
HAL Id: hal-03768886
https://laas.hal.science/hal-03768886

Submitted on 5 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Christoffel function for supervised learning: theory
and practice

Srećko Ðurašinović

To cite this version:
Srećko Ðurašinović. The Christoffel function for supervised learning: theory and practice. Machine
Learning [stat.ML]. 2022. �hal-03768886�

https://laas.hal.science/hal-03768886
https://hal.archives-ouvertes.fr


Master 2 Applied Mathematics, Statistics
Mathematics and Economic Decision

The Christoffel function for supervised learning: theory
and practice

Internship report

Student: Supervisors:
Srećko Ðurašinović Victor Magron

Full-Time Researcher, LAAS-CNRS
Jean-Bernard Lasserre

Emeritus Research Director, LAAS-CNRS

Keywords: Christoffel-Darboux Kernel, Polynomial Optimization, Machine
Learning, Data Analysis

July, 2022



2



Summary

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Christoffel function - Selected properties 7
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Christoffel-Darboux kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Christoffel function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Some properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Application in machine learning 17
2.0.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Christoffel-Darboux classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Consistency result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Empirical evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Iris data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Toy data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3



Notations

- M(K), M+(K), P(K) - respectively, set of finite, signed, regular Borel measures, set of pos-
itive finite measures, set of probabilities on compact set K
- C(K, K ′), Cb(K, K ′), C0(K, K ′) - respectively, set of continuous, continuous and bounded, contin-
uous vanishing at infinity functions from K to K ′. If the functions are real-valued, we denote them
simply by C(K) (resp. Cb(K), C0(K))
- C(K)∗ - set of real-valued and continuous on C(K)
- Rn×p - set of matrices with n ∈ N \ {0} lines, p ∈ N \ {0} columns, with real coefficients/entries
- In - identity matrix of size n × n, n ∈ N \ {0}
- XY - space of X-valued functions defined on Y
- LipL(X, Y ) - set of L-Lipschitz maps from X to Y
- AN - set of sequences taking values in the set A
- B(x, r) - closed Euclidean ball of radius r > 0, centered at x
- B(X) - Borel sigma-algebra on X

- ⟨., .⟩X×Y - generic pairing (bi-linear form) between the spaces X and Y (the subscript is usually
omitted if X and Y are easily inferred)
- Jk, k′K - interval containing all integers from k to k′ (included)
- A × B - Cartesian product of the sets A and B
- ∥.∥ - generic norm on some normed vector space
- If M is a matrix, then ||M ||∞ = sup||x||∞=1 ||Mx||∞ is the matrix ∥∥∞ norm
- MT - transposition of a matrix M
- |.| - absolute value
- dX - distance on some metric space X

- δa - the Dirac mass concentrated at the point a
- δij - Kronecker delta
- 1A - Indicator function (equal to 1 if A is realised, and to 0 otherwise)
- ∧, ∨ - the min and max operators, i.e. a ∧ b := min{a, b} and a ∨ b := max{a, b}

- id - the identity map
- 1 - the constant map equal to 1
- 0 - the constant map equal to 0
- πX - projection on the set X
- diam(X) - diameter of a set X, i.e. diam(X) : supx1,x2∈X dX(x1, x2)
- val(P ) - optimal value of the optimization program (P )
-
(

n
p

)
= n!

p!(n−p)! - Binomial coefficient

- R[x] - the ring of real-valued multivariate polynomials in variables x = (x1, . . . , xp). The fi-
nite dimensional vector space consisting of polynomials of degree at most d ∈ N is denoted by
Rd[x] ⊂ R[x].
- Np

d := {α ∈ Np | |α| := ∑p
i=1 αi ≤ d} - the set of multi-indices, with cardinal s(d) =

(
p+d

p

)
.
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Introduction

Since its inception, machine learning has provided us with many different methods and ap-
proaches for handling classification problems. Interested readers can find in [10, 12] a non-exhaustive
overview of these methods. In this report, we introduce an additional tool - Christoffel-Darboux
kernel - and we exploit its properties, mainly in the context of supervised learning.

Christoffel-Darboux kernel is a very well known tool among the researchers working on the
approximation theory. For a long time, its properties were only studied in this context, focusing
on the relationship with orthogonal polynomials [9] that can be used for interpolation, .

However, recent works [1, 2, 4, 11, 13] have shed a very different light on this particular kernel by
showing its appealing potential in the realm of data science. Indeed, some of the most important
features of the Christoffel function can be easily connected to the classical problems in statistics
and machine learning: support estimation, outlier detection, graph recovery, free probabilities and
many others.

An additional task of equally great importance in data science - supervised learning - can be
tackled in this context. We argue that the Christoffel function provides a very intuitive way for
solving classification problems, while displaying quite good theoretical properties at the same time
[4, 5, 6].

This report will be organised as follows: in the first part, we will introduce the Christoffel
function and study its properties that can be useful for solving problems that arise in data science.
Then, we will particularly focus on the problem of supervised learning and present some theoretical
guarantees that could justify the use of the Chirstoffel function in this context. Finally, the last part
will be devoted to some empirical evaluations and comparisons with some state-of-art methods.
Additionally, directions for further research and generalizations will be suggested.
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Chapter 1

Christoffel function - Selected properties

1.1 Preliminaries
Let us start by introducing the notations that will be used throughout this report.
We let vd(x) := (xα)α∈Np

d
denote the monomial basis of the vector space of R[x]d (we suppose that

the elements of this basis are arranged in the graded lexicographic order1).

Definition 1.1.1 (Moment matrix). [7] Let Ω ⊂ Rp be compact, with non-empty interior. Let ϕ
be a Borel measure supported on Ω. The moment matrix of order (degree) d ∈ N associated to ϕ,
denoted by Md(ϕ), is a s(d) × s(d) dimensional real symmetric matrix, whose rows and columns
are indexed by monomials in vd(x), and whose entry (α, β) is given by

Md(ϕ)(α, β) :=
∫

Ω
xα+βdϕ, for any α, β ∈ Np

d. (1.1)

For the purpose of illustration, with p = d = 2, we would obtain the following matrix in R6×6:

M2(ϕ) =



∫
Ω 1dϕ

∫
Ω x1dϕ

∫
Ω x2dϕ

∫
Ω x2

1dϕ
∫

Ω x1x2dϕ
∫

Ω x2
2dϕ

.
∫

Ω x2
1dϕ . . . .

. .
∫

Ω x2
2dϕ . . .

. . .
∫

Ω x4
1dϕ . .

. . . .
∫

Ω x2
1x

2
2dϕ .∫

Ω x2
2dϕ

∫
Ω x1x

2
2dϕ

∫
Ω x3

2dϕ
∫

Ω x2
1x

2
2dϕ

∫
Ω x1x

3
2dϕx2

∫
Ω x4

2dϕ


. (1.2)

If we consider vd(x) to be a column vector of Rs(d), then we can write the moment matrix in a
more compact form as

Md(ϕ) =
∫

Ω
vd(x)vd(x)T dϕ, (1.3)

where the integral should be understood component-wise.
Finally, vd(x) can denote a more general polynomial basis, not necessarily the monomial one. The
meaning will always be made clear from the context.

