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Abstract
We explore a new type of sparsity for the generalized moment problem (GMP) that we
call ideal-sparsity. In this setting, one optimizes over a measure restricted to be sup-
ported on the variety of an ideal generated by quadratic bilinear monomials. We show
that this restriction enables an equivalent sparse reformulation of the GMP, where the
single (high dimensional) measure variable is replaced by several (lower dimensional)
measure variables supported on the maximal cliques of the graph corresponding to
the quadratic bilinear constraints. We explore the resulting hierarchies of moment-
based relaxations for the original dense formulation of GMP and this new, equivalent
ideal-sparse reformulation, when applied to the problem of bounding nonnegative- and
completely positive matrix factorization ranks. We show that the ideal-sparse hierar-
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chies provide bounds that are at least as good (and often tighter) as those obtained
from the dense hierarchy. This is in sharp contrast to the situation when exploiting
correlative sparsity, as is most common in the literature, where the resulting bounds are
weaker than the dense bounds.Moreover, while correlative sparsity requires the under-
lying graph to be chordal, no such assumption is needed for ideal-sparsity. Numerical
results show that the ideal-sparse bounds are often tighter and much faster to compute
than their dense analogs.

Keywords Generalized moment problem · Polynomial optimization · Sparsity ·
Matrix factorization rank · Completely positive rank · Nonnegative rank ·
Semidefinite programming

Mathematics Subject Classification 15A23 · 81P40 · 81P42 · 90C22 · 90C23

1 Introduction

We consider the generalized moment problem (abbreviated as GMP), of the form

val := inf
μ∈M (Rn)

{∫
f0dμ :

∫
fi dμ = ai (i ∈ [N ]), Supp(μ) ⊆ K

}
, (1)

where f0, fi ∈ R[x] are multivariate polynomials in the variables x = (x1, ..., xn),
ai ∈ R, K ⊆ R

n (taken to be Borel measurable), and the optimization is over the
set M (Rn) of (finite positive) Borel measures on R

n . In problem (1) we restrict to
measures μ ∈ M (Rn) whose support Supp(μ) is contained in K , which is equivalent
to requiring

∫
f dμ = ∫

K f dμ for any Borel measurable function f : R
n → R.

Throughout, we assume that K is a basic closed semialgebraic set of the form

K = {x ∈ R
n : g j (x) ≥ 0 ( j ∈ [m]), xi x j = 0 ({i, j} ∈ E)}, (2)

where g j ∈ R[x] are polynomials, E is a given set of pairs of distinct elements of
V = [n] := {1, . . . , n}, and E is the following set of pairs

E = {{i, j} : i ∈ V , j ∈ V , i �= j, {i, j} /∈ E}.

Hence, the set K is contained in the variety of the ideal

IE :=
⎧⎨
⎩

∑
{i, j}∈E

ui j xi x j : ui j ∈ R[x]
⎫⎬
⎭ ⊆ R[x] (3)

generated by the monomials xi x j for the pairs {i, j} ∈ E . It will be convenient to
consider the graph G = (V , E), so that the conditions xi x j = 0 appearing in the
definition of K correspond to the nonedges of G. This notation may seem at first sight
cumbersome.However, themotivation for it is that the graphG functions as supporting
solutions for problem (1); this will be especially useful for applications to matrix

123



Exploiting ideal-sparsity in the generalized moment problem... 705

factorization ranks like the completely positive rank (cp-rank) or the nonnegative rank
of a matrix, where G will correspond to the support graph of the matrix.

The generalized moment problem (with K semialgebraic) has been much studied
in recent years. It permits to model a wide variety of problems, including polynomial
optimization (minimization of a polynomial or rational function over K ), volume
computation, control theory, option pricing in finance, and much more. See, e.g., [36,
45–47] and further references therein.

The focus of this paper is to exploit the presence of explicit ideal constraints (of a
special form) in the description of the semialgebraic set K for solving problem (1).
This indeed naturally implies some sparsity structure on problem (1), to which we will
refer as ideal-sparsity structure. Our objective is to explore how one can best exploit
this ideal-sparsity structure in order to define more efficient semidefinite hierarchies
for problem (1) and apply them to sparse matrix factorization ranks. A remarkable
feature is that the ideal-sparse hierarchies provide bounds that are at least as good (and
often better) as the bounds provided by the original dense hierarchy. Moreover, the
underlying sparsity graph is not required to be chordal. Both these features are in stark
contrast to the existing sparse hierarchies based on correlative sparsity whose bounds
are always dominated by the dense bounds and that require the underlying sparsity
graph to be chordal in order to guarantee convergence. We refer to Sect. 3.2 for an
in-depth discussion about correlative and ideal-sparsity.

We focus here on the application to the completely positive and the nonnegative
factorization ranks, asking for a factorization by nonnegative vectors. However, as
we will mention in the final discussion section, this ideal-sparsity framework could
also be applied to more general settings. Indeed, it could be applied to other matrix
factorization ranks, such as the (completely) positive semidefinite rank,where one asks
for a factorization by positive semidefinite matrices, in which case one would have to
apply tools from polynomial optimization in noncommutative variables. Also, instead
of an ideal generated by quadratic monomials, one could have an ideal generated
by higher degree monomials. In addition, up to a change of variables, one could
consider an ideal generated by more general products of linear terms, such as (aT x +
b)(cT x + d). This type of constraint, often known as a complementary constraint,
occurs in various applications, including ReLU neural networks or optimization when
considering KKT optimality conditions.

Next, we mention the overall organization of the paper and give some general
notation used throughout. After that, we will give a broad overview of the contents
and main results obtained in the paper.

1.1 Organization of the paper

The paper is organized as follows. In the rest of the Introduction we outline the main
results in the paper. Then, in Sect. 2 we recall some preliminaries about linear func-
tionals on polynomials and moment matrices. In Sect. 3 we consider the GMP (1): we
show its sparse reformulation (11), we present the corresponding sparse hierarchies,
and we discuss how ideal-sparsity relates to the more classic correlative sparsity. Sec-
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706 M. Korda et al.

tion4 is devoted to the application to the cp-rank and Sect. 5 to the application to the
nonnegative rank. We conclude with some final remarks and discussions in Sect. 6.

1.2 Notation

We gather here some notation that is used throughout the paper. For n, t ∈ N set
N
n
t = {α ∈ N

n : |α| ≤ t}, where |α| = ∑n
i=1 αi denotes the degree of the monomial

xα = xα1
1 · · · xαn

n . We let [x]t = (xα)α∈Nn
t
denote the vector of monomials with degree

at most t (listed in some given fixed order). Moreover, R[x] (resp., R[x]t ) denotes the
set of n-variate polynomials in variables x = (x1, . . . , xn) (with degree at most t).
Let � denote the set of sum-of-squares polynomials, of the form

∑
i q

2
i for some

qi ∈ R[x], and set �t = � ∩ R[x]t .
Consider a set U ⊆ [n]. Given a vector y ∈ R

|U |, we let (y, 0V \U ) ∈ R
n denote

the vector obtained by padding y with zeros at the entries indexed by [n] \U . For an
n-variate function f : R

|V | → R, we let f|U : R
|U | → R denote the function in the

variables x(U ) = {xi : i ∈ U }, which is obtained from f by setting to zero all the
variables xi indexed by i ∈ V \ U . That is, f|U (y) = f (y, 0V \U ) for y ∈ R

|U |. So,
if f is an n-variate polynomial, then f|U is a |U |-variate polynomial in the variables
x(U ).

For a symmetric matrix M ∈ Sn , the notation M 
 0 means that M is positive
semidefinite, i.e., vT Mv ≥ 0 for all v ∈ R

n . Throughout, we let In and Jn denote the
identity matrix and the all-ones matrix of size n, which we sometimes also denote as
I and J when the dimension is clear from the context. The support of a vector x ∈ R

n

is the set Supp(x) = {i ∈ [n] : xi �= 0}.

1.3 Roadmap through the paper

In the rest of this section, we now offer a quick roadmap through the main contents
of the paper. We begin with recalling how to define the dense hierarchy of bounds
for the problem (1). We then discuss their main drawback (quick growth of the matri-
ces involved in the semidefinite programs) and several options for addressing this
difficulty that have been offered in the literature. After that, we introduce the new
ideal-sparse reformulation of problem (1) and the corresponding ideal-sparse hierar-
chy, which we then specialize to the applications for bounding the completely positive
and nonnegative ranks.

1.3.1 Classical (dense) moment relaxations

We begin by recalling the classical moment approach that permits to build hierarchies
of semidefinite approximations for problem (1). For details, see, e.g., the monograph
by Lasserre [46], or the survey [21]. For t ∈ N ∪ {∞}, the set

M(g)2t =
⎧⎨
⎩

m∑
j=0

σ j g j : σ j ∈ �, deg(σ j g j ) ≤ 2t

⎫⎬
⎭ ⊆ R[x]2t (4)
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Exploiting ideal-sparsity in the generalized moment problem... 707

is the quadratic module generated by g = (g1, . . . , gm), and truncated at degree 2t ,
setting g0 = 1. We also set M(g) = M(g)∞. Here, � denotes the set of sums of
squares of polynomials in R[x]. Similarly,

IE,2t =
⎧⎨
⎩

∑
{i, j}∈E

ui j xi x j : ui j ∈ R[x]2t−2

⎫⎬
⎭ ⊆ R[x]2t (5)

denotes the truncation of the ideal IE at degree 2t . We can now define the moment
relaxation of level t for problem (1):

ξt := inf{L( f0) : L ∈ R[x]∗2t ,
L( fi ) = ai (i ∈ [N ]),
L ≥ 0 onM(g)2t , L = 0 on IE,2t }.

(6)

Here, R[x]∗2t denotes the set of linear functionals L : R[x]2t → R. The motivation for
the above parameter is as follows. Assume μ ∈ M(Rn) is a measure that is feasible
for problem (1), and consider the associated linear functional L that acts on R[x]2t via
integration: p ∈ R[x]2t �→ L(p) = ∫

pdμ. Then, it is easy to see that L is feasible
for (6): L( fi ) = ∫

fi dμ = ai , L ≥ 0 on M(g)2t (since any polynomial in M(g)2t
is nonnegative on the set K ), and L = 0 on IE,2t (since any polynomial in IE,2t
vanishes on K ). This shows that the parameter ξt lower bounds the optimum value val
of problem (1).

