence of sensor and process uncertainties. As a con-
sequence, transitions among modes may be nondeterministic,
and continuous behavioral models may embed a representa-
tion of instrumentation and process uncertainties. It follows
that modern filtering algorithms must cope with uncertainty.
Probabilities and bounded sets are two main representations of
uncertainty.

State estimation of hybrid systems has received increased
attention in the last decade or so. However, while the systems
are hybrid in nature, a first set of methods and algorithms for
hybrid state estimation has remained close to continuous state
estimation techniques [1]–[3]. Another cluster of approaches
has mixed a heterogeneous set of techniques for continuous
state estimation with qualitative reasoning [4]–[8]. Another
set is formed with particle filtering methods whose focus is
on the sampling of discrete transitions [9]–[11]. This group
of filters has emerged as the set of most popular techniques.
Basically, they apply a Bayesian belief update to stochastic
hybrid systems [10]–[14]. The filter computes a posterior prob-
ability distribution function (pdf) on the continuous part of
the state for each mode. Measurement likelihood w.r.t. the
pdfs is used with transition probabilities to rank the possible
hybrid state estimates. These methods all suffer from several
weaknesses.

The main drawback is an inevitable blowup of the number of
state estimates, which are also called hypotheses. It stems from
the fact that the statistics that are maintained on hypotheses
with the same discrete states cannot be merged without loss.
The blowup is particularly intractable when the hybrid system
represents faults by discrete switches that may occur at any
time. Several works have explored methods for mitigating the
blowup: through better use of available information by looking
ahead [15] or by enumerating the first few best estimates [16];
by merging estimates [17], [18]; and hierarchical filtering [19],
risk sensitive sampling [20], learning [21], forward heuristic
search [14], or mixed sampling and search [22]. However, the
blowup remains inevitable, and some states with low probabili-
ties must be dropped. Unfortunately, this can lead to the loss of
the true state [23].

A second problem lies in the infinite tails of the representa-
tional pdfs. In practice, the Gaussian distribution is widely used
for representing the belief states due to its good statistical prop-
erties. The distribution tails are the cause of several problems
by notably preventing unambiguous fault detection [24] and
elimination of hypotheses. Working with truncated Gaussian
pdfs [25] has been studied as an alternative, but is unattractive
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due to the loss of the statistical properties, e.g., Bayes’ rule does
not yield a truncated Gaussian.1

Additionally, the stochastic modeling of faults is weak, since
for a good part, the modeled faults have never been observed,
and, thus, a priori numerical knowledge such as probability of
occurrence is indicative at best. The reliability of the produced
results can, therefore, be questioned. Nevertheless, the literature
has produced a plethora of algorithms that run a recurrent and
rigorous Bayesian belief update on these values and that require
the computation of difficult integrands [26].

Finally, current modeling formalisms do not accept con-
straints that mix discrete and continuous variables. In general,
constraints over discrete variables apply to operational modes,
and a set of linear or nonlinear equations link continuous vari-
ables in each mode. However, in case of software systems or ab-
stracted continuous behavior systems, qualitative descriptions
are better suited [27], [28]. There is a need for constraints that
formally capture dependencies between variables of different
types. The absence of such constraints prevents a natural con-
nection between variables of different types and, consequently,
decouples variables that are strongly coupled in nature.

Adding up the facts, it appears that pdfs are simply badly
suited to the state estimation of uncertain hybrid systems with
fault models. Such considerations are not new even for con-
tinuous systems [29]. Tackling the ambiguity that plagues the
stochastic filters recommends a bounded representation of un-
certainty as adopted in set-theoretic approaches. Set-theoretic
state estimation of linear and nonlinear systems [30]–[33]
has been studied before, but not the case of hybrid systems.
This paper fills this gap by developing a hybrid scheme that
supports bounded uncertainty with interval models. A special
look is given at the articulation of discrete and continuous
dynamics in that case. Doing so aims at circumventing most of
the drawbacks that have been mentioned. Bounded uncertainty
yields several advantages compared to pdfs. First, it provides
guaranteed results, i.e., an enclosure of the whole set of real
solutions. For this reason, the use of bounded uncertainty has
been popular in applications to fault detection and diagnosis,
since it avoids false-positive detections [34]. Second, and most
importantly, it prevents exponential blowup in the number of
state estimates. The reason behind this key property is that
estimates with identical discrete states can be merged with no
loss of information, i.e., preserving completeness; although this
comes at a price. The recursive computation of convex bounded
trajectories suffers from the well-known wrapping effect that
results from the convex enclosure at each prediction step. This
is because the convex bounds provide an outer approximation
of complex geometrical shapes, and their computation is thus
plagued with a recursively growing error. This problem calls for
aggressive optimization techniques to mitigate the error growth.
Another well-known problem related to intervals is multiple
incident parameters. Specific strategies like optimization over a
time-sliding window may then be required [35]. Summarizing,

1Interestingly, whenever some data or signal is discarded from a Gaussian
distribution for falling below a threshold, the resulting data do obey a truncated
Gaussian. Applying Bayes rule and approximating the resulting belief state with
a new Gaussian increases the error recursively.

the computational burden of a stochastic filter comes from the
need of tracking a very high number of belief states, whereas
that of set-theoretic hybrid state estimation lies in the compu-
tation of tight bounds. However, as this paper shows, switched
systems sometimes offer a cheap way of tightening the bounds
as a side effect of their chopped dynamics.

The alternative idea proposed in this paper leads to splitting
the continuous state space into a finite set of possibly overlap-
ping geometrical regions that, together with the system modes,
form configurations of the hybrid system. As a consequence,
the true system state can be captured by a finite number
of hybrid configurations. This paper contrasts with the pure
prediction performed in reachability analysis of hybrid systems
[36]. First, because our estimator reconstructs the hybrid state
for arbitrary continuous dynamics and switching conditions.
Second, because it incrementally operates in sampled time:
discrete switches that occur between two sampled time steps
are reconstructed by our estimator.

Overall, this paper proposes a hybrid estimation method
that aims at computing an outer approximation of the hybrid
state. In Section II, this paper formalizes a hybrid modeling
scheme that naturally embeds both bounded uncertainty and
mixed discrete/continuous constraints over the hybrid state.
Based on these two ingredients, it is shown that there exists
a special form of mixed constraints that fully capture a system
hybrid configuration under uncertainty. Here, a configuration
is a mixed continuous/discrete constraint that characterizes the
possible hybrid states of the system at a given point in time.
Configurations are detailed in Section III. The hybrid state
estimation process is developed in Section IV. It is a matured
version of the work initiated in [37]. The experimental results
are given in Section V.

II. HYBRID SYSTEM WITH UNKNOWN BUT

BOUNDED UNCERTAINTY

We represent a physical plant as a nondeterministic and
uncertain hybrid discrete-time model. This representation has
several key features that significantly differ from the existing
formalisms. First, all continuously valued variables are as-
sumed to be uncertain but numerically bounded. Second, the
formalism uses two timescales in parallel for the discrete and
continuous dynamics, respectively. This permits an unknown
but finite number of instantaneous switches in the discrete
dynamics to occur in-between two steps of the continuous
dynamics. Third, the representation does not make any par-
ticular assumption on the conditions triggering the switches,
particularly w.r.t. the continuous state of the system. Finally,
the model supports both qualitative and quantitative behavioral
representations. For this reason, our formalism is richer than
more traditional ones such as [38] and suitable for modeling
a wide range of physical components and plants. To help
the reader throughout this paper, Table I sums up the main
notations.

