
HAL Id: hal-03777018
https://laas.hal.science/hal-03777018v1

Preprint submitted on 14 Sep 2022 (v1), last revised 23 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

States Path Finder: a general and efficient algorithm for
prehensile manipulation planning

Quang Anh Le, Alexandre Thiault, Florent Lamiraux

To cite this version:
Quang Anh Le, Alexandre Thiault, Florent Lamiraux. States Path Finder: a general and efficient
algorithm for prehensile manipulation planning. 2022. �hal-03777018v1�

https://laas.hal.science/hal-03777018v1
https://hal.archives-ouvertes.fr


States Path Finder: a general and efficient algorithm
for prehensile manipulation planning

Quang Anh Le
SCSE

Nanyang Technological University
Singapore

quanganh001@e.ntu.edu.sg

Alexandre Thiault
École Polytechnique

Institut Polytechnique de Paris
Paris, France

alexandre.thiault@polytechnique.edu

Florent Lamiraux
LAAS-CNRS

University of Toulouse
Toulouse, France

florent.lamiraux@laas.fr

Abstract—This paper proposes a new algorithm called States
Path Finder (SPF) to solve the general prehensile manipulation
problem for multiple robots and multiple objects. Using a
constraint graph to represent the problem, SPF finds a list of
transitions from the initial state to the goal state, computes a
corresponding set of waypoints and connects the waypoints to
form a continuous, collision-free solution path. We benchmark
SPF on several problem instances with varying characteristics.
The results suggest SPF’s generality and also its higher efficiency
in comparison to Manipulation-RRT, an existing RRT-like algo-
rithm also based on the constraint graph.

Index Terms—Manipulation planning, motion planning, pre-
hensile manipulation

I. INTRODUCTION

Manipulation planning is a class of problems where some
robots act on some objects in order to displace them from
an initial to a goal pose. The action is usually performed
through grasping or pushing. In both cases, motion is achieved
by contact. Contacts impose constraints on the configuration
of the whole system (robot + obstacles). These constraints
can be expressed numerically. They define submanifolds of
the configuration space. The set of admissible configurations
is thus the union of such submanifolds, depending on the
constraints that are active. For instance, when an object is
not grasped, it should lie in a stable pose, when it is grasped
it should follow the gripper that grasps it.

Manipulation planning, also called task and motion planning
(TAMP), is often broken down into more specific instances.

Rearrangement planning [1]–[4] for example is a class of
task and motion planning problems where one or several
robots are requested to move some objects from an initial to a
final pose. Some papers handle the specific case of multi-arm
path planning [5]–[7], while other papers address the problem
called navigation among movable obstacle (NAMO) where the
goal is for the robot to reach a goal configuration, no matter
the final pose of movable objects [8]–[10].

Sampling based path planning methods have been first
applied to the manipulation planning problem in [11]. This
pioneering work mainly addresses pick and place problems.

This work has been partially supported by the Joint lab ROB4FAM between
Airbus and the CNRS

In the first step, the objects are allowed to slide on the
contact surface while grasped, which makes the search more
efficient. In the second step, a reduction property enables the
algorithm to approximate the path found in the first step by
a valid manipulation path. Later, [12] propose an extension
of Rapidly-Exploring Random Trees (RRT) to the problem
of a humanoid robot walking to a table and pushing an
object to a goal region. The RRT algorithm explores the
configuration space as well as a graph of modes representing
the different states of the system (walking, moving the arm,
pushing the object). They prove the probabilistic completeness
of their approach. [13] builds on this previous work to propose
a method that is asymptotically optimal. They validate the
algorithm on a simple example where planar robots push
planar objects to a goal zone. In a previous paper [14] however,
we showed that naively running an RRT algorithm exploring
the modes of the manipulation problem fails in some cases.
Namely, if two foliated manifolds intersect, RRT will never be
able to connect trees in different manifolds. This issue arises
in cases as simple as a robot manipulating two objects that
can be put at any place on a horizontal plane. In this latter
case, the placement manifold of each object is foliated: each
pose of the object on the plane defines a leaf (mode in [12],
orbit in [13]).