We refer to the above hierarchy of parameters ξt as the dense moment hierarchy.
Clearly, they satisfy ξt ≤ ξt+1 ≤ ξ∞ ≤ val. Moreover, under some mild assumptions,
these bounds converge asymptotically to the optimum value val of (1). This funda-
mental property follows from the general theory about GMP (see, e.g., [21, 46]) and
is summarized in the following theorem that will be used repeatedly throughout this
work.

Theorem 1 Assume problem (1) is feasible and the following Slater-type condition
holds:

there exist scalars z0, z1, . . . , zN ∈ R such that
N∑
i=0

zi fi (x) > 0 for all x ∈ K . (7)

Then, problem (1) has an optimal solution μ, which can be chosen to be finite atomic.
If, in addition, M(g) is Archimedean, i.e., R − ∑n

i=1 x
2
i ∈ M(g) for some scalar

R > 0, then we have limt→∞ ξt = ξ∞ = val.

As it will be recalled in Sect. 2.1, program (6) can be reformulated as a semidefinite
program and thus the bound ξt can be computed using semidefinite optimization
algorithms. However, a common drawback of the dense hierarchy (6) is that it involves
matriceswhose size grows very quicklywith the level t andwith the degree and number
of variables of the polynomials f0, f1, . . . , fN , g1, . . . , gm . Hence, even though these
relaxations are convex, they might be challenging to solve already for GMP instances
of modest size.
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1.3.2 Existing schemes to improve scalability of the dense moment relaxations

Several schemes have been developed to overcome the scalability issue of the dense
hierarchy (6) justmentioned above.They aim to reduce the size of the involvedmatrices
by exploiting the specific structure of the input polynomials without compromising the
convergence guarantees of the structure-inducedmoment relaxations.Oneworkaround
consists of exploiting the symmetries [56], but this requires that each input polynomial
is invariant under the action of a subgroup of the general linear group.

Another approach is to exploit different kinds of sparsity structures. The first kind
is called correlative sparsity, which occurs when there are few correlations between
the variables of the input polynomials [44, 63]. Correlative sparsity has been extended
to derive moment relaxations of polynomial problems in complex variables [39], non-
commutative variables [40] and polynomial matrix inequalities [69]. The second kind
is called term sparsity, which occurs when they are few (by comparison with all possi-
ble) monomial terms involved in the input polynomials, and for which correlative
sparsity is not exploitable. For unconstrained polynomial optimization, one well-
known solution is to eliminate the monomial terms which never appear among the
support of sums of squares decompositions [55]. Alternatively, one can decompose
the input polynomial as a sum of nonnegative circuits, by solving a geometric pro-
gramming relaxation [38] or a second-order cone programming relaxation [5, 64], or
as a sum of arithmetic–geometric-mean-exponentials [15] with relative entropy pro-
gramming relaxations. Term sparsity has recently been the focus of active research
with extensions to constrained polynomial optimization [65, 66]. Note that both kinds
of sparsity can be combined [67]. For a general exposition about sparse polynomial
optimization, we refer to the recent surveys [51, 70].

We will return to the correlative sparsity approach for GMP later in Sect. 3.2 and
discuss how it relates to the new ideal-sparsity structure considered in the paper. By
contrast with classical polynomial optimization problems, it is not completely clear
which initial set ofmonomials should be chosen to initialize the term sparsity hierarchy
when facing a given GMP instance. Therefore, we do not explore the combination of
term and ideal-sparsity, for such an investigation would warrant a separate publication.

1.3.3 New ideal-sparse moment relaxations

As we now see, one can exploit the fact that the set K in (2) is contained in the variety
of the ideal IE from (3). The basic idea is that, instead of optimizing over a single
measure μ supported on K ⊆ R

n , one may optimize over several measures that are
supported on smaller dimensional spaces.

A setW ⊆ V is a clique of the graph G = (V , E) if {u, v} ∈ E for any two distinct
vertices u, v ∈ W . A clique is maximal (w.r.t inclusion) if it is not strictly contained
in any other clique of G. Let V1, . . . , Vp denote the maximal cliques of the graph
G = (V , E) and, for k ∈ [p], define the following subset of K :

K̂k := {x ∈ K : Supp(x) ⊆ Vk} ⊆ K ⊆ R
n . (8)
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Recall Supp(x) = {i ∈ [n] : xi �= 0} denotes the support of x ∈ R
n . If x ∈ K , then

its support Supp(x) is a clique of the graph G and thus it is contained in a maximal
clique Vk , so that x ∈ K̂k for some k ∈ [p]. Therefore, the sets K̂1, . . . , K̂ p cover the
set K :

K = K̂1 ∪ . . . ∪ K̂ p. (9)

Next, define the projection Kk ⊆ R
|Vk | of K̂k onto the subspace indexed by Vk :

Kk := {y ∈ R
|Vk | : (y, 0V \Vk ) ∈ K̂k} ⊆ R

|Vk |. (10)

Recall that (y, 0V \Vk ) denotes the vector of R
n obtained from y ∈ R

|Vk | by padding it
with zeros at all entries indexed by V \Vk . Moreover, given a function f : R

|V | → R,
the function f|Vk (y) : R

|Vk | → R is defined by f|Vk (y) = f (y, 0V \Vk ) for y ∈ R
|Vk |.

We may now define the following sparse analog of problem (1):

valisp := inf
μk∈M (R|Vk |),k∈[p]

{ p∑
k=1

∫
f0|Vk dμk :

p∑
k=1

∫
fi |Vk dμk = ai (i ∈ [N ]),

Supp(μk) ⊆ Kk (k ∈ [p])
}

. (11)

Hence, while problem (1) has a single measure variable μ on the space R
|V |, problem

(11) involves p measure variables, where μk is on the smaller dimensional space
R

|Vk |. As we will show in Proposition 6 below, both formulations (1) and (11) are
in fact equivalent, i.e, we have equality val = valisp. Here, we use the superscript
‘isp’ as a reminder that the formulation exploits ideal-sparsity; we will follow this
same notation below for the corresponding moment hierarchy and also later for the
parameters attached to matrix factorization ranks.

Based on its reformulation via (11), we can nowdefine another hierarchy ofmoment
approximations for problem (1), to which we refer as the ideal-sparse moment hier-
archy:

ξ
isp
t := inf

{ ∑p
k=1 Lk( f0|Vk ) : Lk ∈ R[x(Vk)]∗2t (k ∈ [p]),∑p

k=1 Lk( fi |Vk ) = ai (i ∈ [N ]),
Lk ≥ 0 on M(g|Vk )2t (k ∈ [p])

}
.

(12)

This hierarchy provides bounds for val that are at least at good as the bounds (6).
Namely,

ξt ≤ ξ
isp
t ≤ val

holds for any t ≥ 1 (see Theorem 7 below).
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710 M. Korda et al.

Hence, the ideal-sparse bounds ξ
isp
t present a double advantage compared to the

dense bounds ξt . First, they are at least as good and sometimes strictly better, as we
will see later in concrete examples. For the application to the completely positive and
nonnegative ranks, we will see classes of matrices showing a large separation between
the dense bound and the ideal-sparse bound of level t = 1; see Examples 14 and 16.
Second, their computation is potentially faster since the sets Vk can be much smaller
than the full set V . We will also see in later examples that the computation of the
ideal-sparse bounds can be much faster indeed. On the other hand, the number of
cliques in the graph G could be large, so there is a trade-off. We refer to discussions
later in the paper around specific applications.

Interestingly, no structural chordality property needs to be assumed on the cliques
V1, . . . , Vp of the graph G. We will comment in Sect. 3.2 about the link between
the ideal-sparsity approach presented here and the more classical correlative sparsity
approach that can be followed when considering a chordal extension Ĝ of the graph
G.

The idea of optimizing over multiple measures has appeared already in several
contexts, similarly to what can be routinely done in most computational methods, e.g.,
finite elements. In the context of analyzing dynamical systems involving polynomial
data, a similar trick has been used to perform optimal control of piecewise-affine sys-
tems in [1], then later on to characterize invariant measures for piecewise-polynomial
systems (see [50, § 3.5]). In the context of set estimation, one can also rely on a
multi-measure approach to approximate the moments of Lebesgue measures sup-
ported on unions of basic semialgebraic sets [48]. The common idea consists in using
the piecewise structure of the dynamics and/or the state-space partition to decompose
the measure of interest into a sum of local measures supported on each partition cell.
The advantage in our current setting is that these measures are supported on smaller
dimensional spaces, which leads to potentially strong computational benefit when
considering the associated semidefinite programming relaxations.

We next present instances of GMP to which the above ideal-sparsity framework
naturally applies, namely to derive bounds on matrix factorization ranks such as the
completely positive rank and the nonnegative rank.

1.3.4 Bounds on the completely positive rank via GMP

Let A ∈ Sn be a symmetricmatrix with nonnegative entries. Assume A is a completely
positive matrix (abbreviated as cp-matrix), i.e., A can be written as

A =
r∑

�=1

a�a
T
� for some nonnegative vectors a1, . . . , ar ∈ R

n+.

Then, the smallest integer r ∈ N for which such a decomposition exists is the cp-rank
of A, denoted rankcp(A). Checking whether a given matrix A is completely positive
is a computational hard problem (see [24]). The moment approach has been applied
to the question of testing whether A is cp-matrix and finding a cp-factorization, in
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particular, by Nie [53] who formulates it as testing the existence of a representing
measure (over the standard simplex) for the sequence of entries of A.

Hierarchies of moment-based relaxations have also been employed to obtain
sequences of bounds for the rank of tensors [61], as well as for the symmetric nuclear
norm of tensors [54]. Here, we focus on the question of bounding the cp-rank. No
efficient algorithms are known for finding the cp-rank. This motivates the search for
efficient methods giving lower bounds on the cp-rank, as, e.g., in [29, 33, 34]. The
following parameter was introduced in [29], as a natural “convexification" of the cp-
rank:

τcp(A) = inf

{
λ : 1

λ
A ∈ conv{xxT : x ∈ R

n+, A − xxT 
 0, A ≥ xxT }
}
, (13)

providing a lower bound for it: τcp(A) ≤ rankcp(A). As observed below, the param-
eter τcp(A) can be reformulated as an instance of problem (1), with an ideal-sparsity
structure inherited from the matrix A.

To avoid trivialities we assume Aii > 0 for all i ∈ [n]. (Indeed, if A is a cp-matrix
with Aii = 0, then its i-th row/column is identically zero and thus it can be removed
without changing the cp-rank.) Note that the constraints A ≥ xxT and x ≥ 0 are
equivalent1 to

√
Aii xi − x2i ≥ 0 (i ∈ [n]) and Ai j − xi x j ≥ 0 (1 ≤ i < j ≤ n).