Definition 1 (Hybrid System): A hybrid system H is repre-
sented by a tuple

H = (X,E,Q, T , L,Θ) (1)
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TABLE I
MAIN NOTATIONS

where X = {Xd,Xc} is the set of discrete and continuous
variables, respectively, E is the set of difference equations, Q
is the set of propositional formulas, T is the set of transitions,
L is the set of continuous mapping functions associated to
transitions, and Θ’s are the initial variable values.

A. Variables and States

A hybrid system H abstracts the behavior of a physical
system through a set of functional modes. The system mode is
xm, which has domain {m1, . . . ,mnm

}. The full discrete state
is noted as π = (xm,xd), where xd = [xd1, . . . , xdnd

]T is the
vector of other discretely valued variables used to describe qual-
itatively abstracted continuous behavior within modes. There-
fore, Xd = {xm, xd1, . . . , xdnd

}. The system mode is assumed
not to be directly observable. yd denotes the observable subpart
of xd. The vector of actually observed discrete values is noted
as ỹd. The discrete input vector is noted as ud.

The continuous dynamics of the system are captured by the
continuous state vector xc = [xc1, . . . , xcnc

]T , the observation
vector yc, and the continuously valued input vector uc. The
vector of actually observed values is noted as ỹc. Xc is the set
of all continuous variables. The continuous state is represented
with uncertainty in a bounded form. Thus, xc is an interval
vector (a box) in the continuous state space. That is, xc is
a closed and connected rectangular subset of �nc , or equiva-
lently, xc ∈ IRnc , where IR is the set of real-valued intervals.
The hybrid state of the system is noted as s = (π,xc).

B. Time and Dynamics

1) Continuous Dynamics: Every mode is associated to a
unique continuous evolution model. The continuous behavior
of the physical system is modeled by a finite set of differ-
ence equations in E with uncertain but bounded parameters.
In each mode, xm corresponds to a subset of discrete-time

equations of the following standard form, assuming a sampling
period Ts:

xc,k = f(xc,k−1,uc,k−1,wc,k−1, xm) (2)

yc,k = h(xc,k,vc,k, xm) (3)

where (2) is the state equation, (3) is the measurement equation,
k is the discrete-time index, and wc = [wc1, . . . , wcnw

]T and
vc = [vc1, . . . , vcnv

]T represent the process and measurement
noise vectors, respectively, and are assumed to be independent.
This uncertainty and the parameters defining f and h are
assumed to be unknown but numerically bounded. In particular,
this means that ‖wc‖∞ ≤ εw and ‖vc‖∞ ≤ εv , where εw and εv

are known positive scalars. ‖.‖∞ denotes the ∞-norm such that
‖wc‖∞ = maxi |wci|, i = 1, . . . , nw.

What we denote the sampled timescale is the timeline that
is explicit in (2) and (3). The sampled time step k thus labels
the kth sampling period between continuous instants Ts(k − 1)
and Tsk. xc,k and yc,k are the valuations of the continuous state
and the output at sampled time step k.

2) Discrete Dynamics: A need for an abstracted qualitative
representation of behavior was discussed in Section I. Behav-
iors that are naturally expressed by means of discrete variables,
like those of embedded software, also need to be represented.
Thus, at a discrete level, these descriptions are written in
propositional logic by a set of time-independent propositional
formulas Q over discrete variables of Xd.

What we denote as the logical timescale marks the sequence
of changes in the discrete dynamics of the system. With πl =
(xm,l,xd,l), we specify the discrete state at logical time step l.
The switches from one mode to another are represented by
transitions. Transition τ switches H from mode xm,l to mode
xm,l+1. T is the set of nT transitions of H . Transitions are of
the following different types.

1) Autonomous transitions are triggered by conditions over
the continuous state. These conditions are referred to as
guards and noted φ : xc → {0, 1}. Section III conducts
an in-depth analysis of guards.

2) Commanded transitions are triggered by discrete com-
mands ud.

3) Unpredictable transitions have no guards and can trigger
anytime, for instance, fault transitions.

A transition is said to be enabled whenever its guard is realized.
Nondeterminism arises from the possibility of having multiple
transitions enabled simultaneously. When enabled, a transition
triggers a mode change. After a transition τ has triggered and
switched the system mode from xm,l to xm,l+1, the continuous
state xc,k becomes lτ (xc,k), where lτ is denoted as the transi-
tion mapping function.

Transitions are assumed to be instantaneous. However, when
abstracting certain behaviors using a hybrid model, it appears
that transitions may have nonnegligible duration. The present
framework supports the triggering of a transition after a certain
delay has expired. Importantly, the transition triggering remains
instantaneous. Thus, the duration of a transition is really to
be understood as a delay, that is, a certain number d of sam-
pled time steps before an enabled transition does trigger and
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Fig. 1. Discrete and continuous parallel timescales. Transitions are instanta-
neous but are represented by arrows from the previous logical time step to the
time step at which they trigger (e.g., τ1 triggers at l). Dates synchronize the
timescales at every sampled time point.

does lead to a different mode. Assuming that transition τ has
its autonomous guard enabled in xc,k, it triggers d-sampled
time steps later, and the continuous arrival state is given by
lτ (xc,k+d). In the rest of this paper, we assume that d = 0 with
no loss of generality.

3) Discrete and Continuous Parallel Timescales: As men-
tioned above, our representation uses two discretized timescales
in parallel on top of the continuous timescale: the sampled
and the logical timescales. As a consequence, changes in the
discrete dynamics are not assumed to take place at a particular
sampled time step, but can occur in-between two sampled
time steps. However, hybrid states need to be synchronized in
time. Because the sampled time evolves according to a fixed
sampling period Ts, the logical time is synchronized with the
sampled time, and not the opposite. In consequence, the logical
time is always associated to the first sampled time step that
follows a switch (see Fig. 1). Note that for this reason, an
instantaneous switch is always triggered after its occurrence
on the physical system. In this context, (l, k) is a date for
the system, and sl,k denotes the hybrid state at logical time
step l and sampled time step k. We assume that a finite but
unknown number of switches can occur between two sampled
time steps. In this case, hybrid states are indexed by dates whose
sampled indexes are the same, but with different logical indexes
(see time step k in Fig. 1). In this formulation, the execution
(solution trajectory) of the proposed class of hybrid systems is
a succession of hybrid states at established dates. The execution
corresponding to the succession of dates in Fig. 1 is written as

sl−1,k−2, sl−1,k−1
τ1

−→ sl,k
τ2

−→ sl+1,k
τ3

−→ sl+2,k
τ4

−→ sl+3,k+1.