1To order monomials, we first compares their total degree, i.e. the sum of all their exponents, and in case of a
tie, we apply lexicographic order. This one, in turn, first compares the exponents of x1 in the monomials, and if
they are the same, then the exponents of x2 are compared, and so forth.
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1.2 Reproducing Kernel Hilbert Spaces
In order to better describe the ambient space and the objects that we will manipulate throughout
this report, let us briefly recall the idea of Reproducing Kernel Hilbert Spaces (RKHS).

Definition 1.2.1 (Kernel). Let X be a set. A kernel is any symmetric map k : X × X → R,
i.e. k(x, y) = k(y, x), for all x, y ∈ X. If, in addition, the matrix (k(xi, xj))n

i,j=1 is positive
semi-definite for all x1, . . . , xn ∈ X, the kernel k is called positive semi-definite.

Notice that, by definition, a kernel k is positive semi-definite if ∑n
i=1

∑n
j=1 αiαjk(xi, xj) ≥ 0 for all

n ∈ N, x1, . . . , xn ∈ X, and α1, . . . , αn ∈ R.

Definition 1.2.2 (RKHS). For X ⊂ Rp, let (H, ⟨., .⟩H) be the Hilbert space of real-valued functions
f : X → R defined on X. We say that H is a Reproducing Kernel Hilbert Space if the evaluation
functional Lx is continuous on H, i.e., if for any x ∈ X, the functional H ∋ f 7→ Lx(f) := f(x) is
continuous.

We can now connect explicitly the notions from the last two definitions.

Definition 1.2.3 (Reproducing kernel). A kernel k is called reproducing kernel if it satisfies the
reproducing property:

∀x ∈ X, ∀f ∈ H, Lx(f) = ⟨k(., x), f⟩H = f(x). (1.4)

Theorem 1.2.1. [4, 8] For X ⊂ Rp, let H be the Hilbert space of real-valued functions defined
on X. Let k : X × X → R be a kernel.

1. If H is a RKHS, then it admits a positive semi-definite reproducing kernel.

2. If k is positive semi-definite, there exists (a unique) RKHS with k as its reproducing kernel.

Proof. Let X, H and k be defined as in the statement of the theorem.

1. Let x, y ∈ X. Since H is RKHS, then, by definition, the linear functional Lx is continuous.
Hence, the classical Riesz representation theorem ensures the there exists some kx ∈ H such
that Lx(f) = ⟨f, kx⟩H for all f ∈ H. Using the same arguments, there exists ky ∈ H such
that Ly(f) = ⟨f, ky⟩H for all f ∈ H. Let us define on the product space X × X the mapping
k by k(x, y) = ⟨kx, ky⟩H . By construction, k satisfies the reproducing property. Moreover,
for any n ∈ N, x1, . . . , xn ∈ X, and α1, . . . , αn ∈ R, we have

n∑
i,j=1

αiαjk(xi, xj) =
n∑

i,j=1
αiαj⟨kxi

, kxj
⟩H (1.5)

=
〈

n∑
i=1

αikxi
,

n∑
i=1

αikxi

〉
H

=
∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

αikxi

∣∣∣∣∣
∣∣∣∣∣
2

H

≥ 0, (1.6)

proving that k is positive semi-definite.

2. Consider the mapping ϕ : X → RX such that ϕ(x) = k(., x) for all x ∈ X. Then, we let
V := vect({ϕ(x) | x ∈ X}) = {f(.) = ∑n

i=1 αik(., xi) | n ∈ N, αi ∈ R, xi ∈ X}. Moreover,
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we can define for two elements in V , say f(.) = ∑nf

i=1 αik(., xi) and g(.) = ∑ng

i=1 βik(., yi) the
following form:

⟨f, g⟩ =
nf∑
i=1

ng∑
j=1

αiβjk(xi, yj).

The assumptions about k ensure that ⟨, ⟩ is a valid scalar product. The closure of V would
then form a RKHS, since for any f ∈ closure(V ),

|f(x)| = |Lx(f)| = |⟨f, k(., x)⟩| ≤ ||k(., x)||H ||f ||H , (1.7)

where the last inequality follows from the Cauchy-Schwartz inequality.

Thus, we have managed to obtain a Hilbert space satisfying some additional reproducing properties.
This additional space structure can also be obtained with Christoffel-Darboux kernels that we will
introduce in a sequel. It turns out that these features can be exploited in the context of machine
learning.

1.3 Christoffel-Darboux kernel
In the spirit of the previous section, one may see the space Rd[x] (which is a subspace of L2(ϕ))
as the RKHS.
If, for instance, the measure ϕ is compactly supported and absolutely continuous with respect to
the Lebesgue measure, then we can show that the following bi-linear form

⟨, ⟩ϕ : Rd[x] × Rd[x] −→ R (1.8)

(P, Q) 7−→ ⟨P, Q⟩ϕ :=
∫

Ω
PQdϕ (1.9)

defines a valid scalar product, making (Rd[x], ⟨, ⟩ϕ) a finite-dimensional Hilbert space of polyno-
mial functions from Rp to R [4]. Since every linear map defined on a finite-dimensional space
is continuous, we deduce that (Rd[x], ⟨, ⟩ϕ) is indeed a RKHS. Its associated reproducing kernel
is known as the Christoffel-Darboux kernel. In order to define it properly, let us recall the next
definition:

Definition 1.3.1. Let (Pα)α∈Np be a family of polynomials in R[x]. We say that this family is
orthonormal with respect to ϕ if∫

Ω
Pα(x)Pβ(x)dϕ(x) = 1α=β, ∀α, β ∈ Np. (1.10)

Definition 1.3.2 (Christoffel-Darboux kernel). The Christoffel-Darboux kernel is the reproducing
kernel associated to (Rd[x], ⟨, ⟩ϕ). It can be defined via the following relationship

Kϕ
d (x, y) :=

s(d)∑
i=1

Pi(x)Pi(y), for all x, y ∈ Rp, (1.11)

where (Pi)s(d)
i=1 is an orthonormal basis of Rd[x].