Moreover, they imply xi x j = 0 whenever Ai j = 0. Let us define the graph GA =
(V , EA) as the support graph of A, with

EA = {{i, j} : Ai j �= 0, i, j ∈ V , i �= j}, E A = {{i, j} : Ai j = 0, i, j ∈ V , i �= j},
(14)

and define the semialgebraic set

KA = {x ∈ R
n : √

Aii xi − x2i ≥ 0 (i ∈ [n]), Ai j − xi x j ≥ 0 ({i, j} ∈ EA),

xi x j = 0 ({i, j} ∈ E A), A − xxT 
 0}.
(15)

As we now observe, the parameter τcp(A) can be reformulated as an instance of
GMP.

Lemma 2 The parameter τcp(A) is equal to the optimal value of the generalized
moment problem:

valcp := inf
μ∈M (Rn)

{ ∫
1dμ :

∫
xi x j dμ = Ai j (i, j ∈ V ), Supp(μ) ⊆ KA

}
.

Proof The (easy) key observation is that any feasible solution to τcp(A), i.e., any
decomposition of the form A = λ

∑s
�=1 λ�a�aT� with λ� ≥ 0,

∑s
�=1 λ� = 1 and

a� ∈ KA, corresponds to a measure μ := λ
∑s

�=1 λ�δa�
that is feasible for τcp(A) and

finite atomic (and vice-versa). Observe also that the Slater-type condition (7) holds
(since f0 = 1 > 0 on KA). The result now follows using (the first part of) Theorem 1:

1 The reason for using the constraint
√
Aii xi − x2i ≥ 0 instead of Aii − x2i ≥ 0 is because it leads to a

larger quadratic module and thus a possibly better bound (see [33]).
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712 M. Korda et al.

if A is completely positive, then valcp is feasible and thus has a finite atomic optimal
solution, which implies τcp(A) = valcp; otherwise, both parameters τcp(A) and valcp
are infeasible and thus equal to ∞. ��

Based on the formulation of the parameter τcp(A) in Lemma 2 as a GMP instance,
we can define the corresponding bounds ξ

cp
t (A), obtained as special instance of the

bounds (6) (see relations (29)–(34) below). Then, the convergence of the bounds
ξ
cp
t (A) to τcp(A) follows as a direct application of Theorem 1.
As in the general case of GMP, one may exploit the presence of the ideal constraints

xi x j = 0 (for {i, j} ∈ E A) in the definition of KA and define a hierarchy of ideal-

sparse bounds ξ
cp,isp
t (A). These bounds satisfy

ξ
cp
t (A) ≤ ξ

cp,isp
t (A) ≤ τcp(A) for any t ≥ 1,

also with asymptotic convergence to τcp(A). We refer to Sect. 4 for details about these
parameters and links to earlier bounds in the literature.

1.3.5 Bounds on the nonnegative rank via GMP

The above approach for the cp-rank naturally extends to the asymmetric setting of the
nonnegative rank. For a nonnegative matrix M ∈ R

m×n , its nonnegative rank, denoted
rank+(M), is defined as the smallest integer r forwhich there exist nonnegative vectors
a� ∈ R

m+ and b� ∈ R
n+ such that

M =
r∑

�=1

a�b
T
� . (16)

In otherwords, rank+(M) can be seen as the smallest cp-rank of a cp-matrix A ∈ Sm+n

of the form

A =
(

X M
MT Y

)
for some nonnegative symmetric matrices X ∈ Sm,Y ∈ Sn .

Computing the nonnegative rank is an NP-hard problem [62]. In analogy to the param-
eter τcp in (13), the following “convexification" of the nonnegative rankwas introduced
in [29]:

τ+(M) = inf

{
λ : 1

λ
M ∈ conv{xyT : x ∈ R

m+, y ∈ R
n+, M ≥ xyT }

}
. (17)

Note that, compared to the parameter τcp(A) in (13), where we had an additional
constraint A − xxT 
 0, we now cannot impose such a constraint.

One can define analogs of the bounds ξ
cp
t and ξ

cp,isp
t for the nonnegative rank,

which now involve a linear functional acting on polynomials in m + n variables.
For convenience, we set V = [m + n] = U ∪ W , where U = [m] = {1, . . . ,m}
(corresponding to the row indices of M) andW = {m+1, . . . ,m+n} (corresponding
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to the column indices of M , up to a shift by m). We also set

EM ={{i, j} ∈ U × W : Mi, j−m �= 0},
E
M =(U × W ) \ EM = {{i, j} ∈ U × W : Mi, j−m = 0}, (18)

so that EM corresponds to the (bipartite) support graph of the matrix M . Note that,
in comparison to (14), we now only consider bipartite pairs {i, j} (with i ∈ U and
j ∈ W ). To emphasize the difference between the two situations we now put M as a
superscript, while we placed A as subscript in the notation EA.

Let Mmax = maxi, j Mi j denote the largest entry of M . As observed in [33], one
may assumewithout loss of generality that the vectors in (16) satisfy ‖a�‖∞, ‖b�‖∞ ≤√
Mmax (after rescaling). This motivates defining the following semialgebraic set

KM = {x ∈ R
m+n : √

Mmaxxi − x2i ≥ 0 (i ∈ [m + n]), Mi, j−m − xi x j ≥ 0 ({i, j} ∈ EM ),

xi x j = 0 ({i, j} ∈ EM }.
(19)

The analog of Lemma 2 holds, which provides a GMP reformulation for τ+(M).

Lemma 3 The parameter τ+(M) is equal to the optimal value of the generalized
moment problem:

inf
μ∈M (Rm+n)

{∫
1dμ :

∫
xi x j dμ = Mi, j−m (i ∈ U , j ∈ W ), Supp(μ) ⊆ KM

}
.

Based on this formulation of the parameter τ+(M), we may consider the corre-
sponding bounds ξ+

t (A), as special instance of the bounds in (6). Their asymptotic
convergence to τ+(A) follows as a direct application of Theorem 1. One may also

exploit the presence of the ideal constraints xi x j = 0 (for {i, j} ∈ E
M
) in the defi-

nition of KM and define a hierarchy of sparse bounds ξ
+,isp
t (M). These parameters

satisfy

ξ+
t (M) ≤ ξ

+,isp
t (M) ≤ τ+(M) for any t ≥ 1,

with asymptotic convergence of all parameters to τ+(M).We refer to Sect. 5 for details
about these parameters.

2 Preliminaries about sums of squares andmoments

In this section, we recall some preliminaries about sums of squares and linear func-
tionals on polynomials that we will use throughout. These results are well-known in
the polynomial optimization community, we refer, e.g., to the following sources [21,
36, 43, 45–47, 49] and further refereces therein for background and broad overviews.
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2.1 Nonnegative linear functionals andmomentmatrices

The program (6) defining the parameter ξt involves a linear functional L ∈ R[x]∗2t ,
which is assumed to be nonnegative on the truncated quadratic moduleM(g)2t (in (4))
and to vanish on the truncated ideal IE,2t (in (5)). We now recall how these conditions
can be expressed more concretely in terms of positive semidefiniteness conditions
on associated (moment) matrices and thus used to reformulate the program (6) as a
semidefinite program.

For this, given L ∈ R[x]∗2t , define the matrix

Mt (L) := (L(xαxβ))α,β∈Nn
t

= L([x]t [x]Tt ),

often called a (pseudo)moment matrix in the literature. So, in the notation L([x]t [x]Tt ),
it is understood that L is acting entry-wise on the entries of the polynomial matrix
[x]t [x]Tt = (xα+β)α,β∈Nn

t
. Then, it is well-known (and easy to see) that L(σ ) ≥ 0 for

all σ ∈ � ∩ R[x]2t if and only if the matrix Mt (L) is positive semidefinite. Consider
now a polynomial g with degree k = deg(g). Then L(σ g) ≥ 0 for all σ ∈ � with
deg(σ g) ≤ 2t if and only if the matrix Mt−�k/2�(gL) := L(g[x]t−�k/2�[x]Tt−�k/2�)
(often called a localizingmoment matrix) is positive semidefinite. Hence, the condition
L ≥ 0 on M(g)2t can be equivalently reformulated via the positive semidefiniteness
constraints

L([x]t [x]Tt ) 
 0, L(g j [x]t−�deg(g j )/2�[x]Tt−�deg(g j )/2�) 
 0 for j ∈ [m].

In the same way, the ideal condition L = 0 on IE,2t is equivalent to the linear con-
straints

L(xi x j x
α) = 0 for all {i, j} ∈ E and α ∈ N

n
2t−2.

Hence, the parameter ξt is expressed as the optimum value of a semidefinite program.
Recall that there exist efficient algorithms for solving semidefinite programs up to
any precision (under some mild assumptions; see, e.g., [23] and further references
therein).

2.2 Flatness and extraction of optimal solutions

As recalled in Theorem 1, if the quadratic module M(g) is Archimedean (i.e., R −∑
i x

2
i ∈ M(g) for some R > 0), then the bounds ξt converge asymptotically to ξ∞.

In addition, if the Slater-type condition (7) holds, then ξ∞ = val and problem (1) has
a finite atomic optimal solution μ, i.e., supported on finitely many points in K .

A remarkable property of the bounds ξt is that they often exhibit finite convergence.
Indeed, there is an (easy to check) criterion, known as the flatness condition, which
permits to conclude that the level t bound is exact, i.e., ξt = val, and to extract a finite
atomic optimal solution of GMP. This flatness condition, see (20) below, goes back
to work of Curto and Fialkow [19, 20]. We also refer, e.g., to [46, 49] for a detailed
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exposition of the following result. For details on how to extract an atomic optimal
solution under the flatness condition (20), we refer to [37, 49].

Theorem 4 [19, 20] Consider the set K from (2) and set dK = max{1, �deg(g j )/2� :
j ∈ [m]}. Let t ∈ N such that 2t ≥ max{deg( fi ) : 0 ≤ i ≤ N } and t ≥ dK . Assume
L ∈ R[x]∗2t is an optimal solution to the program (6) defining the parameter ξt and it
satisfies the following flatness condition:

rank L([x]s[x]Ts ) =rank L([x]s−dK [x]Ts−dK ) =: r
for some integer s such that dK ≤ s ≤ t . (20)

Then, equality ξt = val holds, and problem (1) has an optimal solution μ that is finite
atomic and supported on r points in K .