C. Example

Example 1 (Thermostat System): The temperature x of a
room is controlled by a thermostat that keeps it between
xmin and xmax degrees by switching a heater on and off.
The system is modeled as a hybrid system H . Xd = {xm}
with domain {m1 = off, m2 = on, m3 = stuck on, m4 =
stuck off}. xc is reduced to the temperature x of the room,
and uc is reduced to the input u. The continuous dynam-
ics of the system are modeled by the first-order differential

equation ẋ = D(u − x), where D is a multiplying factor. We
model E = {Em1 , Em2 , Em3 , Em4} with Em1 = Em4 such
that u = x̄ (i.e., the temperature outside the room), and Em2 =
Em3 such that u = h (i.e., the heater constant whose value
is uncertain but bounded). In discretized form, the dynam-
ics are given by the following recurrent equation in stan-
dard form (2): xk = axk−1 + buk−1, with a = 1 − DTs, and
b = DTs, assuming a sampling period Ts. Q is empty, and

T = {τ1, τ2, τ3, τ4}, where τ1 : m2
φ1=1 if (x≥xmax)−−−−−−−−−−−→m1, τ2 :

m1
φ2=1 if (x≤xmin)−−−−−−−−−−−→m2, τ3 : m2

φ3=1 if (x≥xmax)−−−−−−−−−−−→m3, and

τ4 : m1
φ4=1 if (x≤xmin)−−−−−−−−−−−→m4. Notice that φ1 = φ3, and φ2 =

φ4. L associates the identity function to every transition.

III. SET-THEORETIC HYBRID CONFIGURATIONS

This section formalizes the concept of configuration of a
hybrid system. A canonical form of a transition guard is given.
It leads to the definition of a configuration as a rectangular
bounded region that enables a possibly empty set of transitions.
Another contribution is the logical abstraction of a configu-
ration that articulates the discrete and continuous dynamics
of the hybrid system. This formulation paves the way for the
estimation algorithms in Section IV.

A. Transition Guards

Commanded transition triggering is conditioned over the
discretely valued inputs ud, but these conditions are directly
expressed as constraints at the discrete level and do not
require specific processing. Autonomous transitions require
more attention.

Definition 2 (Autonomous Transition Guard): The guard
of an autonomous transition τ j is noted as φj : xc =
(xc1, . . . , xcn)T → {0, 1}. φj(xc) can be expressed as a set of
inequalities in the canonical form given in the if condition of
(5). The inequalities referring to a given state variable xci define
the partial guard φj

i (xc) as

φj
i (xc) =

∧
α

φj
iα

(xc) (4)

φj
iα

(xc) =
{

1, if xci ≶ gj
iα

(xc1, . . . , xci−1, xci+1, . . . , xcn)
0, otherwise

(5)

where gj
iα

: xc → � is referred to as a condition function, and
≶ stands either for “≤” or “≥.”

The index iα identifies one specific condition function in
the set of condition functions referring to transition τ j and
variable xci. Note that no assumption is made on the form of
the condition functions.2 For the sake of clarity, in the rest of
this paper, we make two simplifying assumptions. First, we
assume that the set of condition functions is either empty or

2The inequality canonical form does not limit the expressiveness of the
framework. Complex inequalities can always be manipulated to be brought
back to this form, possibly by introducing new variables.
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Fig. 2. Example 2: generic 2-D situation with guards φ1
1 : xc1 ≤ g1

1(xc2) and φ2
2 : xc2 ≥ g2

2(xc1). The positive and negative subdomains are computed from

conditional functions g1
1 and g2

2 taken at xc,k , or at its corners when it is a box. The upper bounds to conditional domains gj
i (xc,k) are abbreviated as gj

i,k
.

A similar abbreviation is used for lower bounds. They yield Xk = [x̃0
c,k, x̃1

c,k, x̃2
c,k]. (a) Functional representation of the guards. (b) Real-valued xc,k .

(c) Uncertain xc,k is a hyperrectangle.

of cardinality 1 for every xci and τ j . In other words, there is at
most one inequality referring to a variable xci associated to a
partial guard φj

i . Second, we assume that φj
i (xc) = 1 whenever

the set of condition functions is empty (i.e., gj
i is not specified).

This allows us to write φj(xc) =
∧nc

i=1 φj
i (xc).

Unpredictable transitions are modeled with guards such that
φj = 1, independent of xc. When the model contains guards
as disjunctions of inequalities, these can be broken into guards
over several transitions and modes. Admittedly, the modeling
of a discrete switch as a transition whose guard is made of e
disjunctions of inequalities necessitates a total of 2e modes.

τ j is said to be enabled in the hybrid state s = (π,xc)
whenever φj(xc) = 1. When enabled, the triggering of the
transition is an instantaneous transfer of the hybrid state to
another state (possibly identical) at the next logical time step.
This operation is detailed in Section IV along with the hybrid
state estimator. The rest of this section studies the structure
of the continuous space as constrained by the autonomous
transition guards.

B. Grid of Configurations

At sampled time step k, the evaluation of transition guards
against a continuous vector xc,k is done through the evaluation
of the condition functions gj

i (xc,k). Each inequality referring
to a condition function indeed splits the domain of xc,k in two
subdomains.

1) x̃j
c,k = {(xc1, . . . , xcnc

)T |φj(xc,k) = 1}: The region

that satisfies the inequalities or positive subdomain. x̃j
c,k

denotes the region in which transition τ j is enabled at
sampled time step k.

2) The region that does not satisfy the inequality or negative
subdomain, which is noted as ¬x̃j

c,k = �nc − x̃j
c,k (com-

plementary set of x̃j
c,k).

As xc,k defines a box in �nc , the values of gj
i (xc,k) are bounded

intervals of the form [gj
i
(xc,k), gj

i (xc,k)]. Thus, x̃j
c,k and ¬x̃j

c,k

are interval vectors of dimension nc, the scalar bounds of which
take value gj

i
(xc,k), gj

i (xc,k), −∞, or +∞. Considering all the
autonomous transitions, this formulation leads to splitting the
continuous space into several overlapping subregions. The set
of positive and negative subdomains for xc,k for all the au-
tonomous transitions is used to build what we refer to as the
conditional domain of xc,k.

Definition 3 (Conditional Domain): Given a hybrid system
H , the conditional domain of xc,k at k is given by Xk =
[x̃0

c,k, x̃1
c,k, . . . , x̃nT

c,k], where we have the following:

1) x̃j
c,k is the positive subdomain for every transition τ j ,

j = 1, . . . , nT of H;
2) x̃0

c,k =
⋂nT

j=1(¬x̃j
c,k) is the region that satisfies no partial

guard.

Example 1 (Continued): The model has two guards over four
transitions. Guards depend on temperature xc = x only. Then,
Xk = [x̃0

k, x̃1
k, x̃2

k, x̃3
k, x̃4

k] with x̃0
k =]xmin, xmax[, x̃1

k = x̃3
k =

] −∞, xmin], and x̃2
k = x̃4

k = [xmax,+∞[.
Example 2: Consider a hybrid system H with xm taking

its value in domain {m1,m2,m3}, xc = [xc1, xc2]T , and T =

{τ1, τ2} with τ1 : m1
φ1

−→m2, τ2 : m1
φ2

−→m3, and φ1 = φ1
1 :{

1, if xc1 ≤ g1
1(xc2)

0, otherwise
, φ2 = φ2

2 :
{

1, if xc2 ≥ g2
2(xc1)

0, otherwise
.