9



Remark 1.3.1. The kernel Kϕ
d satisfies the reproducing property. Indeed, if P ∈ Rd[x], then one

can write P = ∑s(d)
i=1 piPi, for some real numbers (pi)s(d)

i=1 , implying that

∀x ∈ X, Lx(P ) = ⟨Kϕ
d (., x), P ⟩ϕ (1.12)

=
∫

Ω
P (y)Kϕ

d (y, x)dϕ(y) =
∫

Ω
P (y)

s(d)∑
i=1

Pi(x)Pi(y)dϕ(y) (1.13)

=
s(d)∑
i=1

Pi(x)
∫

Ω
P (y)Pi(y)dϕ(y) =

s(d)∑
i=1

Pi(x)
s(d)∑
j=1

pj

∫
Ω

Pj(y)Pi(y)dϕ(y)︸ ︷︷ ︸
1j=i

(1.14)

=
s(d)∑
i=1

piPi(x) = P (x). (1.15)

An interesting feature of this kernel is that it can be explicitly computed from the moments, i.e.,
from the moment matrix. Indeed, if we let vd(x) := (P1(x), . . . , Ps(d)(x)) ∈ Rs(d) for some basis
(Pi)s(d)

i=1 of Rd[x] (not necessarily orthonormal), then for any polynomial P ∈ Rd[x] there exists
some p ∈ Rs(d) such that P (x) = pT vd(x) for any x ∈ Rp.
In particular, since ⟨., .⟩ϕ is a valid scalar product, then for any P ̸≡ 0, we have

⟨P, P ⟩ϕ =
∫

Ω
pT vd(x)(pT vd(x))T dϕ(x) = pT

(∫
Ω

vd(x)vd(x)T dϕ(x)
)

p = pT Md(ϕ)p > 0,

(1.16)

implying that Md(ϕ) ≻ 0. This allows us to derive another expression for the Christoffel-Darboux
kernel, based on the moments. Namely,

Kϕ
d (x, y) := vd(x)T Md(ϕ)−1vd(y), ∀x, y ∈ Rp. (1.17)

That this new formulation satisfies the reproducing property is guaranteed by the uniqueness of the
reproducing kernel, but it can also been seen from the following computation: ∀x ∈ X, ∀p ∈ Rs(d),

⟨Kϕ
d (., x), P ⟩ϕ =

∫
Ω

P (y)Kϕ
d (y, x)dϕ(y) =

∫
Ω

pT vd(y)vd(y)T Md(ϕ)−1vd(x)dϕ(y) (1.18)

= pT
∫

Ω
vd(y)vd(y)T dϕ(y)Md(ϕ)−1︸ ︷︷ ︸

Is(d)

vd(x) (1.19)

= pT vd(x) = P (x). (1.20)

Finally, we can observe that Md(ϕ) = (⟨Pi, Pj⟩ϕ)s(d)
i,j=1, so that, if the polynomial basis is orthonor-

mal, we obtain Md(ϕ) = Is(d), which shows explicitly that expressions (1.11) and (1.17) coincide.

Finally, let us mention that changing the polynomial basis does not change the Christoffel-Darboux
kernel, which is summarized in the next proposition.

Proposition 1.3.1. Let vd(.) and wd(.) be two different polynomial bases of Rd[x]. Let Md(ϕ) and
Nd(ϕ) be defined as in (1.3), with vd(.) and wd(.) respectively. Then, the associated Christoffel-
Darboux kernels are equal.
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Proof. Since vd(.) and wd(.) are two different basis of the vector space Rd[x], there exists a positive
definite matrix Π ∈ Rs(d)×s(d) such that wd(.) = Πvd(.). Let x ∈ Rp. Then,

wd(x)T (Nd(ϕ))−1wd(x) = wd(x)T
(∫

Ω
wd(x)wd(x)T dϕ(x)

)−1
wd(x) (1.21)

= vd(x)T ΠT
(∫

Ω
Πvd(x)vd(x)T ΠT dϕ(x)

)−1
Πvd(x) (1.22)

= vd(x)T ΠT
(

Π
∫

Ω
vd(x)vd(x)T dϕ(x)ΠT

)−1
Πvd(x) (1.23)

= vd(x)T ΠT
(
ΠMd(ϕ)ΠT

)−1
Πvd(x) (1.24)

= vd(x)T ΠT (ΠT )−1(Md(ϕ))−1Π−1Πvd(x) (1.25)
= vd(x)T (Md(ϕ))−1vd(x). (1.26)

What seems to distinguish the Christoffel-Darboux kernel from other kernels commonly used in
practice is its profound connection with an underlying measure ϕ. Indeed, this measure is inducing
an inner product on the ambient Reproducing Kernel Hilbert Space, which is suitable for many
problems in statistics. Other commonly used kernels (polynomial kernel) are not induced by a
positive measure.

1.4 Christoffel function
In the previous section, the Christoffel-Darboux kernel was introduced. Using the same notations,
we can define the Christoffel function, the very central object of this report.

Definition 1.4.1 (Christoffel function). The Christoffel function of order (degree) d ∈ N, denoted
by Λϕ

d , is defined via the following relationship

Λϕ
d : Rp −→ R+ (1.27)

x 7−→ Λϕ
d(x) := min

P ∈Rd[x]

{∫
Ω

P 2(z)dϕ(z), P (x) = 1
}

. (1.28)

In other words, to any point x ∈ Rp, the Christoffel function associates the minimal squared
||.||ϕ-norm among the polynomials whose value at x is equal to one. This constrained optimization
problem is in fact equivalent to a particular quadratic programming problem. Indeed, recalling
that any polynomial P ∈ Rd[x] can be written as pT vd(.), we deduce that the objective function
becomes

∫
Ω pT vd(z)vd(z)T pdϕ(z) = pT Md(ϕ)p, so that

Λϕ
d(x) := min

p∈Rs(d)

{
pT Md(ϕ)p, pT vd(x) = 1

}
. (1.29)

Hence, evaluating the Christoffel function at a particular point is the same as solving a specific
convex quadratic programming. The interest of this formulation lies in the fact that this family of
optimization problems can be handled very efficiently, even in large dimensions, by some numerical
solvers, which is crucial in practical computations. However, the drawback is that for each point,
one has to solve a completely new quadratic programming, i.e., no closed formula is available.

Let us consider an alternative way of defining this function:

11



Proposition 1.4.1. The Christoffel function of order (degree) d ∈ N, defined in (1.28), satisfies
the following relationship

Λϕ
d(x) = 1

Kϕ
d (x, x)

= 1
vd(x)T Md(ϕ)−1vd(x) . (1.30)

Proof. Let x ∈ Rp. First, we can see that the quotient in (1.30) is well defined thanks to
the orthogonal polynomials definition of the Christoffel-Darboux kernel (1.11). Indeed, we have
Kϕ

d (x, x) = ∑s(d)
i=1 Pi(x)2 > 0, for all x ∈ Rp.

Let us now consider the polynomial P : z 7→ Kϕ
d

(z,x)
Kϕ

d
(x,x)

. By definition, P ∈ Rd[x], and since

P (x) = Kϕ
d

(x,x)
Kϕ

d
(x,x)

= 1, we deduce that P is admissible for the optimization problem in (1.28). This
means that

Λϕ
d(x) ≤

∫
Ω

Kϕ
d (z, x)2

Kϕ
d (x, x)2

dϕ(z) = 1
Kϕ

d (x, x)2

∫
Ω

Kϕ
d (z, x)Kϕ

d (z, x)dϕ(z) (1.31)

= 1
Kϕ

d (x, x)�2 �
����

Kϕ
d (x, x) (reproducing property) (1.32)

= 1
Kϕ

d (x, x)
. (1.33)

On the other hand, if P is an admissible solution, then

1 = P (x)2 =
(∫

Ω
Kϕ

d (z, x)P (z)dϕ(z)
)2

(reproducing property) (1.34)

≤
∫

Ω
Kϕ

d (z, x)2dϕ(z)
∫

Ω
P (z)2dϕ(z) (Cauchy-Schwartz) (1.35)

= Kϕ
d (x, x)

∫
Ω

P (z)2dϕ(z) (reproducing property) (1.36)

implying that 1
Kϕ

d
(x,x)

≤ Λϕ
d(x). Combining the two inequalities, we deduce that Λϕ

d(x) = 1
Kϕ

d
(x,x)

.
Moreover, from computations leading to (1.33), we deduce that the polynomial P reaches the
optimal value 1

Kϕ
d

(x,x)
, so that it actually solves the problem in (1.28).