The above result naturally applies also to the sparse reformulation (11) of GMP and
to the sparse hierarchy ξ

isp
t in (12). Indeed, it suffices to apply Theorem 4 to each of

the linear functionals Lk and to check whether Lk satisfies the corresponding flatness
criterion. We adapt the result to this setting for concreteness.

Corollary 5 Consider the sets K in (2) and Kk in (10) and define the parameter
dKk = max{1, �deg((g j )|Vk )/2� : j ∈ [m]} for k ∈ [p]. Let t ∈ N such that
2t ≥ max{deg( fi ) : 0 ≤ i ≤ m} and t ≥ max{dKk : k ∈ [p]}. Assume (L1, . . . , L p)

is an optimal solution to the program (12) defining ξ
isp
t and it satisfies the flatness

condition: for each k ∈ [p] there exists an integer sk such that dKk ≤ sk ≤ t and the
following holds

rank Lk([x(Vk)]sk [x(Vk)]Tsk ) = rank Lk([x(Vk)]sk−dKk
[x(Vk)]Tsk−dKk

) =: rk . (21)

Then, equality ξ
isp
t = valisp(= val) holds, and problem (11) has an optimal solution

(μ1, . . . , μp), where each μk is finite atomic and supported on rk atoms in Kk for
each k ∈ [p].

Note that, for the application to the completely positive rank and the nonnegative
rank, all involved polynomials in the corresponding instances of GMP are quadratic,
so that dK = dKk = 1 and the smallest relaxation level that can be considered is
t = 1. For the application to the cp-rank, if the flatness condition holds for an optimal
solution for the parameter ξ

cp
t (A) (or for the parameter ξ

cp,isp
t (A)), then the parameter

is equal to τcp(A) and one can extract a cp-factorization of A. In this way one finds an
explicit factorization of A and thus an upper bound on its cp-rank. In this case, if the
computed value of τcp(A) is equal to the number of recovered atoms, this certifies that
τcp(A) is equal to the cp-rank and the recovered cp-decomposition of A is an optimal
one. We will illustrate this on some examples in Sect. 4.3.2. In the same way, for
the application to the nonnegative rank, if the flatness condition holds for an optimal
solution for the parameter ξ+

t (M) (or for the parameter ξ+,isp
t (M)), then the parameter

is equal to τ+(M) and one can extract a nonnegative factorization of M .
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3 Ideal-sparsity for GMP

In this section we investigate how ideal-sparsity can be exploited for the GMP (1).
First,we consider inSect. 3.1 the ideal-sparse reformulation (11) and the corresponding
ideal-sparse bounds, and, after that, wemention in Sect. 3.2 how this relates to themore
classic approach based on exploiting correlative sparsity.

3.1 Ideal-sparsemoment relaxations

Consider the GMP (1), where the set K is defined as in (2). As in Sect. 1, we consider
the graph G = (V , E), whose maximal cliques are denoted V1, . . . , Vp , and we
define the sets K̂k ⊆ K ⊆ R

n (as in (8)) and their projections Kk ⊆ R
|Vk | (as in (10)).

Recall from (9) that K = K̂1 ∪ . . . ∪ K̂ p. Then, one can define the (sparse) version
(11) of GMP. As observed above, while problem (1) has a single measure variable μ

whose support is contained in K ⊆ R
n , problem (11) involves p measure variables

μ1, . . . , μp, where μk is supported on the set Kk ⊆ R
|Vk |, thus a smaller dimensional

space. We now show that both formulations (1) and (11) are equivalent.

Proposition 6 Problems (1) and (11) are equivalent, i.e., their optimum values are
equal: val = valisp.

Proof First, we show val ≤ valisp. For this, assume (μ1, . . . , μp) is feasible for prob-
lem (11). Consider the measure μ on R

|V |, defined by
∫

f dμ = ∑p
k=1

∫
Kk

f|Vk dμk

for any measurable function f on R
|V |. We have Supp(μ) ⊆ K . Indeed,

∫
K f dμ =∫

f χK dμ = ∑
k

∫
Kk

f|VkχK|Vk dμk = ∑
k

∫
Kk

f|Vk dμk = ∫
f dμ, since χK|Vk (y) =

χK (y, 0V \Vk ) = 1 for all y ∈ Kk as (y, 0V \Vk ) ∈ K̂k ⊆ K . Then, μ is feasible for
(1), with the same objective value as (μ1, . . . , μp), which shows val ≤ valisp.

We now show the reverse inequality valisp ≤ val. For this, assume μ is feasible
for (1).We nowdefine a feasible solution (μ1, . . . , μp) to (11), with the same objective
value as μ. For k ∈ [p], define the set

�k = {x ∈ K : Supp(x) ⊆ Vk, Supp(x) � Vh for 1 ≤ h ≤ k − 1}.

As each x ∈ K has its support contained in someVk , it follows that the sets�1, . . . , �p

form a disjoint partition of K . Note that �k ⊆ K̂k and thus x(Vk) ∈ Kk for any
x ∈ �k . Consider themeasureμk onR

|Vk |, defined by
∫

f dμk = ∫
�k

f (x(Vk))dμ(x)

for any measurable function f on R
|Vk |. Then, Supp(μk) ⊆ Kk , since

∫
Kk

f dμk =∫
f χKk dμk = ∫

�k
f (x(Vk))χKk (x(Vk))dμ(x) = ∫

�k
f (x(Vk))dμ(x) = ∫

f dμk ,

as χKk (x(Vk)) = 1 for all x ∈ �k . Next, we show that
∫
pdμ = ∑

k

∫
p|Vk dμk for

any measurable function p : R
|V | → R. Indeed, as the sets �1, . . . , �p disjointly

partition the set K , we have
∫
pdμ = ∫

K pdμ = ∑
k

∫
�k

pdμ. Combining with∫
�k

p(x)dμ(x) = ∫
�k

p|Vk (x(Vk))dμ(x) = ∫
Kk

p|Vk dμk , gives the desired identity∫
pdμ = ∑

k

∫
p|Vk dμk . Therefore, (μ1, . . . , μp) is a feasible solution to (11) with

the same value as μ, which shows valisp ≤ val. ��
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Based on the reformulation (11), we can define the ideal-sparsemoment relaxation
(12) for problem (1), which we repeat here for convenience: for any integer t ≥ 1,

ξ
isp
t := inf

{ ∑p
k=1 Lk( f0|Vk ) : Lk ∈ R[x(Vk)]∗2t (k ∈ [p]),∑p

k=1 Lk( fi |Vk ) = ai (i ∈ [N ]),
Lk ≥ 0 on M(g|Vk )2t (k ∈ [p])

}
.

(22)

This hierarchy provides bounds for val that are at least at good as the bounds ξt from
(6).

Theorem 7 For any integer t ≥ 1 we have ξt ≤ ξ
isp
t ≤ val. In addition, if M(g) is

Archimedian and (7) holds, then limt→∞ ξ
isp
t = val.

Proof Clearly, ξ
isp
t ≤ valisp, which, combined with Proposition 6, gives ξ

isp
t ≤ val.

We now show ξt ≤ ξ
isp
t . For this, assume (L1, . . . , L p) is feasible for (22). Define

L ∈ R[x]∗2t by setting L(p) = ∑p
k=1 Lk(p|Vk ) for any p ∈ R[x]2t . By construction,

L( fi ) = ∑
k Lk( fi |Vk ) for 0 ≤ i ≤ m, so that L( fi ) = ai for i ∈ [m]), and

L ≥ 0 on M(g). For each {i, j} ∈ E and k ∈ [p], we have {i, j} � Vk and thus
(xi x j )|Vk is identically zero; hence, for any u ∈ R[x]2t−2, we have L(uxi x j ) =∑

k Lk(u|Vk (xi x j )|Vk ) = 0. Hence, L is feasible for (6) with the same objective value

as (L1, . . . , L p), which shows ξt ≤ ξ
isp
t . Convergence of ξ

isp
t to val follows from the

just proven fact that ξt ≤ ξ
isp
t and from Theorem 1, which implies limt→∞ ξt = val

under the stated assumptions. ��
Observe that in Theorem 7 no structural chordality property needs to be assumed

on the cliques V1, . . . , Vp of the graph G. In other words, the cliques V1, . . . , Vp need
not satisfy the running intersection property (see (24) below), which is a character-
izing property of chordal graphs that is often used in sparsity exploiting techniques
like correlative sparsity. In Sect. 3.2 below, we will comment about the link between
the ideal-sparsity approach presented here and the more classical correlative sparsity
approach that can be followed when considering a chordal extension Ĝ of the graph
G.

As mentioned earlier in the introduction, the sparse bounds ξ
isp
t present a double

advantage compared to the dense bounds ξt : they are at least as good (and often strictly
better), and their computation is potentially faster since the sets Vk can bemuch smaller
than the full set V . We will see later examples illustrating this. On the other hand, a
possible drawback is that the number of maximal cliques of G could be large. Indeed,
it is well-known that the number of maximal cliques can be exponential in the number
of nodes (this is the case, e.g., when G is a complete graph on 2n nodes with a deleted
perfect matching). A possible remedy is to consider a graph G̃ = (V , Ẽ) containingG
as a subgraph, i.e., such that E ⊆ Ẽ . Then, let Ṽ1, . . . , Ṽp̃ denote the maximal cliques
of G̃, whose number p̃ satisfies p̃ ≤ p, since each maximal clique of G is contained
in a maximal clique of G̃. One can define the corresponding ideal-sparse moment
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hierarchy of bounds, denoted ξ̃
isp
t , which involves p̃ measure variables supported on

the sets Ṽ1, . . . , Ṽp̃ (instead of the sets V1, . . . , Vp). However, as Ṽh may contain
some non-edge of G, one now needs to still impose an ideal condition on each linear
functional L̃h acting on R[x(Ṽh)] (h ∈ [ p̃]). Namely, the parameter ξ̃

isp
t is defined as

ξ̃
isp
t := inf

{ ∑ p̃
h=1 L̃h( f0|Ṽh ) : L̃h ∈ R[x(Ṽh)]∗2t (h ∈ [ p̃]),

∑ p̃
h=1 L̃h( fi |Ṽh ) = ai (i ∈ [N ]),

L̃h ≥ 0 on M(g|Ṽh )2t (h ∈ [ p̃]),
L̃h(xi x j xα) = 0 (α ∈ N

n
2t−2,

Supp(α) ⊆ Ṽh, {i, j} ⊆ Ṽh, {i, j} ∈ E)

}
.