Initially, H is in mode m1. Fig. 2 shows the conditional
domain for this generic 2-D example in two situations: when
xc,k is real valued and when xc,k is a box. In both cases, the
conditional domain is given by

Xk =
[
x̃0

c,k, x̃1
c,k, x̃2

c,k

]
=

[
x̃0

c1,k x̃1
c1,k x̃2

c1,k

x̃0
c2,k x̃1

c2,k x̃2
c2,k

]

=
[

]g1
1,k,+∞[ ] −∞, g1

1,k] ] −∞,+∞[
] −∞, g2

2,k
[ ] −∞,+∞[ [g2

2,k
,+∞[

]

where gj
i,k

abbreviates gj
i
(xc,k). Note that when xc,k is real

valued, gj
i,k

= gj
i,k.
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Xk concretizes the split3 of the continuous space defined by
the autonomous transition guards at time step k. Note that Xk

evolves and is reshaped according to the continuous state vector
at each time step. Geometrically, the bounds of x̃j

c,k define
edges that split the continuous state space into overlapping
volumes shaped by boxes. Later developments require the
definition of the bounds of these boxes. The lower bound of
Xk is written as Xk, and the upper bound is written as Xk.

Every combination of elements of Xk corresponds to a sub-
region of the continuous state space in which some transitions
are enabled and some are not. These regions are in the form
of bounded boxes that support the concept of configuration of
the hybrid system H . A configuration corresponds to a possi-
ble situation of the hybrid system in terms of simultaneously
enabled and nonenabled transitions. Due to the boxed shape
of the regions, the set of all configurations is organized in a
grid that evolves with time, which is dubbed as the grid of
configurations.

Definition 4 (Configuration): A configuration Ck of the hy-
brid system H at time step k is defined as follows.

1) A configuration region rCk
that is a box in the continuous

state space that confines a region that simultaneously
enables a possibly empty subset of transitions of T .

2) A configuration function δCk
that is a Boolean function

that tells whether there exist points of the continuous state
xc,k that belong to the configuration region or not.

3) A configuration-enabling set T e
Ck

that indicates which
transition(s) is (are) enabled in the configuration region.

A configuration Ck is hence defined by a tuple (rCk
, δCk

, T e
Ck

).
Definition 5 (Configuration Region): At time step k and for

continuous vector xc,k, consider for every i = 1, . . . , nc a unit4

vector βi of size nT + 1. {β1, . . . ,βnc
} form a set of pro-

jection vectors that extract a combination of transition partial
guards, one per continuous dimension. Then, a configuration
region is the volume defined by

rCk
=

[
Xk,[1,.]β1, . . . , Xk,[nc,.]βnc

]T
(6)

where Xk,[i,.] yields the ith line of matrix Xk.
Using bounds of the conditional domain, we write the con-

figuration region’s frontier as the lowermost and uppermost
vertices of the region’s hyperrectangle. They are given by

rCk
=

[
Xk,[1,.]β1, . . . , Xk,[nc,.],βnc

]T

∪
[
Xk,[1,.]β1, . . . , Xk,[nc,.]βnc

]T
. (7)

Different configuration regions may overlap. A consequence is
that some configurations may be subsumed by some set of other
configurations and then be left aside. In example 2, any region

obtained with β1 =

[
0
0
1

]
and/or β2 =

[
0
1
0

]
is subsumed by

regions obtained with other vectors. By extension, we say that
a configuration Ci is subsumed by a configuration Cj when the

3We enforce the term “split” over the term “partition” to acknowledge the
possibly overlapping regions of the conditional domain.

4Here, a vector in which a single element is 1 and all the others are 0.

enabling set of Ci is also enabled by Cj , i.e., T e
Ci

⊆ T e
Cj

, and
the configuration region of the second is included in that of the
first, i.e., rCj

⊂ rCi
. However, mostly, this is a byproduct of the

formulation. In practice, such configurations are easily avoided
(see Section III-C).

Definition 6 (Configuration Function): At time step k and
for continuous vector xc,k, the configuration function δCk

of
the hybrid system H is a Boolean function from xc,k → {0, 1}
given by

δCk
=

{
1, if rCk

∩ xc,k 
= ∅
0, otherwise.

(8)

When δCk
= 1, the configuration region rCk

(and by extension,
the configuration Ck itself) is said to be enabled. Checking xc,k

against the configuration regions of the grid, hence, allows one
to determine which transition(s) are enabled at time step k.

Definition7 (Configuration-EnablingSet): The configuration-
enabling set T e

Ck
is the set of transitions τ j whose guards are

such that φj(rCk
∩ xc,k) = 1. It is empty whenever δCk

= 0.
Example 2 (Continued): Assume that xc,k is a box [see

Fig. 2(c)]. This example has four not subsumed configurations
C(p)

k , p = 1, . . . , 4. They are defined by the following.

1) Configuration regions: rC(1)
k

=[Xk,[1,.]β1, Xk,[2,.]β2]T =

(x̃0
c,k)T obtained with β1 = β2 =

[
1
0
0

]
; rC(2)

k

= (] −∞,

g1
1,k], ] −∞, g2

2,k
[)T obtained with β1 =

[
0
1
0

]
and β2 =[

1
0
0

]
; rC(3)

k

= (]g1
1,k,+∞[, [g2

2,k
,+∞[)T obtained with

β1 =

[
1
0
0

]
and β2 =

[
0
0
1

]
; and rC(4)

k

= (] −∞, g1
1,k],

[g2
2,k

,+∞[)T obtained with β1 =

[
0
1
0

]
and β2 =

[
0
0
1

]
.

2) Configuration functions δC(p)
k

, p = 1, . . . , 4 with δC(1)
k

=
δC(2)

k

= 0 and δC(3)
k

= δC(4)
k

= 1.

3) Configuration-enabling sets: T e

C(1)
k

= T e

C(2)
k

= ∅; T e

C(3)
k

=

{τ2}; T e

C(4)
k

= {τ1, τ2}: the situation is nondeterministic

since τ1 and τ2 are simultaneously enabled.

C. Condition Variables

Configurations relate subregions of the continuous space to
the enabling of transitions, which are discrete events. Thus, con-
figurations are a natural articulation between the continuous and
discrete dynamics. However, at this stage of the formulation,
configurations have not yet been directly related to the modes.

The difficulty is that one mode may be consistent with several
configurations of the hybrid system. Thus, in the thermostat
example, the on mode is consistent with both x ∈] −∞, xmin]
and x ∈]xmin, xmax[. The opposite is also true since one
configuration may be consistent with several modes. In the
same example, modes on and off are both consistent with
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x ∈]xmin, xmax[. In the following, we show how to relate
the configurations to the modes. The final aim is to give a
formal basis for the estimation algorithm to circumvent the
full enumeration of all possible combinations of modes and
configurations. What is sought is thus an articulation of the
configurations with the modes.

The solution comes quite naturally. The idea is to reflect the
enabled configurations at the discrete level. The enabled con-
figurations can be expressed within the discrete state through
a set of projection unit vectors: the βi that define the config-
uration regions (6). However, relation (8) considers only those
regions that intersect xc,k. The solution becomes finding the
subset of vectors βi that define those configuration regions that
satisfy (8) and including them into the discrete representation of
the state.