Among the few works that properly handle crossed folia-
tions, [15] proposes a method for the simple case of a single
manipulator arm manipulating a single object. The method
builds roadmaps on some leaves of the manifolds grasp and
placement by running PRM*, then it connects the roadmap
by sampling configurations at the intersection of the leaves
containing roadmaps.

In this paper, we propose an extension of the latter method
to more general prehensile manipulation problems with several
objects and several robots.

II. MANIPULATION PLANNING PROBLEM

In this section, we define the class of manipulation planning
problems we address. We recall the main concepts and notation
from [16].



A. Definitions

Definition 1: Prehensile manipulation problem
A prehensile manipulation problem is defined by
• nr ≥ 1 robots, no ≥ 1 objects,
• a set of possible grasps,
• environment contact surfaces,
• object contact surfaces,
• an initial configuration qinit,
• a final configuration qgoal.

The Configuration space of the system is the Cartesian product
of the robot and object configuration spaces:

C = Cr1× · · · × Crnr
× SE(3)no

Admissible configurations of the system are configurations that
satisfy the following property:
• each object is either grasped by a robot, or lies in a stable

contact pose,
• the volumes occupied by the links of the robots and by

the objects are pair-wise disjoint.
Admissible motions of the system are motions that satisfy the
following property:
• configurations along the motion are admissible, and
• the pose of objects not grasped is constant,
• the relative pose of objects grasped by a gripper with

respect to the gripper is constant.
The solution of a prehensile manipulation problem is an
admissible motion that links the initial and goal configurations.

Definition 2: A numerical constraint is defined by a
piecewise C1 mapping h from C to a vector space Rp for
some positive integer p, and by a right hand side h0 ∈ Rp. A
configuration q ∈ C is said to satisfy the constraints iff

h(q) = h0

Definition 3: Grasp Given a frame attached to a robot link
called gripper and a frame attached to an object called handle,
a grasp is the numerical constraint defined by the R6-valued
mapping g such that if g(q) ∈ SE(3) and h(q) ∈ SE(3)
respectively denote the pose of the gripper and handle in
configuration q,
• the first 3 components of g(q) represent the coordinates

of the origin of h(q) in the frame g(q),
• the last 3 components of g(q) represent a vector (ex-

pressed in g(q)) whose axis is the axis of the rotation
that drives frame g(q) to h(q) and whose norm is the
angle of the latter rotation.

Note that g(q) = 0 implies that frames g and h coincide.
Definition 4: Placement Given some convex polygons at-

tached to the environment and some convex polygons attached
to an object, the object is said to be in placement if the
center of one of the object polygons is included in the surface
delimited by one of the environment polygons and the outward
normals of the polygons are opposite to each other.
It is possible to express placement as a numerical constraint
as explained in [16], Section V.B.

Constraint graph

(∅, ∅)

(1, ∅) (2, ∅)

(∅, 1)(∅, 2)

(1, 2) (2, 1)

Fig. 1: Example of manipulation planning problem. Top: two
UR3 robots with one gripper each (X=red, Y=green, Z=blue)
manipulating a cylinder with two handles. The environment
contains one rectangular contact surface (in red). The cylinder
has two rectangular contact surfaces (in green). Bottom: the
corresponding constraint graph. Names of states follow Ex-
pression (5): for example, (∅, 1) means that gripper of robot
2 grasps handle 1 of the cylinder. In this state, there is no
placement constraint.

B. Constraint and complement

A placement constraint pl only partially constrains the pose
of an object. It is possible to define a placement complement
constraint p̄l in such a way that along a transit path γ where
the object is not grasped:

pl(γ(t)) = 0 (1)
p̄l(γ(t)) = p̄l(γ(0)) (2)



The second constraint ensures that the object remains static
along transit motions. See [16], Section V.B. for details.