(23)

Note that this parameter interpolates between the dense and sparse parameters: indeed,
ξ̃
isp
t = ξ

isp
t if G̃ = G, and ξ̃

isp
t = ξt if G̃ = Kn is the complete graph. Accordingly,

we have the following inequalities among the parameters.

Lemma 8 Assume G̃ contains G as a subgraph. For any integer t ≥ 1 we have
ξt ≤ ξ̃

isp
t ≤ ξ

isp
t .

Proof The proof for the inequality ξt ≤ ξ̃
isp
t is analogous to the proof of ξt ≤ ξ

isp
t in

Theorem 7. We now show ξ̃
isp
t ≤ ξ

isp
t . For this, assume (L1, . . . , L p) is feasible for

the parameter ξ
isp
t . As each clique Vk of G is contained in some clique Ṽh of G̃, there

exists a partition [p] = A1 ∪ . . . ∪ Ap̃ such that Vk ⊆ Ṽh for all k ∈ Ah and h ∈ [ p̃].
For h ∈ [ p̃], we define L̃h ∈ R[x(Ṽh)]∗2t by setting L̃h(p) = ∑

k∈Ah
Lk(p|Vk ) for

p ∈ R[x(Ṽh)]2t . Then, one can easily verify that (L̃1, . . . , L̃ p̃) provides a feasible

solution for ξ̃ ispt , with the same objective value as (L1, . . . , L p). Let us only check the
ideal constraint. For this assume {i, j} ∪ Supp(α) ⊆ Ṽh and {i, j} ∈ E . Then, {i, j}
is not contained in any clique Vk of G and thus Lk((xi x j xα)|Vk ) = 0 for all k ∈ [p],
which directly implies L̃h(xi x j xα) = 0. ��
Remark 9 Theremay be a trade-off to bemade between the parameter ξ ispt , which fully
exploits the sparsity of G (and provides a possibly better bound), and the parameter
ξ̃
isp
t , which only partially exploits the sparsity, depending on the choice of the extension
G̃ of G. Namely, the parameter ξ

isp
t may involve many cliques of smaller sizes, while

the parameter ξ̃
isp
t involves less cliques but with larger sizes. If one cares to have a

small number of cliques, then one can (but is not required to) consider for G̃ a chordal
extension Ĝ of G, in which case the number of maximal cliques is at most the number
of nodes.

In our numerical experiments for matrix factorization ranks we will consider only
the two extreme cases of the dense and ideal-sparse parameters ξt and ξ

isp
t . For most

of the matrices considered the number of maximal cliques seems indeed not to play
a significant role. However, when this number becomes too large, one may have to
consider alternative intermediate parameters (see Sect. 6 for a brief discussion).
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3.2 Bounds based on correlative sparsity

In this section we compare the ideal-sparse approach with the more classic one based
on exploiting correlative sparsity. The setting of correlative sparsity is usually applied
to a polynomial optimization problem, where each of the polynomials arising as a
constraint involves only a subset of the variables (indexed, say, by one of the subsets
V̂1, . . . , V̂p̂) and the objective polynomial is a sum of such polynomials. Then, one
can define more economical relaxations that respect this sparsity pattern. In the case
when the sets V̂1, . . . , V̂p̂ respect the so-called RIP property (see (24) below) (and
under some Archimedean condition), these hierarchies enjoy asymptotic convergence
properties analogous to the dense hierarchies; see [35, 44] for details and also [51] for
general background on correlative sparsity. We now explain how correlative sparsity
applies to the instance of GMP considered in this paper.

As before, we assume K is contained in the variety of the ideal IE , generated by
the monomials xi x j corresponding to the nonedges of the graph G = (V , E). In the
ideal-sparsity approach we considered a measure variable for each maximal clique of
G. However, the number of maximal cliques of G can be large, which could represent
a drawback for this approach.

An alternative is to consider a chordal extension Ĝ = (V , Ê) ofG, that is, a chordal
graph Ĝ containing G as a subgraph, i.e., such that E ⊆ Ê . Then, as a well-known
property of chordal graphs, Ĝ has at most n distinct maximal cliques. Let V̂1, . . . , V̂p̂

denote the maximal cliques of Ĝ, so p̂ ≤ n. As one of the many equivalent definitions
of chordal graphs, it is known that the maximal cliques V̂1, . . . , V̂p̂ satisfy (possibly
after reordering) the so-called running intersection property (RIP):

∀k ∈ {2, . . . , p̂} ∃ j ∈ {1, . . . , k−1} such that V̂k ∩ (V̂1 ∪ . . .∪ V̂k−1) ⊆ V̂ j . (24)

See, e.g., [25] for details. As we explain below, it turns out that one can ‘transport’
the chordal sparsity structure of the graph Ĝ to the moment matrices involved in the
definition of the dense bound ξt in (6).

To see this, let us first rewrite the parameter ξt more concretely as a semidefinite
program. For convenience, set d j := �deg(g j )/2� for j ∈ [m]. Then, following the
discussion in Sect. 2.1, the parameter ξt can be expressed as

ξt = inf{L( f0) : L ∈ R[x]∗2t , L( fi ) = ai (i ∈ [N ]),
L([x]t [x]Tt ) 
 0, L(g j [x]t−d j [x]Tt−d j

) 
 0 ( j ∈ [m]),
L = 0 on IE,2t , i.e., L(xi x j xα) = 0 ({i, j} ∈ E, α ∈ N

n
2t−2)}.

(25)
For fixed t ∈ N, define the sets

Ik,t = {α ∈ N
n
t : Supp(α) ⊆ V̂k} ⊆ N

n
t (k ∈ [ p̂]), It =

p̂⋃
k=1

Ik,t ⊆ N
n
t . (26)

Lemma 10 Assume L ∈ R[x]∗2t satisfies L = 0 on IE,2t . Then, L(xαxβ) = 0 for any
α, β ∈ N

n
t such that {α, β} is not contained in any of the sets I1,t , . . . , I p̂,t .
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Proof Assume there is no index k ∈ [ p̂] such that {α, β} ⊆ Ik,t . Then, Supp(α +
β) is not a clique in G, for otherwise it would be contained in some V̂k , implying
Supp(α),Supp(β) ⊆ V̂k and thusα, β ∈ Ik,t , yielding a contradiction.AsSupp(α+β)

is not a clique in G, it contains a pair {i, j} ∈ E , which implies xαxβ ∈ IE,2t and thus
L(xαxβ) = 0. ��

In view of Lemma 10, in the definition of ξt in (25), one may restrict the matrix
L([x]t [x]Tt ) to its principal submatrix indexed by It , since any row/column indexed by
α ∈ N

n
t \It is identically zero.Moreover, L(xαxβ) �= 0 implies {α, β} ⊆ Ik,t for some

k ∈ [ p̂]. In other words, the support graph of thematrix L([x]t [x]Tt ) is contained in the
graph with vertex set It , whose maximal cliques are the sets I1,t , . . . , I p̂,t . The next
lemma shows that the RIP property also holds for the sets I1,t , . . . , I p̂,t . Therefore,
the moment matrix Mt (L) = L([x]t [x]Tt ) has a correlative sparsity pattern, which it
inherits from the chordal extension Ĝ of G.

Lemma 11 The sets I1,t , . . . , I p̂,t satisfy the RIP property:

∀q ∈ {2, . . . , p̂} ∃k ∈ {1, . . . , q − 1} such that Iq,t ∩ (I1,t ∪ . . . ∪ Iq−1,t ) ⊆ Ik,t .
(27)

Proof Let q ∈ {2, . . . , p̂} and assume by way of contradiction that there exists no
k ∈ [q − 1] for which Iq,t ∩ (I1,t ∪ . . . ∪ Iq−1,t ) ⊆ Ik holds. Then, for each
k ∈ [q − 1], there exists αk ∈ Iq,t ∩ (I1,t ∪ . . . ∪ Iq−1,t )\Ik,t and thus there exists
ik ∈ V \V̂k such that αk

ik
≥ 1. As αk ∈ Iq,t and αk

ik
≥ 1, it follows that ik ∈ V̂q . In

addition, αk ∈ I j,t for some j ∈ [q − 1]. Again, as αk
ik

≥ 1, it follows that ik ∈ V̂ j .
This shows that

ik ∈ V̂q ∩ (V̂1 ∪ . . . ∪ V̂q−1) for all k ∈ [q − 1].

By the RIP property (24) for V̂1, . . . , V̂p , there exists q0 ∈ [q − 1] such that V̂q ∩
(V̂1 ∪ . . . ∪ V̂q−1) ⊆ V̂q0 . Therefore, ik ∈ V̂q0 for all k ∈ [q − 1]. As ik /∈ V̂k , this
implies that q0 �= k for all k ∈ [q − 1], and we reach a contradiction. ��

The above extends to the localizing matrices L(g j [x]t−d j [x]Tt−d j
) for j ∈ [m].

In the same way, one may restrict the matrix L(g j [x]t−d j [x]Tt−d j
) to its principal

submatrix indexed by It−d j and its support graph is contained in the graph with vertex
set It−d j , whose maximal cliques are the sets I1,t−d j , . . . , I p̂,t−d j . Moreover, there is
a correlative sparsity pattern on the matrix L(g j [x]t−d j [x]Tt−d j

) (0 ≤ j ≤ m), which

is inherited from the chordal structure of Ĝ.
Therefore, one may apply Theorem 12 below to get a more economical reformula-

tion of ξt . Indeed, by Theorem 12, one may write L(g j [x]t−d j [x]Tt−d j
) = ∑ p̂

k=1 Z j,k ,
where Z j,k is obtained from a matrix indexed by the set Ik,t−d j by padding it with
zero entries, and replace the condition L(g j [x]t−d j [x]Tt−d j

) 
 0 by the conditions
Z j,1, . . . , Z j, p̂ 
 0. The advantage is that requiring Z j,k 
 0 boils down to checking
positive semidefiniteness of a potentially much smaller matrix, indexed by Ik,t−d j .
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Hence, this allows to replace one (large) positive semidefinitematrix by several smaller
positive semidefinite matrices. While this method offers a more economical way
for computing the dense parameter ξt , it is nevertheless inferior to the ideal-sparse
approach described in the previous section. Recall in particular Remark 9, where we
indicated how to construct a sparse parameter ξ̃ ispt , which could also be based on using
a chordal extension Ĝ of G, but superior in quality as ξt ≤ ξ̃

isp
t .