Thus, evaluating the Christoffel function at some point x ∈ Rp can be done by taking the recip-
rocal of the value of the Christoffel-Darboux kernel along the diagonal y = x. Indeed, recall that
vd(.) denotes a monomial basis of Rd[x], so that Kϕ

d (x, x) = vd(x)T Md(ϕ)−1vd(x) is nothing but
a 2d-degree polynomial evaluated at x ∈ Rp.
An advantage of this formulation is that it gives us an explicit closed-form formula for the Christof-
fel function, directly related to the Christoffel-Darboux kernel. However, this requires inverting
an s(d) × s(d)-dimensional matrix, which can be extremely costly in the high dimensional context,
i.e., if p is high, or very unstable numerically, if d is high, for example.

This function has been known for a very long time among the researchers working on the approx-
imation theory and orthogonal polynomials. The next figure motivates the use of the Christoffel
function in statistical applications:

12



Figure 1.1: Level sets of a Christoffel function associated to the empirical measure [4, page 2].

The Figure 1.1. is obtained from an empirical measure ϕN := ∑N
i=1 δxi

associated to the cloud of
data points (xi)N

i=1 in R2, with N = 1000. The red curve is just one particular level set associated
to ΛϕN

4 . An immediate observation is that these level sets seem to capture very well the shape
of the data points, i.e. the support of the underlying measure that the data was generated from.
Although this property is true for more general measures and can be obtained from the true
theoretical moments, the fact that it can be applied to the empirical measure, which is one of the
central objects in statistics, increases the attractiveness of this function.

1.4.1 Some properties

Let us start by showing that the Christoffel function can identify pure points asymptotically.

Proposition 1.4.2. [3, 4] Let ϕ ∈ P(Ω), with Ω ⊂ Rp compact. Let x ∈ Rp. Then,

lim
d→+∞

Λϕ
d(x) = ϕ({x}). (1.37)

Proof. Let x ∈ Rp. It is clear from the variational formulation in (1.28) that the limit in (1.37)
exists, since the sequence (Λϕ

d(x))d∈N is bounded from below by zero and non-increasing.
Furthermore, using the properties of an integral with respect to a measure, we deduce that for any
admissible P ∈ Rd[x],

∫
Ω

P (z)2dϕ(z) ≥ P (x)ϕ({x}) = ϕ({x}). (1.38)

By taking the infimum and then the limit when d → +∞, we get that limd→+∞ Λϕ
d(x) ≥ ϕ({x}).

On the other hand, for any d ∈ N, the polynomial P : z 7→ (1 − ||z − x||2)d belongs to R2d[x] and

13



satisfies P (x) = 1 so that

Λϕ
2d+1(x) ≤ Λϕ

2d(x) ≤
∫

Ω
(1 − ||z − x||2)2ddϕ(z) (1.39)

≤
∫

B(x,d− 1
4 )

dϕ(z) +
∫

Ω\B(x,d− 1
4 )

(1 − ||z − x||2)2ddϕ(z) (1.40)

≤
∫

B(x,d− 1
4 )

dϕ(z) +
∫

Ω\B(x,d− 1
4 )

(1 − (d− 1
4 )2)2ddϕ(z) (1.41)

=
∫

B(x,d− 1
4 )

dϕ(z)︸ ︷︷ ︸
−−−−→

d→+∞
ϕ({x})

+
(

1 − 1√
d

)2d

︸ ︷︷ ︸
−−−−→

d→+∞
0

. (1.42)

Therefore, we conclude that limd→+∞ Λϕ
d(x) = ϕ({x}).

The next result we present is related to the average value taken by the Christoffel function inside
the support of its associated measure.

Proposition 1.4.3. [3, 4] Let Ω ⊂ Rp be compact and ϕ ∈ P(Ω) be an absolutely continuous
probability measure. Let X be a random variable distributed according to ϕ. Let d ∈ N. Then,

Eϕ

[
1

Λϕ
d(X)

]
= s(d). (1.43)

Proof. Let P1, . . . , Ps(d) be an orthonormal basis of R[x]. By definition of an expectation,

Eϕ

[
1

Λϕ
d(X)

]
= Eϕ

[
Kϕ

d (X, X)
]

=
∫

Ω
Kϕ

d (x, x)dϕ(x) (1.44)

=
∫

Ω

s(d)∑
i=1

Pi(x)2dϕ(x) =
s(d)∑
i=1

∫
Ω

Pi(x)2dϕ(x)︸ ︷︷ ︸
=||Pi||ϕ=1

(1.45)

= s(d). (1.46)

Thus, for an absolutely continuous measure on a compact support, the value of the Christoffel
function decreases polynomially fast towards zero when we let d → +∞ (recall that s(d) =(

p+d
p

)
∼ dp).

Proposition 1.4.4. [4] Let d ∈ N, and let ϕ ∈ P(Ω), with Ω ⊂ Rp compact. Then, for any
x0 ∈ Rp verifying dist(x0, Ω) ≥ δ > 0, one has

Kϕ
d (x0, x0) ≥ 2

dδ
δ+diam(Ω) −3. (1.47)

In order to prove the previous proposition, we use the following lemma:

Lemma 1.4.1. [9] Let d ∈ N∗ and δ ∈]0, 1[. Then, there exists Q ∈ R2d[x] satisfying:

Q(0) = 1, ||x|| ≤ 1 =⇒ |Q(x)| ≤ 1, and 0 < δ ≤ ||x|| ≤ 1 =⇒ |Q(x)| ≤ 21−δd. (1.48)
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Proof of the Proposition 1.4.4. Let d ∈ N∗ and let δ ∈]0, 1[. Set δ̃ = δ
δ+diam(Ω) ∈]0, 1[. Consider

P ∈ R2d[x] such that P (x) = Q
(

x−x0
δ+diam(Ω)

)
, where Q ∈ R2d[x] is the polynomial whose existence

is assured by Lemma 1.4.1. Since P (x0) = Q(0) = 1, we deduce that P is an admissible candidate
in the optimization problem (1.28) defining Λϕ

2d(x0). Moreover, since dist(x0, Ω) ≥ δ, we deduce
δ̃ ≤

∣∣∣∣∣∣ x−x0
δ+diam(Ω)

∣∣∣∣∣∣ ≤ 1 for all x ∈ Ω. Hence, we obtain the following:

Λϕ
2d(x0) ≤

∫
P 2(x)dϕ(x) ≤

∫ (
21−δ̃d

)2
dϕ(x) = 22−2δ̃d ≤ 23−δ̃2d. (1.49)

Additionally, since R2d[x] ⊂ R2d+1[x], we deduce that Λϕ
2d+1(x0) ≤ Λϕ

2d(x0). Combining the fact
that δ̃ ≤ 1 with the equation (1.49), we deduce that

Λϕ
2d+1(x0) ≤ 23−δ̃(2d+1). (1.50)

Since we have shown the validity of the formula for odd and even degrees separately, we deduce
that for any d ∈ N∗, Λϕ

d(x0) ≤ 23−δ̃d. Recalling the definition of δ̃ and using the Proposition 1.4.1,
we obtain

Λϕ
d(x0) ≤ 23−δ̃d =⇒ Kϕ

d (x0, x0) ≥ 2δ̃d−3 = 2
dδ

δ+diam(Ω) −3. (1.51)

Figure 1.2: (Adapted (link) with permission) Different growth rates for (Λϕ
d(x))−1 = Kϕ

d (x, x).