Similarly, a grasp constraint gr can be defined by only
selecting some components of function g in Definition 3.
For instance selecting only the first 5 components, the grasp
constraint allows a rotation around the z-axis of the gripper. In
this case, the components that are dropped need to be constant
along transfer motions were the gripper moves the object. If
gr denotes the mapping with only some components selected,
we define ḡr as the mapping defined on C gathering the other
components. Then, along a transfer motion γ : [0, 1]→ C the
following constraints hold for all t in [0, 1]:

gr(γ(t)) = 0 (3)
ḡr(γ(t)) = ḡr(γ(0)) (4)

C. Constraint graph

The set of admissible configurations is a union of sub-
manifolds defined by grasp and placement constraints. We
represent this set as a graph called constraint graph. Let ng
be the number of grippers and nh be the number of handles.
We represent a state as a sequence of ng indices

(h1, · · · , hng
), (5)

where hi ∈ {∅, 1, · · · , nh}, 1 ≤ i ≤ ng. hi = j for 1 ≤ j ≤
nh means that gripper i grasps handle j. hi = ∅ means that
gripper i does not grasp anything. The numerical constraints
associated to a state are therefore
• constraints (3) for each active grasp,
• constraints (1) for each object that is not grasped.

Two states are said to be adjacent if they are equal or if they
differ by only one grasp and the grasp is empty in one of
thoses states. The nodes of the constraint graph are the states
as defined above and the edges link adjacent states. Edges
store the constraints of paths that link configurations in their
starting and destination states. Let S1 and S2 be two adjacent
states with S1 being the state with one grasp less than S2. The
constraints of the edges linking S1 to S2 and S2 to S1 are
• the constraints of state S1,
• the grasp complement constraints (4) of each grasp in S1,
• the placement complement constraints (2) for each object

not grasped in S1.
Edges of the constraint graph represent foliated manifolds.
Two configurations belong to the same leaf if and only if
the right hand sides of their complement (placement and
grasp) constraints are all equal. Figure 1 illustrates the various
concepts introduced in this section. In the following sections,
nodes and edges of the constraint graph are called states
and transitions to avoid confusion with nodes and edges of
roadmaps. Transitions are denoted by T . The states they link
are denoted by T .from and T .to.

Note that some states may be a subset of others. For
instance, in Figure 1, state (2, 1) is included in (2, ∅) and
(∅, 1). We denote as S the mapping from C to the set of states
that maps to each configuration q the smallest state that q
belongs to, or ∅ if q does not belong to any state.

Sinit SgoalSj−1 Sj

Tj
qinit qgoalqj−1 qj

T1 Tn

Fig. 2: Waypoints are randomly sampled in consecutive states.

III. STATES PATH FINDER

In this section, we describe our manipulation planning
algorithm. The algorithm iterates over the following actions:

1) find a sequence of transitions between the states of the
initial and goal configurations,

2) sample configurations called waypoints in the successive
destination states of those transitions,

3) link these waypoints using a bi-RRT* algorithm in the
leaves containing 2 successive waypoints.

A. Sequence of transitions

Let Sinit = S(qinit) and Sgoal = S(qgoal) be the states
containing qinit and qgoal respectively. We extract all the
paths in the constraint graph from Sinit to Sgoal in order of
increasing length. We denote by

seq = (T1, · · · , Tn)

any sequence such that T1.from = Sinit, Tn.to = Sgoal,
Tj .to = Tj+1.from for any integer j between 1 and n− 1.

Figure 2 gives an example of sequence of transtions.

B. Sampling of waypoints

Given a sequence of transitions as described in the previous
section, we will randomly sample n−1 configurations in states
Tj .to for j between 1 and n−1. To sample a configuration on
a manifold defined by some constraints, we shoot a random
configuration that we give as the initial guess to a Gauss-
Newton solver [17, chapter 10]. The solver will perform a
projection onto the manifold.

Let q0 = qinit and qn = qgoal, and let qj for j in
{1, · · · , n−1} denote the waypoints. We also denote by Sj−1
and Sj the initial and destination states of transition Tj .

Let hSj and hTj
1 denote the constraints associated to state

Sj and transition Tj respectively. Then, each waypoint should
satisfy the constraints of the state it is contained in and of the
transition that leads to this state. Namely:

hSj (qj) = 0 (6)
hTj (qj) = hTj (qj−1) (7)

hTn(qn−1) = hTn(qgoal) (8)

Equation (6) states that waypoint qj is in state Sj . Equation (7)
implies that between qj−1 and qj , objects that are not grasped

1Note that hSj
and hTj

are actually composed of several constraints of
types (1-4).



are in the same stable pose, and object that are grasped keep
the same relative pose with respect to the gripper that grasps
them.