Theorem 12 ([2]) Consider a positive semidefinite matrix X ∈ Sn+ whose support
graph is contained in a chordal graph Ĝ, with maximal cliques V̂1, . . . , V̂p̂. Then,

there exist positive semidefinite matrices Yk ∈ S V̂k+ (k ∈ [ p̂]) such that X = ∑ p̂
k=1 Zk,

where Zk = Yk ⊕ 0V \V̂k ,V \V̂k ∈ Sn+ is obtained by padding Yk with zeros.

As a final observation, another possibility to exploit the above correlative spar-
sity structure would be simply to replace in the definition of ξt in program
(6) each condition L(g j [x]t−d j [x]t−d j ) 
 0 by p̂ smaller matrix conditions
L(g j |V̂k [x(V̂k)]t−d j [x(V̂k)]t−d j ) 
 0 for k ∈ [ p̂]. In other words, if L |Vk denotes

the restriction of L to the polynomials in variables indexed by V̂k , then we replace
the condition L ≥ 0 on M(g)2t by the conditions L |V̂k ≥ 0 on M(g|V̂k )2t for each
k ∈ [ p̂]. In this way we obtain another parameter, denoted by ξ

csp
t , that is weaker than

ξt and thus satisfies
ξ
csp
t ≤ ξt ≤ ξ̃

isp
t ≤ ξ

isp
t .

Recall ξ̃
isp
t is the parameter from (23) obtained when selecting an extension G̃ of G,

including, for instance, selecting a chordal extension G̃ = Ĝ.

4 Application to the completely positive rank

In this section we investigate how ideal-sparsity can be exploited to design bounds on
the completely positive rank.We define the corresponding hierarchies of lower bounds
on the cp-rank and indicate their relations to other known bounds in the literature.

4.1 Ideal-sparse lower bounds on the cp-rank

Consider a symmetric nonnegative matrix A ∈ Sn and assume Aii �= 0 for all i ∈ V
(to avoid trivialities). Then, its cp-rank, denoted rankcp(A), is the smallest integer
r ∈ N for which A admits a decomposition of the form A = ∑r

�=1 a�aT� with a� ≥ 0
(setting r = ∞ if no such decomposition exists, when A is not completely positive).
Fawzi and Parrilo [29] introduced the parameter τcp(A) from (13), as a convexification
of the cp-rank, whose definition is repeated for convenience:

τcp(A) := min

{
λ : 1

λ
A ∈ conv{xxT : x ∈ R

n+, A − xxT 
 0, A ≥ xxT }
}
.

Clearly, we have τcp(A) ≤ rankcp(A). As was already indicated in Sect. 1, the param-
eter τcp(A) can be reformulated as an instance of problem (1) with an ideal-sparsity
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structure inherited from the matrix A. For this, recall GA = (V = [n], EA) denotes
the support graph of A, where EA consists of all pairs {i, j} with i �= j ∈ V and
Ai j �= 0 (as in (14)), and recall the definition of the semialgebraic set KA from (15).
As shown in Lemma 2, τcp(A) can be reformulated as an instance of GMP:

τcp(A) = inf
μ∈M (Rn)

{∫
KA

1dμ :
∫
KA

xi x j dμ = Ai j (i, j ∈ V ), Supp(μ) ⊆ KA

}
.

Dense hierarchies for cp-rank. Based on the above reformulation of τcp(A), for any
integer t ≥ 1, let us define the following parameter (as special instance of (6)):

ξ
cp
t (A) = min

{
L(1) : L ∈ R[x]∗2t , (28)

L(xi x j ) = Ai j (i, j ∈ V ), (29)

L([x]t [x]Tt ) 
 0, (30)

L((
√
Aii xi − x2i )[x]t−1[x]Tt−1) 
 0 for i ∈ V , (31)

L((Ai j − xi x j )[x]t−1[x]Tt−1) 
 0 for {i, j} ∈ EA, (32)

L(xi x j [x]2t−2) = 0 for {i, j} ∈ E A, (33)

L((A − xxT ) ⊗ [x]t−1[x]Tt−1) 
 0. (34)

We first indicate how this parameter relates to other similar moment-based bounds
considered in the literature, in particular in [33] and [34]. Note that, due to the pres-
ence of the (ideal) constraints (33), the constraint (32) trivially holds for any pair
{i, j} ∈ E A. If we omit the ideal constraint (33) and impose the constraint (32)
for all pairs {i, j} with i �= j ∈ V , then we obtain a parameter investigated in
[34], denoted here as ξ

cp
t,(2022)(A). The parameter ξ

cp
t,(2022)(A) strengthens an earlier

parameter ξ cpt,(2019)(A) introduced in [33], whose definition follows by replacing in the

definition of ξ
cp
t,(2022)(A) the constraint (34) by the weaker constraint

L((xxT )⊗�) � A⊗� for � ∈ [t]. (35)

So, for any t ≥ 1, we have

ξ
cp
t,(2019)(A) ≤ ξ

cp
t,(2022)(A) ≤ ξ

cp
t (A).

Since the bounds ξ
cp
t,(2019)(A) were shown to converge asymptotically to τcp(A) in

[33], the same holds for the bounds ξ
cp
t (A). Note that the convergence of the latter

bounds also follows directly from Theorem 1.
As mentioned in [33], there are more constraints that can be added to the above

program and still lead to a lower bound on the cp-rank (in fact on τcp(A)). In partic-
ular, exploiting the fact that the variables xi should be nonnegative, one may add the
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constraints

L([x]2t ) ≥ 0, (36)

L((
√
Aii xi − x2i )[x]2t−2) ≥ 0 for i ∈ V , (37)

L(Ai j − xi x j )[x]2t−2) ≥ 0 for {i, j} ∈ EA. (38)

One may also add other localizing constraints, such as

L(xi x j [x]t−1[x]Tt−1) 
 0 for {i, j} ∈ EA. (39)

Note that the constraints (39) are redundant at the smallest level t = 1. Note also
that one could add a similar constraint replacing xi x j by any monomial. We use
the notation ξ

cp
t,†(A) to denote the parameter obtained by adding (38) to the program

defining ξ
cp
t (A). Define analogously ξ

cp
t,(2019),†(A) by adding (38) to ξ

cp
t,(2019)(A), so

that we have

ξ
cp
t,(2019),†(A) ≤ ξ

cp
t,†(A).

As we will see in relation (52) below, the bound ξ
cp
2,(2019),†(A) is at least as good as

rank(A), an obvious lower bound on rankcp(A). Let ξ cpt,‡(A) denote the strengthening of

ξ
cp
t,†(A) by adding constraints (36), (37), and (39), so that we have ξ

cp
t (A) ≤ ξ

cp
t,†(A) ≤

ξ
cp
t,‡(A).

Ideal-sparsehierarchies for cp-rank. Wenowconsider the ideal-sparse bounds for the
cp-rank, which further exploit the ideal-sparsity pattern of A. For this, let V1, . . . , Vp

denote the maximal cliques of the graph GA and, for t ≥ 1, define the following
parameter (as special instance of (12)):

ξ
cp,isp
t (A) =min

{ p∑
k=1

Lk(1) : Lk ∈ R[x(Vk)]∗2t (k ∈ [p]), (40)

∑
k∈[p]:i, j∈Vk

Lk(xi x j ) = Ai j (i, j ∈ V ), (41)

Lk([x(Vk)]t [x(Vk)]Tt ) 
 0 (k ∈ [p]), (42)

Lk((
√
Aii xi − x2i )[x(Vk)]t−1[x(Vk)]Tt−1) 
 0 for i ∈ Vk, k ∈ [p],

(43)

Lk((Ai j − xi x j )[x(Vk)]t−1[x(Vk)]Tt−1) 
 0 for i �= j ∈ Vk, k ∈ [p],
(44)

Lk((A − xxT ) ⊗ [x(Vk)]t−1[x(Vk)]Tt−1) 
 0, for k ∈ [p]. (45)

Here, in equation (45), it is understood that, for a given k ∈ [p], in the matrix A− xxT

one sets the entries of x indexed by V \Vk to zero. As a direct application of Theorem
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7, we have

ξ
cp
t (A) ≤ ξ

cp,isp
t (A) ≤ τcp(A) for any t ≥ 1.

One may also define the sparse analogs of the constraints (36), (37), (38), and (39):

Lk([x(Vk)]2t ) ≥ 0 for k ∈ [p], (46)

Lk((
√
Aii xi − x2i )[x(Vk)]2t−2) ≥ 0 for i ∈ Vk, k ∈ [p], (47)

Lk((Ai j − xi x j )[x(Vk)]2t−2) ≥ 0 for {i, j} ⊆ Vk, k ∈ [p], (48)

Lk(xi x j [x(Vk)]t−1[x(Vk)]Tt−1) 
 0 for i �= j ∈ Vk, k ∈ [p]. (49)

Then, define ξ
cp,isp
t,† (A) by adding constraint (48) to ξ

cp,isp
t (A), and ξ

cp,isp
t,‡ (A) by adding

the constraints (46), (47) and (49) to ξ
cp,isp
t,† (A), so that ξ

cp,isp
t (A) ≤ ξ

cp,isp
t,† (A) ≤

ξ
cp,isp
t,‡ (A).

Weak ideal-sparse hierarchies for cp-rank. Observe that, if, in equation (45), we
replace the matrix A − xxT by its principal submatrix indexed by Vk , then one also
gets a lower bound on τcp(A), possibly weaker than ξ

cp,isp
t (A), but potentially easier

to compute. Let ξ cp,wispt (A) denote the parameter obtained by replacing the condition
(45) in the definition of ξ

cp,isp
t (A) by the following (weaker) constraint

Lk((A[Vk] − x(Vk)x(Vk)
T ) ⊗ [x(Vk)]t−1[x(Vk)]Tt−1) 
 0 for k ∈ [p]. (50)

Then we have

ξ
cp,wisp
t (A) ≤ ξ

cp,isp
t (A).