The Figure 1.2, together with the Proposition 1.4.3. and the Proposition 1.4.4. provides a rationale
for the use of the Christoffel function in data analysis. Indeed, there exists some kind of dichotomy
that is manifested through the asymptotically exponentially fast decay of the Christoffel function
for the points not belonging to the support of its associated measure. On the other hand, as d
increases, this decay is at most polynomial for the points inside the support. This is essentially
the main mechanism through which the support of the underlying measure is identified. Moreover,
we can also observe that different rates can be obtained for the points lying on the boundary,
depending on its smoothness.
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Finally, let us conclude this section by stating a theorem that relates the Christoffel functions
associated to a certain measure and its empirical counterpart.

Theorem 1.4.1. [2, 4] Let d ∈ N \ {0}, and let ϕ ∈ P(Ω), with Ω ⊂ Rp compact. Let n ∈ N
and (xi)n

i=1 be a sample of points in Rp drawn according to ϕ, and ϕn := ∑n
i=1 δxi

its associated
empirical measure. Then,

||Λϕn

d − Λϕ
d ||∞ = sup

x∈Rp
{|Λϕn

d (x) − Λϕ
d(x)|} −−−−→

n→+∞
0 a.s. (1.52)

This theorem provides some convergence guarantees that justify the use of the empirical Christoffel
function. In the context of data analysis, we are rarely aware of the probability measure that our
data was generated from, which is why such guarantees are important.
Finally, a similar result as in Theorem 1.4.1. can be stated in terms of level sets. More precisely,
we can certify that the level sets of the empirical and theoretical Christoffel function will asymp-
totically coincide, for any fixed degree. Once again, such a result puts us in a position to exploit
the behavior of the Christoffel function when it comes to solving specific problems that arise in
data analysis, which will be more detailed in the next part of the report.
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Chapter 2

Application in machine learning

2.0.1 Introductory remarks
This section is going to be mainly focused on adapting the Christoffel function to the supervised
learning context. Indeed, results from [1, 4, 11] have highlighted some remarkable capabilities of
this function when it comes to recovering or approximating the graph of an unknown function.
Since the classification task can be viewed as a specific task of the graph approximation, it becomes
then natural to connect these ideas with the Christoffel function [5]. However, such an approach
requires a certain amount of slight modifications to be made to the Christoffel function, which will
be detailed in a sequel. This will allow us to define a classifier based on the Christoffel function
and to evaluate its performance in various classification tasks.

2.1 Supervised learning
Suppose that we want to solve a classification problem of assigning the points in Rp to one of the
m ≥ 2 classes in the set Y := {1, . . . , m}. Moreover, denote by Xj ⊂ Rp the set of all points
that fall into the given class j ∈ Y . Let X = ⋃

j∈Y Xj and suppose that X is open with compact
closure.
Let µ be a joint probability distribution on the set Ω = X × Y . One may always disintegrate
µ into its marginal distribution ϕ on X and its conditional distribution νx on Y given a point
x ∈ X, so that dµ(x, y) = νx(dy)ϕ(dx) [6].
If the points to classify are perfectly separable, i.e. they can not belong to more than one class,
then we can assume that the marginal distribution assigns no mass to the intersection of the
supports, meaning that ϕ(Xi ∩ Xj) = 0, for all (i, j) ∈ Y 2 with i ̸= j. This allows us to write
µ = ∑

j∈Y µj, where for all j ∈ Y , we have

dµj(x, y) = δj(dy)ϕj(dx), with ϕj ∈ P(Xj). (2.1)

This also implies that ϕ = ∑
j∈Y ϕj, because ϕ(A) = µ(A × Y ) = ∑

j∈Y µj(A × Y ) = ∑
j∈Y ϕj(A),

for any Borel set A ∈ B(X).
Recall now that the goal of the supervised learning [5, 9, 12] is to recover a classifier f such that

f : X −→ Y (2.2)

x 7−→ f(x) :=

∑m

j=1 j1Xj
(x), if x ∈ X

0, otherwise
(2.3)
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Thus, evaluating f at x ∈ X gives either the class of the point x or zero (if the point belongs to
different classes simultaneously).
As a byproduct of this construction, we obtain an alternative formulation of the underlying measure
µ, namely

dµ(x, y) = δf(x)(dy)ϕ(dx) (2.4)

Hence, the graph G := {(x, f(x)), x ∈ X} of the classifier f is nothing else but the support of
our underlying probability measure µ. This is why we can identify the graph recovery problem
with the problem of learning a classifier, and connect these two using the Christoffel function.

2.2 Christoffel-Darboux classifier
This part is quite technical but its purpose is to explain how the Christoffel function needs to be
modified in order to to encompass the problem of the supervised learning. Indeed, the usual mo-
ment matrix in the previously described classification framework will suffer from rank deficiency,
requiring thus some additional refinements. Stated differently, the bi-linear form defined in (1.9)
may not be positive definite, but we may still find an alternative way to circumvent the problem.

In this case, the support of the measure µ defined in (2.4) is contained in a real algebraic va-
riety of the space Rp, which is why (1.9) fails to define a valid scalar product on L2(µ). One way to
observe this is by considering the polynomial Q ∈ R[x, y] such that Q(x, y) := ∏m

i=1(y − i). Then,
V := {(x, y) ∈ Rp ×R | Q(x, y) = 0} = Rp × Y is the real algebraic set containing the support of
the measure µ. Thus, for any 0 ̸= P ∈ R[x, y] that vanishes on V , and represented by the vector
of coefficients p, we would have

pT Md(ϕ)p =
∫

Ω
P 2dµ = 0, (2.5)

justifying the non-invertibility of the moment matrix, so that equations (1.30) are not valid any
more [4, 5]. In order to avoid these issues, one may define the Christoffel function as follows

Λµ
d : V −→ R+ (2.6)

(x, y) 7−→ Λµ
d(x, y) := min

P ∈L2
d
(µ)

{∫
Ω

P 2(z)dϕ(z), P (x, y) = 1
}

, (2.7)

where L2
d(µ) ⊂ R[x, y] is the space of polynomials on V of overall degree at most d (and at most

m−1 in the variable y). A basis of such a set is thus given by {xαyk | k ≤ m−1,
∑p

i=1 αi +k ≤ d}.
Then, the associated moment matrix is non-singular and we can retrieve the standard formulations
of the Christoffel function on the set V [5].