1) Computing right hand sides: We could naively solve
these nonlinear systems of equations iteratively from j = 1 to
j = n − 1 and use the result of an iteration to initialize the
right hand side of (7) at the next iteration. However, doing so
would most likely generate a qn−1 that does not satisfy (8).
Some right hand sides need to be initialized using qgoal. We
therefore propose the following method. We define a matrix
RHS with n − 1 columns corresponding to each waypoint,
and nc lines where nc is the number of different constraints of
types (1-4) in all transitions. We refer to hi as the piecewise C1

mapping defining constraint number i for i between 1 and nc.
Algorithm 1 computes for each constraint and each waypoint,
how the right hand side should be initialized. Note that line 14
of this algorithm detects sequences of transitions that cannot
give rise to a valid sequence of waypoints.

2) Computing waypoints: Once matrix RHS has been
computed, we compute the waypoints iteratively from q1 to
qn−1. For each qj , the function INITIALIZESOLVER (line 9)
creates a solver and inserts the constraints that have been
initialized in column j of matrix RHS. We initialize the right
hand side of each constraint i at step j as follows:

hi(q) =

 hi(qinit) if RHSi,j = EqualToInit
hi(qgoal) if RHSi,j = EqualToGoal
hi(qj−1) if RHSi,j = EqualToPrevious

Algorithm 1 Right hand side initialization
1: for i from 1 to nc do
2: for j from 1 to n− 1 do
3: if hi in Tj then
4: if j = 1 or RHSi,j−1 =EqualToInit then
5: RHSi,j ← EqualToInit
6: else
7: RHSi,j ← EqualToPrevious
8: for j from n− 1 down to 1 do
9: if hi in Tj then

10: if j = n−1 or RHSi,j+1 =EqualToGoal then
11: if RHSi,j =EqualToInit then
12: if hi(qinit) = hi(qgoal) then
13: break
14: else return false
15: else RHSi,j =EqualToGoal

Figures 3 shows an example of computation of a sequence
of waypoints.

Algorithm 2 explains how waypoints are computed. For
each waypoint, Function SOLVESTEP shoots a random con-
figuration and solves the corresponding system of equations
using Gauss-Newton solvers (line 2), and checks for collision
(line 3). If the resolution is successful, and the resulting con-
figuration q is collision free, we store the valid configuration
and we switch to the next waypoint (line 17). If the number
of calls to Function SOLVESTEP for a given waypoint exceeds

(∅, ∅) (∅, ∅)(1, ∅) (1, 2)

T2
qinit qgoalq1 q2

T1 T4
q3

T3

(∅, 2)

Constraints from
q1

pl(q) = 0 (∅, ∅)→ (1, ∅)
p̄l(q) = p̄l(qinit) (∅, ∅)→ (1, ∅)
gr(1,∅)(q) = 0 (1, ∅)→ (1, 2)
q2

gr(1,∅)(q) = 0 (1, ∅)→ (1, 2)
ḡr(1,∅)(q) = ḡr(1,∅)(q1) (1, ∅)→ (1, 2)

gr(∅,2)(q) = 0 (1, 2)→ (∅, 2)
q3

gr(∅,2)(q) = 0 (1, 2)→ (∅, 2)
ḡr(∅,2)(q) = ḡr(∅,2)(q2) (1, 2)→ (∅, 2)

pl(q) = 0 (∅, 2)→ (∅, ∅)
p̄l(q) = p̄l(qgoal) (∅, 2)→ (∅, ∅)