To differentiate them from other vectors, these unit solution
vectors are noted as κi

d = [κi
d0, κ

i
d1, . . . , κ

i
dnT

]T for every i =
1, . . . , nc. Every κi

dj has domain {0, 1}, and we refer to it as
a conditional variable since it refers to which portion of the
conditional domain does enable a configuration. κi

d is dubbed
as a conditional vector.

Definition 8 (Conditional Vectors): Given H and its con-
tinuous state xc,k, the conditional vectors κ1

d, . . . ,κ
nc

d are
unit vectors such that [Xk,[1,.]κ

1
d, . . . , Xk,[nc,.]κ

nc

d ]T ∩ xc,k 
=
∅, i = 1, . . . , nc.

Given xc,k as a box, there exist many different combinations
of conditional vectors. Every combination extracts an enabled
configuration from Xk. Finally, we permit additional constraints
among κi

d and other discrete variables of Xd to be specified in
Q. This allows discrete variables other than modes to depend
on the continuous state values. Additionally, configurations
that are subsumed can be avoided. These configurations arise
from conditional vectors that extract dimensions that are un-
constrained by the condition functions of some transitions.
Constraining the Boolean values of the associated condition
variables eliminates these solution vectors. See the example
below.

Example 2 (Continued): Consider Xk = [x̃0
c,k, x̃1

c,k, x̃2
c,k]

defined earlier. x̃2
c1,k = x̃1

c2,k =] −∞,+∞[. Thus, any con-

figuration region obtained with solution vectors κ1
d =

[
0
0
1

]

and/or κ2
d =

[
0
1
0

]
is subsumed. The constraints to exclude

these solution vectors are in Q.
Example 1 (Continued): Given xc = x and hence Xk =

[x̃0
k, x̃1

k, x̃2
k, x̃3

k, x̃4
k] defined earlier, the thermostat system uses

one vector κd = [κd0, κd1, κd2, κd3, κd4]T . Assuming that

]xmin, xmax[⊆ xk, then κd =

⎡
⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎦, and

⎡
⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎦ are the five conditional solution vectors such that Xkκd ∩

xk 
= ∅.

Conditional variables pave the way for the definition of a log-
ical configuration that articulates the continuous and discrete
states and dynamics.

D. Logical Configuration

What is referred to as a logical configuration is simply the
expression of a configuration at the discrete level. The useful
feature is that logical configurations directly relate to hybrid
system modes.

Definition 9 (Logical Configuration): Given a hybrid system
H and its continuous state xc,k at time step k, a logical
configuration of H is noted as the logical conjunction

∇δk = xm ∧

⎡
⎣ nc∧

i=1

⎡
⎣ nT∧

j=0

(
κi

dj = ξj

)⎤⎦
⎤
⎦

where

ξj =
{

1, if κi
d is the jth unit vector

0, otherwise.

Example 2 (Continued): In Fig. 2(c), the system is in mode
m1. We have seen that C(3)

k and C(4)
k are enabled. The condi-

tional vectors of interest are thus κ1
d =

[
1
0
0

]
and κ2

d =

[
0
0
1

]
;

κ1
d =

[
0
1
0

]
and κ2

d =

[
0
0
1

]
, respectively. This leads to two

logical configurations ∇δ
(3)
k and ∇δ

(4)
k of the form ∇δ

(p)
k =

(xm = m1) ∧ [
∧2

i=1[
∧2

j=0(κ
i
dj = ξj)]].

IV. HYBRID STATE ESTIMATION

Given a set of commands and observations at every time
step, the set-theoretic estimation of hybrid states consists of
predicting a set of hybrid state candidates and rejecting those
that do not predict the observations. In consequence, most
operations are concerned with prediction. The problem of
prediction is its cost, since many predicted states may end
up being rejected. It is thus essential to eliminate impossible
candidates as early as possible. Prediction consists of a loop at
each sampled time step: continuous prediction, discrete state
prediction, and continuous state transfer, until there are no
more enabled changes in the discrete dynamics. It follows that
early elimination of state candidates is possible at every loop
step. While continuous state elimination simply requires an
inclusion test of the observations, discrete state elimination
requires a full consistency check that is more demanding.
However, this task has connections with a set of techniques
referred to as the consistency-based approach to diagnosis [39].
These techniques use the constraints in the models to limit
the state candidates to be considered [23], [40]. They can
prune out candidates at each step that standard filters would
keep in their set of estimates. In consequence, our algorithms
rely on these techniques to manage discrete state consistency.
To further mitigate the number of candidates, our estimation
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scheme shows how the modeling of uncertainty in a bounded
form allows us to merge estimates with identical discrete state.
This proves to be a decisive advantage of state estimation
based on uncertain but bounded models over state estimation
based on stochastic models. In addition, our estimator includes
a procedure that estimates several fast successive switches in
discrete dynamics in-between two sampled time steps. Here,
again, a bounded uncertainty is key to allowing this feature.

A. Hybrid State Prediction in Sampled Time

1) Forward Time Prediction: A prediction of the hybrid
state is obtained with a forward predictive operator [41].

Definition 10 (Forward Time Prediction): The forward time
prediction 〈Sl,k−1〉↗γ of a set Sl,k−1 of hybrid states at logical
time step l and sampled time step k − 1 is the set of hybrid
states that are reachable from Sl,k−1 by letting the sampled
time progress over γ sampled steps. For a single hybrid state,
sl,k−1 = (πl,xc,k−1), πl = (xm,l,xd,l)

〈sl,k−1〉↗1 =
{
sl,k = (πl,xc,k)|xc,k

= f(xc,k−1,uc,k−1,wc,k−1, xm,l)
}

(9)

and 〈Sl,k−1〉↗γ is the repetition of 〈Sl,k−1〉↗1 , γ times, over all
sl,k−1 ∈ Sl,k−1.

There are many ways for relation (9) to be efficiently com-
puted. The difficulty is that the box xc,k keeps growing with the
number of steps γ. This is because the rectangular approxima-
tion at each step introduces an error that is reapproximated by
successive steps and thus rapidly amplified. This phenomenon
is known as the wrapping effect. In general, convex optimiza-
tion techniques help mitigate this explosion of uncertainty. In
the current implementation, interval numerical methods similar
to those in [36] are used.

While the mechanics of transition triggering are described
later, here, it is enough to mention that two cases arise:
1) whenever no transition is enabled by the forward time predic-
tion, then the observations ỹc,k can be used to prune impossible
candidates; and 2) when a transition is enabled, observations
cannot be used immediately since they may have been produced
by a behavior that is different from that of the current mode and
model. Case 1 corresponds to applying set-theoretic filtering
techniques to forward time prediction. Linear and nonlinear
filters have been described [30]–[33]. In the case of nonlinear
systems, the produced bounded estimates can be approximated
by a variety of geometrical shapes, ellipsoids [33], rectangles
[30], [32], and polytopes [42]. These filters can be utilized
to control the quality of the forward time prediction. In the
following, it is assumed that the produced shapes are rectan-
gular boxes, but the approach can be extended to other shapes
as well.5

2) Forward Transition Prediction: A prediction of the dis-
crete switches is obtained with a second forward predictive
operator.

5With the limitation that intersection with the grid of configurations may not
conserve certain shapes.