Alternatively, we could perturb the measure µ by considering µ + ϵµ0, with ϵ > 0 and µ0 a
uniform probability measure on X × [0, m]. Then,

Λµ+ϵµ0
d : Rp × R −→ R+ (2.8)

(x, y) 7−→ Λµ+ϵµ0
d (x, y) := vd(x, y)T Md(µ + ϵµ0)−1vd(x, y) (2.9)

is well-defined and allows to approximate f via the following relationship [11]:

f̂(x) := arg min
y

Λµ+ϵµ0
d (x, y). (2.10)
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However, a more intuitive and a more classification-oriented interpretation can be obtained by
implementing another minor modification to the Christoffel function. Let us consider

Λ̂µ
d : V −→ R+ (2.11)

(x, y) 7−→ Λ̂µ
d(x, y) := min

P ∈L2
d
(µ)

{∫
Ω

P 2(z)dϕ(z), P (x, y) = 1
}

, (2.12)

where L2
d(µ) := Rd,m−1[x, y] is the space of all polynomials of degree at most d with respect to x

and at most m − 1 with respect to the variable y.

By construction, L2
d(µ) ⊂ L2

d(µ) ⊂ L2
d+m−1, so that for all (x, y) ∈ V ,

Λµ
d+m−1(x, y) ≤ Λ̂µ

d(x, y) ≤ Λµ
d(x, y), (2.13)

which is how these two constructions connect to each other. However, the advantage of the
formulation in (2.12) lies in the fact that it possesses a closed form expression connected to the
interpolation polynomials at the points {1, . . . , m}, which are defined through

y 7→ πj(y) :=
∏

i ̸=j(y − i)∏
i ̸=j(j − i) , j = 1, . . . , m (2.14)

and satisfy πj(i) = δji, for all i, j ∈ Y .
This connection can be stated more precisely in the form of the following theorem

Theorem 2.2.1. [5] Let j ∈ Y and let (P j
α)α∈Np

d
be a family of polynomials in R[x] orthonormal

with respect to ϕj ∈ P(Xj). Let Λϕj

d be the associated Christoffel function defined as in (1.28).
Then,

1. The family (πjP
j
α)α∈Np

d
,j∈Y is an orthonormal basis of L2

d(µ);

2. Λ̂µ
d defined in (2.12) satisfies

(Λ̂µ
d(x, y))−1 =

∑
j∈Y

πj(y)2 ∑
α∈Np

d

P j
α(x)2 =

∑
j∈Y

δy=j(Λϕj

d (x, y))−1. (2.15)

Proof.
1. The cardinality of the basis (πjP

j
α)α∈Np

d
,j∈Y is m · s(d), which corresponds to the dimension of

the space L2
d(µ) = Rd,m−1[x, y]. Using the fact that (πj)j∈Y generates Rm−1[y] and that (P j

α)α∈Np
d

generates Rd[x], we can easily deduce that every polynomial R ∈ Rd,m−1[x, y] can be written in
as R(x, y) = ∑

α∈Np
d
,j∈Y pjr

j
α(πj(y)P j

α(x)). Finally, as long as i ̸= j, we deduce from (2.14) that
πi(y)πj(y) = 0 inside the support of µ, so that

∫
πi(y)P i

α(x)πj(y)P j
β(x)dµ(x, y) = 0 as well. On

the other hand, if i = j, then∫
πi(y)2P i

α(x)P i
β(x)dµ(x, y) =

∑
j∈Y

∫
πi(y)2P i

α(x)P i
β(x)dµj(x, y) (from (2.1)) (2.16)

=
∫

πi(y)2P i
α(x)P i

β(x)dµi(x, y) (by assumption) (2.17)

=
∫

P i
α(x)P i

β(x)dϕi(x, y) (from (2.1)) (2.18)

= 1α=β (by definition) (2.19)
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which proves orthogonality.

2. Consider the monomial basis of L2
d(µ), (xαyj)α∈Np

d
,0≤j≤m−1, and denote by v̂(x, y) the asso-

ciated vector of monomials. Let M̂d(µ) be the corresponding moment matrix defined as in (1.3).
Following (1.29), we deduce that

Λ̂d(x, y) = min
p∈Rm·s(d)

{
pT M̂d(µ)p, pT v̂d(x, y) = 1

}
. (2.20)

We can then define the Lagrangian (p, λ) 7→ L(p, λ) := pT M̂d(µ)p−λ(1−pT v̂d(x, y)). The objec-
tive function being strictly convex, and the constraint being linear, we deduce that the first order
condition for this optimization problem is both necessary and sufficient, and allows to characterize
the optimal admissible solution (p∗, λ∗) as follows

2M̂d(µ)p∗ = λ∗v̂d(x, y), (2.21)

which after multiplying by p∗ yields

λ∗ = 2Λ̂d(x, y) and p∗ = Λ̂d(x, y)(M̂d(µ))−1v̂(x, y). (2.22)

This implies that the optimal polynomial in the definition of Λ̂d(x, y) writes, for all (u, z) ∈ Rp×Y ,

p∗(u, z) = v̂(x, y)T Λ̂d(x, y)(M̂d(µ))−1v̂(x, y)
= Λ̂d(x, y)

∑
α∈Np

d
,j∈Y

πj(y)πj(z)P j
α(x)P j

α(u) (from (1.11) and Proposition 1.4.1) (2.23)

By evaluating p∗ at (x, y), we deduce that

p∗(x, y) = 1 = Λ̂d(x, y)
∑

α∈Np
d
,j∈Y

πj(y)2P j
α(x)2 (2.24)

= Λ̂d(x, y)
∑
j∈Y

πj(y)2 ∑
α∈Np

d

P j
α(x)2 (2.25)

= Λ̂d(x, y)
∑
j∈Y

πj(y)2(Λϕj

d (x))−1 (use definition) (2.26)

= Λ̂d(x, y)
∑
j∈Y

δy=j(Λϕj

d (x))−1 (from (2.14)) (2.27)

which are exactly those equalities stated in (2.15).

Thus, if y ∈ Y , we can easily and simply express the modified Christoffel function in terms of the
class-specific standard Christoffel functions Λϕj

d , for j = 1, . . . , m.

2.2.1 Consistency result
The expression that was derived in Theorem 2.2.1. is what motivates the following definition.

Definition 2.2.1. The Christoffel-Darboux classifier (CDC) of order d ≥ 1 is a function f̂d such
that

∀x ∈ X, f̂d(x) := arg max
j∈J1,mK

Λϕj

d (x). (2.28)
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That this definition is natural follows from the following observation. Fix k ∈ Y and x ∈ Xk.
From (1.37) and (1.47), we know that, if we increase the order d, then Λϕj

d (x) should decrease
exponentially fast towards zero for all j ̸= k. On the other hand, Λϕk

d (x) should manifest a decay
which is not faster that polynomial.
So, if the degree is sufficiently large (say higher than a threshold dx ∈ N), then after some time,
we should necessarily have Λϕj

d (x) < Λϕk
d (x), for all d ≥ dx and all j ̸= k. Consequently, those

class-specific Christoffel functions can be interpreted as score-determining, so that every new point
is classified to the class that yields the largest class-specific Christoffel function.