Since we have weakened some conditions of the ideal-sparse hierarchy, the weak
ideal-sparse hierarchy ξ

cp,wisp
t (A) is no longer guaranteed to be at least as strong as

the dense hierarchy ξ
cp
t (A). This is substantiated by our numerical experiments, where

we frequently observe ξ
cp,wisp
t (A) < ξ

cp
t (A) for randomly generated matrices A; see

Sect. 4.3.1 for how we generate these matrices and see (53) for a concrete instance of
suchmatrix. On the other hand, in all of the high cp-rankmatrices A from the literature
that we consider in Sect. 4.3.2, it does hold that ξ

cp
t (A) ≤ ξ

cp,wisp
t (A). This relation

also holds for several other cp-rank matrices from the literature we have considered
but did not present in this paper. It seems that the delineating factor might be that our
randomly generated matrices tend to have cp-rank close to the usual matrix rank (i.e.,
rankcp(A)− rank(A) ≤ 1), while, in contrast, the matrices considered in the literature
have a cp-rank often much higher (e.g., up to 27 for Example ex4 in (55)) than the
rank.
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4.2 Links to combinatorial lower bounds on the cp-rank

We indicate here some links to other known lower bounds on the cp-rank. Clearly the
rank is a lower bound:

rankcp(A) ≥ rank(A).

A combinatorial lower bound arises naturally from the edge clique-cover number of
the support graph GA.

Given a graphG = (V , E), its edge clique-cover number, denoted c(G) (following
[29]), is defined as the smallest number of (maximal) cliques inG whose union covers
every edge ofG. This parameter is NP-hard to compute [30]. Clearly, c(G) = |E | ifG
is a triangle-free graph (i.e.,ω(G) = 2, whereω(G) denotes the maximum cardinality
of a clique in G). As observed in [29], the edge clique-cover parameter gives a lower
bound on the cp-rank:

rankcp(A) ≥ c(GA).

Indeed, if A = ∑r
�=1 a�aT� with a� ≥ 0 and r = rankcp(A), then the supports of

a1, . . . , ar are (not necessarily distinct) cliques that provide an edge clique-cover of
GA by at most r cliques.

In [29] a semidefinite parameter τ soscp (A) is introduced, which is shown to be at least
as good as rank(A) and as cfrac(GA), the fractional edge clique-cover number, i.e.,
the natural linear relaxation of c(GA) defined by

cfrac(GA) = min

⎧⎨
⎩

p∑
k=1

xk :
∑

k:{i, j}⊆Vk

xk ≥ 1 for {i, j} ∈ EA

⎫⎬
⎭ . (51)

So, we have c(GA) ≥ cfrac(GA) and

τcp(A) ≥ τ soscp (A) ≥ max{rank(A), cfrac(GA)}.

In [33] it is shown that the bound ξ
cp
2,(2019),†(A) is at least as strong as τ soscp (A). Indeed,

the proof for the relevant result (Proposition 7 in [33]) only uses the relation L((Ai j −
xi x j )xi x j ) ≥ 0 from (38) and the relation L((xxT )⊗2 � A⊗2 in (35). Hence, we have
the chain of inequalities

τcp(A) ≥ ξ
cp,isp
2,† (A) ≥ ξ

cp
2,†(A) ≥ ξ

cp
2,(2019),†(A) ≥ τ soscp (A)

≥ max{rank(A), cfrac(GA)}. (52)

As we now observe, the (weak) ideal-sparse bound ξ
cp,wisp
1 (A) of the first level

t = 1 is at least as good as the parameter cfrac(GA).

Lemma 13 If A ∈ Sn is nonnegative with support graph GA, then ξ
cp,wisp
1 (A) ≥

cfrac(GA).
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Proof Let (L1, . . . , L p) be an optimal solution for the parameter ξ
cp,wisp
1 (A). Using

(44), we have

Lk(Ai j − xi x j ) ≥ 0 for all i �= j with {i, j} ⊆ Vk and k ∈ [p],

which gives Ai j Lk(1) ≥ Lk(xi x j ). Summing over k, we get

Ai j

∑
k∈[p]:{i, j}⊆Vk

Lk(1) ≥
∑

k∈[p]:{i, j}⊆Vk

Lk(xi x j ) = Ai j ,

where we use (41) for the last equality. As Ai j > 0, this gives
∑

k:{i, j}⊆Vk Lk(1) ≥ 1

for every edge {i, j} ∈ EA. Hence, the vector x = (Lk(1))
p
k=1 ∈ R

p
+ is feasible for

program (51), which implies the inequality
∑p

k=1 Lk(1) ≥ cfrac(GA), as desired. ��
We now give a class of cp-matrices that exhibit a large separation between the

dense and ideal-sparse bounds at level t = 1: these matrices have size n = 2m and
rankcp(A) = ξ

cp,wisp
1 (A) = m2 ≥ m + 1 > ξ

cp
1 (A).

Example 14 For n = 2m consider the matrix

A =
(

(m + 1)Im Jm
Jm (m + 1)Im

)
∈ Sn,

where Im is the identity matrix and Jm the all-ones matrix. Then, A is a cp-matrix
(because it is nonnegative and diagonally dominant). Its cp-rank is rankcp(A) =
|EA| = m2 (because its support graph GA is the complete bipartite graph Km,m

(thus, connected, triangle-free and not a tree), using a result of [26], also mentioned
below). Clearly, we have c(GA) = cfrac(GA) = m2. Hence, using Lemma 13, we
obtain ξ

cp,isp
1 (A) = ξ

cp,wisp
1 (A) = m2 = rankcp(A). We claim ξ

cp
1 (A) < m + 1,

which shows a large separation between the dense and ideal-sparse bounds of level
t = 1.

For this, observe that ξ cp1 (A) can be reformulated as

ξ
cp
1 (A) = min{L(1) : L ∈ R[x]∗2, L(1) ≥ 1, L(xi ) ≥ √

Aii (i ∈ [n]),
L(xxT ) = A, L([x]1[x]T1 ) 
 0}.

Consider the linear functional L ∈ R[x]∗2 defined by L(xxT ) = A, L(xi ) = √
m + 1

for i ∈ [n] and L(1) = 2m(m+1)
2m+1 . We show that L is feasible for the above program,

which implies ξ
cp
1 (A) ≤ L(1) < m + 1. For this, it suffices to show L([x]1[x]T1 ) 
 0.

By taking the Schur complement with respect to the upper left corner, this boils down
to checking that L(1)A − (m + 1)Jm 
 0. As the all-ones vector is an eigenvector
of A (with eigenvalue 2m + 1), it is also an eigenvector of L(1)A − (m + 1)Jm with
corresponding eigenvalue L(1)(2m + 1) − 2m(m + 1) = 0. The eigenvalues of the
matrix L(1)A − (m + 1)Jm for its eigenvectors orthogonal to the all-ones vector are
eigenvalues of A, and thus they are nonnegative since A is positive semidefinite. This
shows that L(1)A − (m + 1)Jm 
 0 and the proof is complete.
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We conclude with some observations about known upper bounds on the cp-rank.
General upper bounds on the cp-rank are rankcp(A) ≤ n if n ≤ 4, rankcp(A) ≤(n+1
2

) − 4 if n ≥ 5 [58], and rankcp(A) ≤ (r+1
2

) − 1 if r = rank(A) ≥ 2 [7].
It is known that c(G) ≤ n2/4 [28]. In analogy, it has been a long standing conjecture

by Drew et al. [26] that the cp-rank of an n × n completely positive matrix is at most
n2/4. This conjecture, however, was disproved in [11, 12] for any n ≥ 7. In particular,
it is shown in [12] that the maximum cp-rank of an n × n cp-matrix is of the order
n2/2 + O(n3/2).

If the support graph GA is triangle-free, then |EA| ≤ rankcp(A) ≤ max{n, |EA|};
moreover, if GA is connected, triangle-free and not a tree, then rankcp(A) = |EA|
[26]. Hence, n − 1 = |EA| ≤ rankcp(A) ≤ n if GA is a tree, with rankcp(A) = n if

A is nonsingular. By Lemma 13, we know that ξ cp,wisp1 (A) ≥ |EA| if GA is triangle-

free. Hence, the bound ξ
cp,wisp
1 (A) gives the exact value of the cp-rank when GA is

connected, triangle-free and not a tree. On the other hand, if GA is a tree and A is
nonsingular, then the bound ξ

cp
2,†(A) gives the exact value (equal to n) of the cp-rank

(since it is at least τ soscp (A) ≥ rank(A) by relation (52)).

4.3 Numerical results for the completely positive rank

In this section, we explore the behaviour of the various bounds for the completely
positive rank on three classes of examples. Our objective is to illustrate the superiority
of the ideal-sparse hierarchies compared to the dense ones. We examine both the
quality of the bounds as well as computation times.

The first class we consider consists of randomly generated sparse cp-matrices. We
will give the exact construction below. In all numerical examples we considered for
these matrices, the bounds obtained for ξ

cp
t (A) and ξ

cp,isp
t (A) were always at most

rank(A)+2. Sowedonot list the numerical bounds for these examples as there does not
seem to be much insight gained from them. However, random examples give us a way
to compare the computation times amongst different hierarchies and across various
matrix sizes, non-zero densities, and levels. In what follows the non-zero density of
A ∈ Sn , denoted nzd(A), is defined as the proportion of non-zero entries above the
main diagonal, i.e., nzd(A) = |EA|/(n2). Hence, a diagonal matrix has nzd=0, and a
dense matrix has nzd=1.

The second class contains examples from the literature, whose cp-rank is known
from theory. However, recall the moment hierarchies provide lower bounds on τcp,
whose value is often unknown and could be strictly less than the cp-rank. Regardless,
these examples give an interesting testbed to evaluate the quality of the new bounds.

The third class of examples consists of doubly nonnegative matrices, which are
known to not be completely positive. In running these examples, the hope is to obtain
an infeasibility certificate from the solver. This then numerically certifies that the
matrix is not completely positive. In this context one hierarchy is said to perform
better than another one if it returns the infeasibility certificate at a lower level or using
less run time.
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Fig. 1 Scatter plot of the computation times (in seconds) for the three hierarchies ξ
cp
2,† (indicated by a red

square), ξcp,isp2,† (indicated by a yellow losange), ξcp,wisp2,† (indicated by a green circle) against matrix size
and non-zero density for 850 randommatrices, generated using the above described procedure. Thematrices
are arranged in ascending size (n = 5, 6, 7, 8, 9) and then ascending non-zero density, ranging from the
minimal density needed to have a connected support graph up to a fully dense matrix (nzd = 1)

The size of the matrices involved in the semidefinite programs grows quickly with
the level t in the hierarchy (roughly, as

(n+t
t

)
), so these problems become quickly too

big for the solver (in particular, due to memory storage). We will consider matrices
up to size n = 12 for the dense and sparse hierarchies at level t = 2. At level t = 3
and for matrices of size n = 12, we can only compute bounds for the weak sparse
hierarchy.