Definition 11 (Forward Transition Prediction): Given tran-
sition τ and a set of hybrid states Sl,k, the forward transition
prediction 〈Sl,k〉τ is the set of hybrid states that are reachable
from some state sl,k ∈ Sl,k by executing a transition τ . For
sl,k = (πl,xc,k), with πl = (xm,l,xd,l), if τ is enabled, then

〈sl,k〉τ =
{
sl+1,k =

(
πl+1,x′

c,k

)
|xm,l

τ−→xm,l+1

and x′
c,k = lτ (xc,k)

}
(10)

where πl+1 = (xm,l+1,xd,l+1) such that Q ∪ πl+1 is con-
sistent.

By consistent, we mean that xm,l+1 and xd,l+1 together
satisfy all the formulas in Q.

3) Hybrid State Prediction: The hybrid system prediction
over time alternates both forward operators. As seen earlier,
multiple transitions can simultaneously be enabled. This is due
to the fact that the box xc,k can span over several configuration
regions. A consequence is that different points of xc,k happen to
enable and trigger different transitions, thus leading the system
from its current state to different modes and states. Given a
forward time prediction, the aim of the estimation process is
to transfer each point of the continuous state at date (l, k) to
the possibly multiple mode(s) it belongs to at date (l + 1, k).
The solution is to produce a split of xc,k such that the produced
fragments fit the grid of configurations. The enabled transitions
can then trigger from such state fragments, and the forward
transition prediction yields the new set of modes of the system
along with the set of continuous estimates.

B. Hybrid Consistency Problems

Given a set of hybrid states Sl,k−1 at date (l, k − 1) and
the forward time prediction Sl,k = 〈Sl,k−1〉↗1 , the problem of
intersecting xc,k with the grid of configurations comes to the

finding of a split Pl,k = {s(1)
l,k , . . . , s(np)

l,k } such that for every

p = 1, . . . , np, C(p)
k is a configuration, with x(p)

c,k ⊆ rCp
, and

π
(p)
l ∪ Q ∪∇δ

(p)
k is consistent. This is done in two steps.

Given a predicted hybrid state sl,k, xc,k is used to find Xk

and the conditional vectors κi
d. Those vectors yield the logical

configurations ∇δ
(p)
k that are consistent with sl,k. An initial set

of conditional vectors is easily obtained by iterating the con-
tinuous dimensions and checking whether Xk intersects xc,k.
Further checking against Q yields the reduced set of logical
configurations that are possible under the set of qualitative con-
straints. Impossible configurations are eliminated. The second
step takes the remaining logical configurations and computes
the configuration regions out of the predicted xc,k. Recall that
every configuration region is shaped by a system of inequalities
over the condition functions gj

i in (5). These inequalities form a
constraint network among continuous variables. Therefore, the
change of one variable-bounded value often affects the range
of other variables. By iterating a constraint filtering process
over all continuous variables, the focus narrows down onto the
only possible continuous states. The double logical/continuous
formulation of configurations from Section III is key as it
permits the pruning of impossible estimates at both levels.
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Basically, the first pruning step takes place at a discrete level,
and the second pruning step takes place at the continuous level.
Information is passed through the logical configurations.

1) Discrete State Consistency: Given a hybrid system H

and a prediction sl,k = (πl,xc,k), then {(π(p)
l ,∇δ

(p)
k )}, p =

1, . . . , np, are such that we have the following:

1) They are consistent with Q

π
(p)
l ∪ Q ∪∇δ

(p)
k is consistent. (11)

2) π
(p)
l = (xm,l,x

(p)
d,l ), so that the mode estimate xm,l is that

of sl,k, since no transition has triggered yet.

The conditional vectors κi
d determine a set of logical con-

figurations. A subset of those is selected by solving rela-
tion (11). This can be done with a constraint satisfaction
engine. Solutions to (11) are logical configurations along
with discrete state estimates π

(p)
l . This operation is noted

as {(π(p)
l ,∇δ

(p)
k )}p=1,...,np

= sat(sl,k, Q), where sat denotes
the constraint satisfaction engine. In the present implementa-
tion, the Boolean satisfaction engine described in [43] is used.
A wide range of other techniques is applicable.

2) Continuous State Consistency: Given a configuration
C(p)

k at the continuous level, the subregion x(p)
c,k of xc,k that is

consistent with the configuration region is given by

x(p)
c,k = xc,k ∩ rC(p)

k

. (12)

Computing x(p)
c,k is more difficult than it seems. Recall that rC(p)

k

is equal to [Xk,[1,.]κ
1
d, . . . , Xk,[nc,.]κ

nc

d ]T , where the κi
d’s are

given by ∇δ
(p)
k . Every unit vector κi

d extracts a positive or
negative subdomain from Xk. Every subdomain is obtained by
evaluating a condition function gj

i , where j is given by the
entry equal to 1 of unit vector κi

d. To satisfy (12), the points

of the box x(p)
c,k must satisfy all the condition functions that

determine rC(p)
k

.

However, a variable xci can be coupled with some other
variables xci′ through gj

i . This means that tightening the bounds
of xci has an effect on xci′’s bounds. This problem can be seen
as the task of filtering a set of bounded variables xci with a set
of inequalities over those same variables. Such a problem can
be solved with a slightly revised version of standard filtering or
branch-and-bound techniques. Indeed, in general, these tech-
niques do not handle inequalities but only equality constraints
[44]. The algorithmic solution in Table II is a variant of the
constraint propagation system in [44] that handles inequalities.
Prior to detailing the algorithm, admissibility and consistency
are to be distinguished.

1) A condition function gj
i is said to be admissible for xc,k

iff there exists at least a point of xc,k such that the
inequality based on gj

i (xc,k) is satisfied.
2) xc,k is said to be consistent with gj

i (xc,k) when the
inequality based on gj

i is satisfied for all points in xc,k.

The algorithm in Table II finds x(p)
c,k such that it is consistent

with all of the condition functions gj
i that determine rC(p)

k

. The

algorithm constrains all the variables that appear in the con-

TABLE II
FINDING CONSISTENT CONTINUOUS STATES: filter(∇δ

(p)
k

,xc,k)

TABLE III
SPLITTING THE CONTINUOUS SPACE: split(sl,k)

dition functions gj
i drawn from an input logical configuration

∇δ
(p)
k . It does so until each condition function is either satisfied

or inadmissible. The operator described by the algorithm is
dubbed filter(∇δ

(p)
k ,xc,k). Its result is a continuous state

fragment x(p)
c,k.

C. Splitting the Hybrid State With Configurations

The operator that articulates sat and filter, i.e., the discrete
and continuous consistency operators, respectively, is referred
to as split. split applies to a set Sl,k of hybrid states and returns
another set Pl,k (see Table III). The algorithm takes a predicted
hybrid state sl,k as input.

Example 2 (Continued): Starting from the configurations
obtained in Fig. 2(c), Fig. 3(a) and (b) shows the split of
the continuous space for enabled configurations C(3)

k and C(4)
k ,

respectively. The logical configurations are ∇δ
(3)
k and ∇δ

(4)
k

defined earlier. The filter operator applied to each configura-
tion reduces xc,k by using partial guard g1

1 (step 5, Table II).
In both cases, evaluating g2

2(xc,k) does not further reduce xc,k.

The results are then x(3)
c,k and x(4)

c,k.
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Fig. 3. Example 2. (a) and (b) Continuous state split. On (b), note that the configuration domain has changed: the split with g1
1,k affects the value of g2

2,k
.