Fig. 3: Example of a sequence of 4 transitions for the system
in Figure 1. The table shows the constraints inserted in each
solver. The left column shows how the right hand sides are
initialized. The right column shows which transition each
constraint comes from. gr(1,∅) and gr(∅,2) are the numerical
constraints defining grasps of handle 1 by gripper 1 and of
handle 2 by gripper 2 respectively. These constraints follow
Definition 3 where the 4th component of g is removed. This
means the rotation around the x-axis of the gripper is free
when grasping the object. As explained in Section II-B, ḡr(1,∅)
and ḡr(∅,2) are the 1-dimensional constraints composed of the
4th component of the g function of Definition 3, and represent
the angle of the rotation between the gripper and handle frames
around the gripper x-axis. The five snapshots show qinit, the
3 waypoints computed by solving the constraints and qgoal.
Between qinit and qgoal, the object is flipped upside down.

a local threshold Nlocal (line 12), the algorithm backtracks
to the previous waypoint (line 14). To ensure the algorithm
halts when given an infeasible list of transitions, the total
number of failures is stored and checked against the global
threshold Nglobal (line 18). When the algorithm fails to solve
all waypoints, it will return the longest sequence of valid
waypoints so far.



Algorithm 2 Solve waypoints
Compute collision-free waypoints qi for i in {1, · · · , n− 1}.
RHS is the right hand side matrix. Nglobal and Nlocal are
global and local maximum failure thresholds.

1: function SOLVESTEP(solver)
2: q← solver.SOLVE()
3: if solving succeeds and isCollisionFree(q) then
4: return q

5: return ∅
6: function SOLVEWAYPOINTS(n, RHS)
7: Initialize j ← 1, WP ← array of n− 1 configs
8: repeat
9: solver ← INITIALIZESOLVER(j,WP,RHS)

10: repeat
11: q, status← SOLVESTEP(solver)
12: until q 6= ∅ or failures exceeding Nlocal

13: if q 6= ∅ then
14: j ← j − 1 . Backtrack to previous waypoint
15: else
16: WP [j]← q
17: j ← j + 1 . Solve the next waypoint
18: until j = n or failures exceeding Nglobal

19: return longest sequence of valid waypoints

3) Linking waypoints: Once a sequence of waypoints has
been computed, we run a bi-RRT* between successive way-
points. Between waypoints qj−1 and qj we apply constraints
of transition Tj . This means that all nodes and edges of the
roadmap are projected onto the corresponding sub-manifolds.

IV. EXPERIMENTAL RESULTS

We benchmark States Path Finder (SPF) on multiple prob-
lem instances with different characteristics to test its generality
and efficiency. The results are compared against Manipulation-
RRT (M-RRT), our RRT-like algorithm proposed in a previous
paper [14]. Both algorithms are based on the same represen-
tation of the problem as a constraint graph. The open source
software Humanoid Path Planner [18] is used to implement
the algorithms. The experiments are run on a desktop machine
with 3.50GHz CPU and 8GB RAM. The full cpu and memory
information, and the commit hashes of packages, are recorded
for future reproducibility. Each benchmark is run 50 times for
each algorithm. All parameters related to the performance of
M-RRT and SPF are kept the same across all benchmarks.

M-RRT and SPF are compared on two criteria:
1) solving time: time taken to compute a solution path.
2) number of nodes: count all nodes in roadmaps gen-

erated by M-RRT and by the bi-RRT* inner planner
of SPF. Generating a node in M-RRT is slightly more
computationally expensive than in SPF’s inner planner.
Each time SPF calls bi-RRT*, it gives a single leaf to
plan path on, and multiple nodes are generated on that
leaf. Meanwhile, M-RRT is a full RRT planner and has
additional computations to choose the leaf to project on.

A. Construction set

Two UR3 robot arms are supposed to assemble two spheres
and a cylinder into a product (Figure 4). Each cylinder has
two magnetic grippers that can grasp the magnetic handle of
each sphere. The goal configuration specifies the relative pose
between the cylinder and the spheres such that the only way
to attach them is to grasp the sphere with one arm and the
cylinder with another arm. If the cylinder is used to pick up
any sphere from the table, it will have to grasp the sphere
from below the table, which causes a collision.

(a) Initial config (b) Goal config

Fig. 4: construction set. Two UR3 robot arms assemble two
spheres and a cylinder into a dumbbell-shaped product.

Table I shows the results of 50 runs of each algorithm. SPF
performs much better in both criteria. The median solving time
for SPF is more than 6 times smaller than M-RRT, while the
median number of nodes is almost 4 times smaller.