That this procedure represents a consistent way of defining a classifier is stated in the follow-
ing theorem:

Theorem 2.2.2. [5] Let j ∈ J1 , mK, ϵ > 0 and Xϵ
j := {x ∈ Xj | d(x, ∂Xj) > ϵ}. Assume that for

all j ∈ J1 , mK, ϕj is absolutely continuous with respect to the restriction of the Lebesgue measure
on Xj. Then, there exists dx,ϵ ∈ N such that for all d ≥ dx,ϵ

f̂d(x) = j, ∀x ∈ Xϵ
j . (2.29)

Due to the high number of technicalities, we choose to omit the proof of the Theorem 2.2.2.
Nonetheless, the main message that should be taken from this theorem is that, by adjusting the
order of the classifier f̂d, one can make sure that all the points, which are sufficiently far away from
the class boundary, get correctly classified, which is quite a desirable feature.

It is important to notice that the classifier we defined in (2.28) remains purely theoretical, since
we rarely know those population probability distributions (ϕk)k∈Y . What we have instead at our
disposal is the finite simple of labeled data {(xi, yi) ∈ X × Y }N

i=1 often referred to as the training
data set. These data points can be then used to construct empirical counterparts of the quantities
defined in (2.28).

Indeed, we may consider the sequence of empirical measures (ϕk,N)k∈Y and their associated empir-
ical Christoffel functions (Λϕk,N

d )k∈Y . The natural question that this construction raises is whether
these discretizations still provide good approximations of the support of the underlying probability
measures.
To answer this question, suppose that the training sets consists of N data points from each of the m

classes. Compute for all k ∈ Y , ϕk,N := 1
N

∑N
i=1 xk

i , and let (Λϕk,N

d (x))−1 = vd(x)T (Md(ϕk,N))−1vd(x).
These functions are indeed well-defined as soon as the sample size is large enough and d is chosen
carefully so that the empirical moment matrix is indeed invertible [2].

Then, the empirical analogue of the CDC is given by

∀x ∈ X, f̂N
d (x) := arg max

j∈J1,mK
Λϕj,N

d (x). (2.30)

We have the following result:

Theorem 2.2.3. [5] Let j ∈ J1 , mK, ϵ > 0 and Xϵ
j := {x ∈ Xj | d(x, ∂Xj) > ϵ}. Let (xj

i )N
i=1 ⊂ Xj

be an i.i.d. sample drawn from an absolutely continuous distribution ϕj ∈ P(Xj). Then, there
exists dx,ϵ ∈ N such that for all d ≥ dx,ϵ, and for sufficiently large sample size N ,

f̂N
d (x) = j, ∀x ∈ Xϵ

j , (2.31)
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almost surely with respect to the random samples.
Proof. Let j ∈ J1 , mK and ϵ > 0. Let x ∈ Xϵ

j . From the Theorem 2.2.2, we deduce that it is
possible to find a real constant cj > 0 and dx,ϵ ∈ N such that Λϕj

d (x) − Λϕk
d (x) > cj, for all k ̸= j

and all d ≥ dx,ϵ.
Furthermore, using the Theorem 1.4.1, we know that, for all k ∈ J1 , mK and all d ∈ N∗,

sup
x∈Rp

{|Λϕk,N

d (x) − Λϕk
d (x)|} −−−−→

N→+∞
0 (2.32)

almost surely with respect to the random samples (xk
i )N

i=1 ⊂ Xk. If we combine these two remarks,
we deduce that for all d > dx,ϵ and all k ̸= j,

Λϕj,N

d (x) > Λϕk,N

d (x) + cj, (2.33)

provided that N is sufficiently large, which is the same as saying that f̂N
d (x) = j.

In other words, Theorem 2.2.3 provides some theoretical guarantees that could be used to justify
the use of the CDC in the standard supervised learning framework. Implementing and evaluating
this classifier is what the next sections are going to be mostly based on.

2.3 Empirical evaluations
At this stage, we are interested in implementing numerically the CDC classifier and measuring
its performance on various data sets. More precisely, the results that will be presented below are
obtained thanks to our preliminary code written in Python.

A significant amount of preliminary computations was necessary in order to successfully implement
the CDC classifier. For example, the following functions were created:

• gen_basis(p, d) − generates the p−variate monomial basis of order d w.r.t. the graded
lexicographic order;

• MoEM (data,d) − computes the empirical moment matrix (indexed by monomials) of order
d associated to the points in data;

• Christoffel(point,d,data) − evaluates at point the empirical Christoffel function of order d
associated to the cloud of points in data.

Next, inspired by the already available classifiers from thescikit−learn library, we create a a new
class CDKC() of objects which will be responsible for implementing the formula in (2.30).
Some of the main attributes associated to this class of objects are:

• emommatrix - computes the empirical moment matrix from the input data;

• predict(tobeclassified) - assigns labels to the points in tobeclasified;

• score(tobeclassified,true_label) - percentage of correctly classified points;

• confusion matrix(true_label,prediction) - confusion matrix computation.
It is important to mention that the code has not been optimized, but rather used in order to obtain
some benchmark comparisons. Furthermore, we emphasize the fact that the CDC implementa-
tion is dependant on only one tuning parameter, namely the degree d of the involved Christoffel
functions.
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2.3.1 Iris data
We first evaluate the performance of the CDC clasifier on the very famous Iris data set. This data
set contains four features (length and width of sepals and petals) of 50 instances of three species
of Iris flower, i.e. Y = {1, 2, 3} and N = 50, so that we have 150 labeled data points that were
split into training and test categories via standard procedures.

Figure 2.1: Scaled Iris data - CDC classification example with d = 4 ; points whose interior is not
coloured are those that were miss-classified.

What we can observe from Figure 2.1. is that the red points were all correctly classified. Indeed,
miss-classification occurred among blue and green points only since their supports are not disjoint,
which violates the assumptions that we used in our theoretical framework. These intersecting
supports make the exact classification impossible. Notice also that only two out of four features
were used to solve the classification task.
Another interesting observation, which is rather intuitive, is that by considering all the features,
one may increase the percentage of the correctly classified data. Indeed, in the 4-dimensional
space, this data becomes much more easily separable.

Figure 2.2: Score of the CDC classifier on the test and training sets as a function of the tuning
parameter d.
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As expected, if one increases the degree of the CDC classifier, its performance also increases and
stabilizes around a certain threshold, if the data is not perfectly separable. However, by doing so,
it seems that the levels sets of the Christoffel functions involved in the CDC expression become
too specific to the data from the training set, and thus fail to generalize to the data in the test
set. This over-fitting tendency seems to be captured by the Figure 2.2. However, an alternative
explanation would be that the rather small sample size and degree are not sufficient to make the
moment matrix invertible, so that this behavior is a numerical artefact resulting from the inversion
of ill-conditioned matrices (the smallest eigenvalues of label-specific moment matrices are of order
10−10).