The dotted line shows the previous boundary. (c), (d), and (e) Enclosure and switches according to T e

C(3)
k

= {τ2} and T e

C(4)
k

= {τ1, τ2}. Only the late switch

is represented. s
(3)
l+1,k

= enclose(τ2, s
(3)
l,k

), s
(4)
l+1,k

= enclose(τ1, s
(4)
l,k

), and s
(5)
l+1,k

= enclose(τ2, s
(4)
l,k

). (f) Merging step. The estimates obtained in (c)

and (e) have identical mode m3. In consequence, their continuous estimates can be merged. (a) Split with configuration C(3)
k

. (b) Split with configuration C(4)
k

.

(c) Triggering of τ2 from C(3)
k

. (d) Triggering of τ1 from C(4)
k

. (e) Triggering of τ2 from C(4)
k

. (f) Merging of (c) and (e).

In all cases, remark that the union of the continuous state
fragments yields the originally predicted state. That is, the x(p)

c,k,
p = 1, . . . , np, that result from the split of a state xc,k are such

that
⋃np

p=1 x(p)
c,k = xc,k. Formally, this is because the conditional

domain Xk of xc,k contains the positive and negative subdo-
mains x̃j

c,k and ¬x̃j
c,k for all transitions τ j . Therefore, the entire

continuous state space is covered by configuration regions, and
both xc,k ⊆

⋃np

p=1 rC(p)
k

and
⋃np

p=1 x(p)
c,k =

⋃np

p=1(rC(p)
k

) ∩ xc,k

[from relation (12)] hold.
However, the hybrid states produced by a split are rarely

optimal: some hybrid states are, in fact, not reachable by the
system. This is due to a lack of constraints between modes
and conditional variables in logical configuration equations. In
example 1, hybrid state sk = (xm = on ∧ xk) with xk ≥ xmax

is unreachable but predicted at some point: the thermostat
cannot be turned on, and the temperature can be over the upper
threshold xmax. The problem is complex, as these configura-
tions represent the so-called mythical states [28], [45]–[47], i.e.,
instantaneous states between normal states when a discontinu-
ous change takes place. In a mythical state, the variables do
not satisfy all of the system constraints. This happens to be

the case of the state sk above, since a transition to the mode
off is enabled but has not triggered yet. The problem is that
it is not clear whether these states represent very short but real
instances, or whether they are artifacts of the representation and
reasoning procedures. For this reason, the split operator is said
to be complete but unsound.

D. Switching in Sampled Time

When the split is completed, some of the configuration-
enabling sets are not empty. The two final steps of the
estimation process are thus the triggering of the enabled tran-
sitions and the use of available observations. The triggering
of transitions at a sampled time raises the following two
problems.

1) A transition triggering is always considered a small
period of time after the real switch has occurred. A
consequence is that xc,k computed at time step k is not
guaranteed to capture the real behavior of the system.

2) Multiple successive switches may occur during a single
sampled time interval.
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TABLE IV
APPLIES TRANSITION τ ENABLED AT TIME STEP (l, k) : enclose(τ, s

(p)
l,k

)

1) Guaranteed Enclosure at Switching Points: The problem
arises from the triggering of a transition in-between two sam-
pled time steps. At time step k − 1, no transition is enabled.
Prediction produces a set of hybrid states at time step k. The
split operator applies and splits the continuous state according
to candidate configurations. As a result, assume that some
configurations are found to enable transitions at time step k,
and consider an enabled transition τ . On the physical system,
τ has triggered somewhere between sampled time steps k − 1
and k. However, prediction proceeds by computing a late switch
at time step k. Let xc,k′ , k − 1 < k′ ≤ k, be the continuous
state at the unknown continuous time instant k′Ts at which
the transition has triggered on the physical system and where
k′ ∈ �. In general, xc,k′ 
⊆ xc,k, so switching at k misses the
transfer of some continuous regions.

A solution is proposed to transfer the continuous state from
one mode to another, which guarantees to capture the true
behavior of the system. It computes an early switch at k − 1,
in addition to the late switch at k. Under the assumption
that the continuous evolution of the system is monotonous
between two sampled time steps, unionizing the continuous
vectors obtained from both switches yields an enclosure of
the true physical state of the system. In practice, due to high
sampling rates, the assumption above is realistic and found
in another body of works [36]. Table IV details the operator
enclose(τ, s(p)

l,k ) that applies a transition τ to a state fragment

s(p)
l,k and transfers the continuous state from s(p)

l,k to s(p)
l+1,k. The

algorithm returns s(p)
l+1,k that is guaranteed to capture the true

state of the system under the assumption above. The sole subtle
operation of the algorithm is step 2, which virtually enables a
switch at time step k − 1. This is required since τ cannot be
enabled at time step k − 1, as if it were, it would have triggered
at that time step. Therefore, τ has to be virtually enabled at
k − 1. This is achieved by triggering τ from the union of x(p)

c,k−1

and the frontier rC(p)
k−1

of the configuration region that enables τ .

Note that the algorithm requires working on a temporal window
of at least two sampled time steps, and that both rC(p)

k−1
and

x(p)
c,k−1 must remain accessible in memory.
Example 2 (Continued): Fig. 3(c)–(e) shows the triggering

of the enabled transitions τ1 and τ2. On these figures, only the
late switch is represented. We have s(3)

l+1,k = enclose(τ2, s(3)
l,k ),

s(4)
l+1,k = enclose(τ1, s(4)

l,k ), and s(5)
l+1,k = enclose(τ2, s(4)

l,k ).

TABLE V
switch(Sl,k) OPERATOR

TABLE VI
clear(Sl,k) OPERATOR

2) Multiple Successive Switches: When more than one
switch occurs between two sampled time steps, each switch
is successively predicted with the enclose operator. Operator
switch in Table V handles multiple switches in-between two
sampled time steps. The number of successive switches is noted
as ξ. At step 6, clear is the operator that prunes out the states
that do not intersect the observations (Table VI). At step 7,
the operator merge optimizes the final partition by merging
hybrid states whenever this is possible. These two operators are
detailed in the two next paragraphs. A condition for switch
to terminate is that the hybrid system’s behavior excludes
infinitely many switches occurring in-between two sampled
time steps. Whenever this condition is fulfilled, the algorithm
in theory always terminates. In practice, however, the enclose
operator yields conservative bounds and adds up to the natural
nonconvergence of numerical uncertainty. In consequence, the
occurrence of infinitely many switches cannot be ruled out, but
a theoretical analysis is beyond the scope of this paper.

3) Recursive Estimation: Finally, the estimation of the
states of a hybrid system H is captured by a sequence ρ :
S0, . . . , Sl,k, . . . that verifies

S0 = switch (split (〈Θ〉↗0 )) (13)

Sl+ξ,k+γ = switch
(
split

(
〈Sl,k〉↗γ

))
. (14)

Relation (13) initializes the hybrid states starting from the
system initial conditions Θ. The computation of the recursive
relation (14) alternates forward time and transition predictions
through splits and switches, and results in an updated set of
hybrid states every γ 
= 0 sampled time steps.