Algo Solving time (s) Number of nodes
Min Q1 Med Q3 Max Min Q1 Med Q3 Max

M-RRT 1.79 16.36 36.93 56.20 426.70 54.0 336.5 740.0 1040.8 9154.0
SPF 1.32 2.59 5.92 14.90 28.91 22.0 71.2 189.5 374.2 823.0

TABLE I: Minimum, maximum and quartiles for solving time
and number of nodes over 50 runs on construction set.

B. Romeo placard

Romeo robot is supposed to rotate a placard by 180 degrees
(Figure 5). The left hand can grasp a lower handle in the
placard, while the right hand can grasp a higher handle. Both
hands can hold onto the placard at the same time. The difficulty
about this task is Romeo’s highly detailed robot model, where
each hand has 4 fingers with 3 segments [14]. A lot of time
is required to project configurations and check collisions.

(a) Initial config (b) Goal config

Fig. 5: Romeo placard. Romeo must rotate a placard by 180°.

This benchmark continues to show superior performance for
SPF (Table II). The median solving time for SPF is more than
30 times smaller than M-RRT, while the median number of
nodes is more than 14 times smaller.



Algo Solving time (s) Number of nodes
Min Q1 Med Q3 Max Min Q1 Med Q3 Max

M-RRT 2.77 61.97 115.03 190.94 378.31 21.0 291.5 510.0 960.5 1840.0
SPF 0.64 2.14 3.32 5.99 19.88 12.0 26.0 36.5 56.5 148.0

TABLE II: Romeo placard benchmark results.

C. PR2 manipulation kitchen

This is the only benchmark where qinit and qgoal lie on
different environment contact surfaces (Figure 6). Grasp is not
foliated as there is only 1 way to grasp the box.

(a) Initial config (b) Goal config

Fig. 6: PR2 manipulation kitchen. PR2 robot must move a box
from the dining table surface to the surface with the sink.

Results in Table III show no significant difference in per-
formance between M-RRT and SPF. SPF median solving time
is 1.6 times smaller than M-RRT, but its median number of
nodes is slightly larger. The similar performance is likely due
to non-foliated grasp. M-RRT does not face crossed foliation
problem, removing one advantage of SPF over M-RRT.

Algo Solving time (s) Number of nodes
Min Q1 Med Q3 Max Min Q1 Med Q3 Max

M-RRT 8.57 19.36 26.24 40.69 97.38 20.0 113.0 161.5 245.5 458.0
SPF 3.15 9.79 16.03 30.24 208.73 20.0 117.0 174.0 357.0 1239.0

TABLE III: PR2 manipulation kitchen benchmark results.

D. Baxter swaps two boxes

Baxter must swap two boxes on the table (Figure 7). Since
Baxter has 2 arms, it can achieve this without having to place
one box at an intermediate position on the table. Similar to
PR2 manipulation kitchen, the boxes have non-foliated grasp.

(a) Initial config (b) Goal config

Fig. 7: Baxter swaps two boxes. Each box has one handle that
can be grasped by either gripper.

Results in Table IV display a better performance for SPF
over M-RRT, but by a small margin. The median solving time
for SPF is more than 2.3 times smaller than M-RRT. However,

its median number of nodes is only 1.17 times smaller than
M-RRT, which again suggests the effect of non-foliated grasp.

Algo Solving time (s) Number of nodes
Min Q1 Med Q3 Max Min Q1 Med Q3 Max

M-RRT 0.39 0.89 1.70 2.20 5.91 17.0 35.2 65.5 82.5 234.0
SPF 0.35 0.47 0.73 0.92 2.61 15.0 24.2 56.0 85.5 452.0

TABLE IV: Baxter swaps two boxes benchmark results.

E. UR3 swaps two spheres
UR3 robot must swap the poses of two spheres on the

table (Figure 8). Unlike Baxter robot with two arms, the
main difficulty for UR3 is the need to generate at least one
intermediate pose on the table to put one of the spheres.

(a) Initial config (b) Goal config

Fig. 8: UR3 swaps two spheres benchmark.