Let us now compare the CDC classifier with other commonly used classifiers:

Comparison for p = 2 features
Classifier Precision

(%)
Time (ms)

CDC (d = 4) 81 21.8
kNN 79 2.31
LDA 75 2.54
SVM 77 3.19
Tree 74 2.67

Table 2.1: Mean execution time and accuracy comparison

First, we notice that, even for small values of the tuning parameter, the CDC classifier is able
to achieve great performance compared to the other commonly used classifiers. Furthermore, we
observe that this method is much more costly to implement numerically, since the mean execution
time is higher that what many other classifiers require. Moreover, by considering all the four
features, the CDC classifier is able to correctly separate all the points by using only the moments up
to order four, i.e., d = 2. However, the method’s computational speed deteriorates significantly (200
ms on average), while the computing time of other classifiers remains quite stable. This indicates
that the current implementation of the CDC classifier suffers from important dimensionality issues,
so that the classifier is suitable for small-size problems only.

2.3.2 Toy data sets

We study the behaviour of the CDC classifier on various artificial data sets.
We start by considering the famous generic Two moons example. We control the level of the noise
so that the two moon-like shapes remain disjoint (separable). Some of the obtained results are
summarized by the means of the following figure:
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 2.3: Performance of the CDC classifier on the Two moons data set, with p = 2 and
N = 2000; Computation time is expressed in seconds.

Figure 2.3. displays some convergence properties of the CDC classifier that are in line with The-
orem 2.2.3. Indeed, it suffices to consider the Christoffel functions of order not higher than four
(i.e. empirical moments of order eight) in order to extract the level sets that perfectly separate
the points in the depicted data cloud.
On the same data set, the LDA classifier was much faster but achieved only 88% accuracy, demon-
strating some advantages of the CDC classifier in the context of non-linearly separable data sets.
SVM classifier, on the other hand, manages to achieve the absolute efficiency by consuming some-
how comparable amount of time (123ms) as f̂N

d .

Similar results are obtained for other data shapes.

(a) d = 1 (b) d = 4

Figure 2.4: Embedded disks and CDC classifier, p = 2 and N = 2000.
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What Figure 2.4. displays is a fifty percent accuracy gain obtained by considering polynomials of
degree 8 instead of the much simpler degree two polynomials.
Another observation that can be made at this stage of analysis is related to the dependency of
the CDC classifier on the sample size. It turns out that larger N is much less harmful in terms of
computational complexity than, for example, larger p.

Let us end this section by including some multi-class performance evaluations.

(a) CDC classifier (d = 4) (b) LDA classifier

(c) QDA classifier (d) SVM classifier

Figure 2.5: Comparison of various classifiers, Y = J1 , 5K, p = 2.

Even in the case of non-binary classification, the Christoffel-Darboux classifier seems to perform
pretty well in terms of accuracy.

With only one tuning parameter, which has a very straightforward interpretation, the CDC clas-
sifier provides us with a classification tool that is deeply connected to the data generating process.
This connection is established through the support identification, which takes place when the
Christoffel-Darboux classifier is computed. This nice interpretability and quite natural parame-
ter dependency are the main advantages of this classifier. On the other hand, being extremely
computationally expensive in higher dimensions is the main drawback of this classification method.

2.4 Extensions
As emphasized previously, there are still many improvements to be made to the proposed classifi-
cation method. Circumventing dimensionality issues and alleviating computational difficulties are
among the main directions for the future work.

For example, it would be interesting to implement the CDC classifier using the relationship es-
tablished in (1.29). This alternative way of computing the Christoffel function would make it
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unnecessary to invert moment matrices of high dimensions, manifesting probably better numer-
ical behaviour. However, this new method requires solving a completely new convex quadratic
programming problem (which could be done efficiently using many solvers) whenever one needs
to evaluate the Christoffel function at a different point. What is the trade-off between these two
separate techniques remains to be investigated.

Alternatively, one may try to combine (1.29) or the variational formulation in (1.28) with neural
networks and learn the Christoffel function. Indeed, in (1.28) one solves an optimization problem
over the set of polynomials of a given degree. As such, that formulation is not tractable. But,
one could consider optimizing the same objective function over the set of neural networks. Such
an approach would result in an approximate CDC classifier which would not suffer from the curse
of dimensionality. Since polynomials are continuous functions, and neural networks possess very
interesting expressivity properties, one may hope to recover an optimal solution with desired error
margin.

Additional research directions would include generalizing this approach to other tasks in the realm
of data analysis. For example, it would be natural to examine how the Christoffel-function-based-
approach behaves in the unsupervised learning framework (clustering). Here, one does not know a
priori how many clusters actually exist, i.e. labels are not available. An efficient clustering algo-
rithm should thus be able to deduce from the entire cloud of points (delineated by the level sets of
one polynomial) how many natural sub-clouds exist, i.e., to decompose one big Christoffel function
into multiple small Christoffel functions [6, 14]. Measuring the quality of such decompositions,
while keeping the number of tuning parameters as small as possible is one of the main challenges.
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Conclusion

In this report, we have provided some results related to the use of the Christoffel function in
machine learning. More precisely, we have investigated how this tool from approximation theory
domain can be adapted to handle supervised learning, i.e. classification tasks. Some of those re-
sults were purely theoretical, like in the first part, but found their use in practical implementations
described in the second part.

As already mentioned, the scientific community has been aware for a very long time of many
remarkable properties of the Christoffel-Darboux kernel, that were afterwards exploited mainly in
the study of orthogonal polynomials. Recently, it was shown that this tool can be used in statistics
as well, since the level sets of the Christoffel functions associated to empirical measures identify
quite well the supports of those measures. This rather simple statement has motivated the con-
tent of the first part of the report. Indeed, getting familiar with the properties of the Christoffel
function is a prerequisite for properly manipulating those properties when solving data science
problems.

Furthermore, we have focused on solving the classification problem with a novel classifier based
on the Christoffel function.

It turns out that a slightly modified Christoffel function represents the cornerstone for devel-
oping a classifier with some interesting properties. Indeed, we have demonstrated that such a
classifier is quite easy to interpret, since it is profoundly connected to the data generating process.
Moreover, it depends on only one tuning parameter, which is also a very much desired feature. In
addition, some consistency-like results were stated that justify this approach from the theoretical
point of view.

Finally, we have discussed numerical implementations and measured performance qualities of
the proposed estimator. We have seen that, in terms of accuracy, the CDC classifier competes
very well with many other state-of-the-art classifiers, and on different data sets. On the other
hand, this classifier involves some pretty heavy computations that fail to make it suitable for the
real-life classification problems, which are more than often high-dimensional. In any case, this
approach represents a very promising direction for future works that could be useful in many
machine learning applications.
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