E. Hybrid State Estimation

The clear operator prunes out all the state estimates sl,k

such that the prediction yc,k does not enclose the observations
ỹc,k, or that do not predict observations ỹd,k. Note that the
measurement noise is already taken into account in (3), so that
ỹc,k is a real-valued vector of �ny .
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TABLE VII
Merge(Sl,k) OPERATOR

F. Merging Identical Discrete Estimates

Most approaches to the estimation of hybrid states apply
Bayesian belief updates to a stochastic hybrid system. These
techniques have to deal with an exponential blowup in the
number of possible hybrid states. We can witness a similar
effect in our case since the switch operator generates a growing
number of states at each time step. Adding up to the growing
uncertainty that is due to the box approximation of the forward
prediction operator, the growth rate of new state estimates
rapidly increases. In general, this is the reason why modern es-
timators simultaneously track several hybrid state hypotheses.
However, inevitably, the number of states exponentially grows
with time as more hypotheses become likely.

The main advantage of our approach is that it permits the
merging of similar trajectories without loss. Consider merging
the uncertainty on two states s(1)

l,k and s(2)
l,k : the question is how

to merge the two continuous vector estimates x(1)
c,k and x(2)

c,k. It
is easily achieved by unionizing the variable estimated bounds.
The sole condition for the merging is that the discrete states
π

(1)
l,k and π

(2)
l,k are identical. The Merge operator is given by

Table VII. When splits and switches augment the number of
hybrid state estimates at each time step, the merging step does
reduce this number substantially. In general, this allows the
estimation procedure to mitigate the explosion of modes and to
maintain a finite, almost constant, number of hybrid estimates.

Example 2 (Continued): There are three estimates, which are
represented in Fig. 3(c)–(e). In Fig. 3(c), τ2 has transferred
the system state to s(3)

l+1,k = (m3,x
(3)
c,k). In Fig. 3(d), τ1 has

transferred the system state to s(4)
l+1,k = (m2,x

(4)
c,k). In Fig. 3(e),

τ2 has transferred the system state to s(5)
l+1,k = (m3,x

(5)
c,k).

s(3)
l+1,k and s(5)

l+1,k can then be merged. This is shown in Fig. 3(f).
Merging the uncertainty is particularly efficient to counter the

effects of the occurrence of multiple similar splits and switches,
which are a consequence of the temporal uncertainty due to
variable bounds. In general, the uncertainty on the continuous
state translates into the occurrence of the same transition switch
over several time steps. Such situations are common and lead to
the production of many estimates with an identical discrete state
within just a few time steps. Using a merge operator, it takes
just a few more time steps to produce a single estimate instead.
However, the actual implementation behind the

⋃
operation on

line 3 of Table VII yields a conservative outer approximation
of the merged estimates in the shape of a hypercube. This
operation introduces an error, because, in general, the union
of hypercubes does not yield a hypercube. In our example, the
error is visible in Fig. 3(f).

Fig. 4. Set-theoretic estimation of the hybrid state of a thermostat system
(Example 1). (Top figure) Mode estimation. (Middle figure) Temperature (in
Celsius). (Bottom figure) Temperature variation. All figures: X-axis is time.

Thus, in practice, the merging process enlarges the estimated
bounds and reduces the number of estimates. However, the
bounds remain guaranteed to enclose the true behavior of the
system. However, the additional error carried by the bounds
does affect the soundness of the estimator, which produces esti-
mates that would not be reachable otherwise. A consequence is
that in practice, our hybrid estimation process is complete but
unsound.

V. RESULTS

A preliminary version of the presented filter was imple-
mented in C++ as part of a hybrid system diagnosis platform.

A. Case Studies

Fig. 4 shows the result of a run on our thermostat example. In
addition to the thermostat example, the state estimation scheme
presented in this paper has been applied to the bi-tanks water
regulation system in [48]. This system maintains an outflow of
water to a virtual consumer. It models two water tanks, three
valves, and a pump. As such, the model totals 1350 possible
modes, each of which represents a combination of functional
modes for all components in the system. Results on running
our estimator on these two systems follow.

B. General Performances

We have studied the computation time of the estimate as well
as the number of state estimates maintained by our filter. The
results are reported in Figs. 5 and 6. Fig. 5 illustrates the double
advantage of state estimation based on models with bounded
uncertainty over Bayesian filtering. First, the highest number of
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Fig. 5. Number of estimates before and after the merging step. (Left) Thermostat. (Right) Bi-tanks. (Top curve) Hybrid estimates before merging. (Middle curve)
Continuous estimates before merging. (Lower curve) Hybrid estimates after merging.

Fig. 6. Computation time per sampled time step (in seconds). (Left) Thermostat. (Right) Bi-tanks.

Fig. 7. Relative growth of the bounded uncertainty ‖xc,k‖/‖xc,0‖ over time. (Left) Thermostat. (Right) Bi-tanks.

estimated hybrid states is before the merging step and remains
low. For the bi-tanks, this number is around 70, that is, at
worst 5% of all the possible states. Second, the merging step
drastically reduces the total number of hybrid estimates down
to five estimates in the worst case for the bi-tanks. It appears that
the computation time is best correlated with the number of state
estimates before the merging step is applied (see Fig. 6). Note
that comparison with stochastic filters is not directly feasible.

C. Uncertainty

The discrete switches in a system’s dynamics have an effect
on the number of state estimates. Based on the same runs as

before, we aimed to elucidate the effect of bounded uncertainty
on state estimation. Since bounds do not converge, uncertainty
is expected to grow unconditionally with time. Fig. 7 reports
that the uncertainty is growing steadily, but is mitigated by
the switches in the continuous dynamics. This property is
explained by the switching mechanism presented in this paper.
Each switch can help decrease uncertainty in the continuous
state vector: by splitting the continuous state, a switch dis-
cards a subregion of the continuous state space. However,
the uncertainty grows again invariably until the next switch
occurs.

This behavior again contrasts with the stochastic hybrid
filters that can shift and focus a probability distribution around
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subregions of the continuous state space but cannot scale their
number of estimates accordingly.

VI. CONCLUSION

This paper has presented a set-theoretic alternative to the
estimation of hybrid systems. It has highlighted the benefits
of the approach compared to the dominant estimation scheme
that utilizes continuous probability distributions to represent
uncertainty. At the core of this paper are the configurations
and logical configurations that articulate the discrete and
continuous knowledge levels and permit dedicated algorithms
to prune impossible estimates at each level. Because bounds do
not converge, and due to a conservative merging of estimates,
the outer approximation of the continuous state is expected to
grow unconditionally with time. Potential solutions include the
application of aggressive optimization techniques that produce
tighter bounds, and the use of more expressive geometrical
shapes. In application to large systems, the computational
burden of the next state expansion can prove prohibitive. As
a solution, transition selection through sampling or forward
search can be implemented as for stochastic hybrid filters
at the cost of losing completeness. More research should
concentrate on bridging stochastic model-based estimators and
their set-theoretic counterpart. In general, a pdf badly mixes
with bounded spaces. Thus, the uniform distribution proves
unproductive, because it is not closed under standard opera-
tions. However, some pieces of work have been produced [49],
and a comparison of stochastic and set-theoretic estimation
procedures for continuous systems can be found in [50]. This
issue is undoubtedly a promising research direction for the
future.
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