Table V shows the results. SPF median solving time is more
than 11 times smaller than M-RRT, and its median number of
nodes is more than 6 times. This benchmark is a case in which
SPF is advantageous: the grasp is foliated, and the robot needs
to generate a configuration with an intermediate placement
pose that is not present in both qinit and qgoal, and still has
to connect this configuration to qinit and qgoal. M-RRT fails
for 2 out of 50 runs (failed runs are not included in the table).

Algo Solving time (s) Number of nodes
Min Q1 Med Q3 Max Min Q1 Med Q3 Max

M-RRT 0.22 2.67 6.20 15.95 45.46 16.0 83.8 185.5 419.8 1121.0
SPF 0.40 0.47 0.56 0.65 6.37 23.0 25.0 30.0 72.5 387.0

TABLE V: UR3 swaps two spheres results. With max 5000
iterations per run, M-RRT only succeeds in 48 out of 50 runs.

V. CONCLUSION

This paper proposes a general algorithm SPF to solve a
wide range of prehensile manipulation planning problems rep-
resentable by a constraint graph. Its unique way of propagating
the constraints during RHS initialization tackles foliated grasp
more efficiently than the M-RRT algorithm. The graph-search
approach in SPF to generate transition sequences from the
initial state to the goal state traverses large graphs more
effectively than the random process deployed by M-RRT.

SPF can be improved by filtering out transition sequences
with conflicting constraints. The optimality of the computed
path is not the focus of the paper, but it is an important aspect.
A strategy to update partial paths while planning or to post-
process a non-optimal path can be considered. The ultimate
goal is to create an algorithm that is practically fast and
asymptotically optimal, for effective use in real applications.



REFERENCES

[1] J. Ota, “Rearrangement of multiple movable objects-integration of global
and local planning methodology,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 2,
pp. 1962–1967, IEEE, 2004.

[2] P. Lertkultanon and Q.-C. Pham, “A single-query manipulation planner,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 198–205, 2015.

[3] A. Krontiris and K. Bekris, “Dealing with difficult instances of object
rearrangement,” in Robotics Science and Systems, (Roma, Italy), 2015.

[4] R. Shome and K. E. Bekris, “Synchronized multi-arm rearrangement
guided by mode graphs with capacity constraints,” in Workshop on the
algorithmic foundations of robotics, 2020.

[5] M. Gharbi, J. Cortés, , and T. Siméon, “Roadmap composition for multi-
arm systems path planning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), (Saint-Louis, USA), 2009.

[6] K. Harada, T. Tsuji, and J.-P. Laumond, “A manipulation motion plan-
ner for dual-arm industrial manipulators,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), (Hongkong, China),
pp. 928––934, 2014.

[7] A. Dobson and K. Bekris, “Planning representations and algorithms for
prehensile multi-arm manipulation,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), (Hamburg, Germany),
2015.

[8] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1295–1307, 2008.

[9] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII, pp. 87–102, Springer, 2008.

[10] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-
P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach,” The International Journal of
Robotics Research, vol. 32, no. 9-10, pp. 1089–1103, 2013.

[11] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” International Journal of Robotics
Research, vol. 23, July 2004.

[12] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” The International
Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[13] V.-B. William and R. Nicholas, “Asymptotically optimal planning under
piecewise-analytic constraints,” in Workshop on the algorithmic founda-
tions of robotics, 2016.

[14] J. Mirabel and F. Lamiraux, “Manipulation planning: addressing the
crossed foliation issue,” in 2017 IEEE International Conference on
Robotics and Automation, (Singapore, Singapore), May 2017.

[15] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert, and
W. Burgard, “Optimal, sampling-based manipulation planning,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
pp. 3426–3432, IEEE, 2017.

[16] F. Lamiraux and J. Mirabel, “Prehensile Manipulation Planning: Model-
ing, Algorithms and Implementation,” IEEE Transactions on Robotics,
2021.

[17] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY,
USA: Springer, second ed., 2006.

[18] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,
N. Mansard, and F. Lamiraux, “HPP: A new software for constrained
motion planning,” in 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 383–389, 2016.