All computations shown were run on a personal computer running Windows 11
Home 64-bit with an 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz Processor
and 16GB of RAM. The software we use was custom coded in Julia [9] utilizing the
JuMP [27] package for problem formulation, and MOSEK [3] as the semidefinite
programming solver.2

4.3.1 Randomly generated sparse cp-matrices

We first describe how we construct random sparse cp-matrices. Given integers n ∈ N

and n − 1 ≤ m ≤ (n
2

)
, we create a symmetric n × n binary matrix M with exactly

m ones above the diagonal, whose positions are selected uniformly at random. Let
G be the graph with M as adjacency matrix. We only keep the instances where G
is a connected graph. We enumerate the maximal cliques V1, . . . , Vp of G (using,
e.g., the Bron-Kerbosch algorithm [14]). Then, we select a subset of maximal cliques
Vq1 , ..., Vql whose union covers every edge of G (e.g., using a greedy algorithm). For
each k ∈ [l], generate mk ≥ 1 vectors (a(k,i))i∈[mk ] ⊆ R

n+ with uniformly random
entries following U[0, 1] and supported on Vqk . We will choose mk = 2 by default.
Then, consider the matrix

∑
k∈[l]

∑
i∈[mk ] a

(k,i)(a(k,i))T , scale it so that all diagonal

2 See the code repository https://github.com/JAndriesJ/ju-cp-rank for details.

123

https://github.com/JAndriesJ/ju-cp-rank


Exploiting ideal-sparsity in the generalized moment problem... 729

Fig. 2 This is a similar plot to Fig. 1 but now for level t=3 of each of the hierarchies. By omitting markers
we indicate that the corresponding computations either exceeded memory constraints or took longer than
103 seconds

entries are equal to 1 and call A the resulting matrix. By construction, A is completely
positive with connected support GA = G, and non-zero density nzd = m/

(n
2

)
.

We generate such random examples for varying matrix size (n = 5, 6, 7, 8, 9) and
incrementing the non-zero density nzd in ascending order. In order to not include
examples with disconnected graphs we need nzd ≥ (n − 1)/

(n
2

)
. To account for

different graph configurationswith the samenon-zero densitywegenerate 10 examples
per matrix size and nzd value. For all of them we compute the dense and (weak)
sparse bounds of level t = 2 and t = 3. Here, we are not so much interested in the
numerical bounds, but rather in their computation times. This numerical experiment
indeed permits to show the differences in computation time between the ideal-sparse
and dense hierarchies. It turns out that the computation times for the parameters ξ

cp
t ,

ξ
cp
t,†, and ξ

cp
t,‡ are all comparable at level t = 2, 3, likewise for the ideal-sparse analogs.

For this reason, we only plot the results for the “†" variant, i.e., for the parameters ξ
cp
t,†,

ξ
cp,isp
t,† , ξ cp,wispt,† . The results are shown in Fig. 1 (for t = 2) and in Fig. 2 (for t = 3).
We canmake the following observations about the results in Fig. 1. As expected, the

ideal-sparse hierarchy is faster to compute than the dense hierarchy for matrices with
non-zero density nzd ≤ 0.8. The computation of the weak ideal-sparse hierarchy is
even faster. Moreover, the speed-up increases with the matrix size and the level of the
hierarchy as can be seen across Figs. 1 and 2. At level t = 3, some hierarchies can no
longer be computed for certain matrix sizes and non-zero densities. This is particularly
evident in the case of the dense hierarchy for matrices of size 7 and larger. The ideal-
sparse hierarchies can be computed up to size 9 depending on the non-zero density.
We show only the examples that we could compute in less than 103 seconds. The
parameters that either took longer that 103 seconds or exceeded memory constraints
can be inferred by the omission of their respective markers in Fig. 2.

We also make an observation regarding how the values of the dense and weak-
ideal sparse bounds compare for these randommatrices. As observed earlier, the weak
ideal-sparse hierarchy ξ

cp,wisp
t (A) is no longer guaranteed to be at least as strong as the

dense hierarchy ξ
cp
t (A). Indeed, in our numerical experiments, we frequently observe
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the strict inequality ξ
cp,wisp
t (A) < ξ

cp
t (A) for randomly generated matrices A. For

example, the matrix (with entries rounded for presentation)

A =

⎛
⎜⎜⎜⎜⎝

1.0 0.578 0.0 0.0 0.225
0.578 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.656
0.0 0.0 0.0 1.0 0.526
0.225 0.0 0.656 0.526 1.0

⎞
⎟⎟⎟⎟⎠ (53)

has the following parameters at order t = 2:

(
ξ
cp,wisp
2 (A) = 4

)
<

(
ξ
cp
2 (A) = 5

)
≤

(
ξ
cp,isp
2 (A) = 5

)
≤

(
rankcp(A) = 5

)
.

4.3.2 Selected sparse cp-matrices

Here, we compute the dense and (weak) ideal-sparse parameters for a few selected cp-
matrices taken from the literature. We first briefly discuss the four example matrices
we will consider, denoted ex1, ex2, ex3, ex4, and shown in relations (54) and (55)
below.

ex1 =

⎛
⎜⎜⎜⎜⎝

3 2 0 0 1
2 5 6 0 0
0 6 14 4 0
0 0 4 9 1
1 0 0 1 2

⎞
⎟⎟⎟⎟⎠ , ex3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

781 0 72 36 228 320 240 228 36 96 0
0 845 0 96 36 228 320 320 228 36 96
72 0 827 0 72 36 198 320 320 198 36
36 96 0 845 0 96 36 228 320 320 228
228 36 72 0 781 0 96 36 228 240 320
320 228 36 96 0 845 0 96 36 228 320
240 320 198 36 96 0 745 0 96 36 228
228 320 320 228 36 96 0 845 0 96 36
36 228 320 320 228 36 96 0 845 0 96
96 36 198 320 240 228 36 96 0 745 0
0 96 36 228 320 320 228 36 96 0 845

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(54)

ex2 =

⎛
⎜⎜⎜⎜⎝

2 0 0 1 1
0 2 0 1 1
0 0 2 1 1
1 1 1 3 0
1 1 1 0 3

⎞
⎟⎟⎟⎟⎠ , ex4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

91 0 0 0 19 24 24 24 19 24 24 24
0 42 0 0 24 6 6 6 24 6 6 6
0 0 42 0 24 6 6 6 24 6 6 6
0 0 0 42 24 6 6 6 24 6 6 6
19 24 24 24 91 0 0 0 19 24 24 24
24 6 6 6 0 42 0 0 24 6 6 6
24 6 6 6 0 0 42 0 24 6 6 6
24 6 6 6 0 0 0 42 24 6 6 6
19 24 24 24 19 24 24 24 91 0 0 0
24 6 6 6 24 6 6 6 0 42 0 0
24 6 6 6 24 6 6 6 0 0 42 0
24 6 6 6 24 6 6 6 0 0 0 42

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (55)
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Table 1 Dense and ideal-sparse bounds for selected sparse cp-matrices

A n p c r Bounds rcp Times (s)

ξ
cp
1 ξ

cp,isp
1 ξ

cp,wisp
1 Dense Ideal-sparse wisp

ex1 5 5 5 5 2.71 5 5 5 < 1 < 1 < 1

ex2 5 6 6 4 3 6 6 6 < 1 < 1 < 1

ex3 11 22 8 11 4.24 8.53 8.53 32 < 1 < 1 < 1

ex4 12 64 16 10 4.85 29.66 29.63 37 < 1 < 1 < 1

ξ
cp
2,‡ ξ

cp,isp
2,‡ ξ

cp,wisp
2,‡

ex1 5 5 5 5 5 5 < 1 < 1 < 1

ex2 5 4 6 6 6 6 < 1 < 1 < 1

ex3 11 11 21.93 22.32 22.32 32 123.86 54.89 8.14

ex4 12 10 29.57 29.66 29.66 37 238.94 33.78 1.28

ξ
cp
3,‡ ξ

cp,isp
3,‡ ξ

cp,wisp
3,‡

ex3 11 11 – – 22.33 32 – – 2648.69

ex4 12 10 – – 29.66 37 – – 28.69

n = size of A, p = number of maximal cliques of GA , c = edge clique-cover number of GA , r = rank(A),
rcp = rankcp(A)

– : computations failed due to memory constraints

The matrix ex1 (from [6]) is supported on the 5-cycle C5 and the matrix ex2 (from
[68]) is supported on the bipartite graph K3,2. In both cases, we have ξ

cp,isp
1 (A) =

rankcp(A) = |EA| (combining Lemma 13 and the results of [26] mentioned earlier at
the end of Sect. 4.2). The matrices ex3 and ex4 were constructed, respectively, in [11,
12] as examples of matrices having a large cp-rank exceeding the value n2/4 (thus
refuting the conjecture by Drew et al. [26]). The matrix ex3 is supported on C11, the
complement of an 11-cycle, and matrix ex4 is supported on the complete tripartite
graph K4,4,4. One can verify that the edge clique-cover number is equal to 8 for C11
and to 16 for K4,4,4.

The numerical results for these four examples are presented in Table 1, where we
also show other parameters for the matrix (size n, rank r , cp-rank rcp) and its support
graph (number p of maximal cliques, edge clique-cover number c). Here are some
comments about Table 1.

The results confirm the results in Lemma 13: the ideal-sparse bound of level t = 1
is equal to the number of edges for ex1 and ex2 (and matches the cp-rank); moreover
it gives a strong improvement on the dense bound of level 1. The bounds of level t = 2
all exceed the rank of the matrix (as expected in view of (52)). At level t = 3, only
the weak ideal-sparse bound can be computed for the matrices ex3 and ex4.

In Table 1, the values of the bounds at level t = 3 are close to those at level t = 2
for matrices ex3 and ex4. However, the tests for the flatness condition (21) fail, so that
one cannot claim that the bounds are equal to τcp at this stage.

We also tested whether the flatness conditions (20) and (21) hold for matrices
ex1 and ex2 at level t = 2, and whether one can extract atoms and construct a cp-
factorization.
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Table 2 Testing flatness and atom extraction

A ξ
cp
2,‡ ξ

cp,isp
2,‡ ξ

cp,wisp
2,‡

Flatness (20) # Atoms Flatness (21) # Atoms Flatness (21) # Atoms

ex1 False 0 True 10 False 0

ex2 False 6 True 6 True 6

ξ
cp
3,‡ ξ

cp,isp
3,‡ ξ

cp,wisp
3,‡

ex1 False 10 True 10 False 0

ex2 True 6 True 6 True 6

The results are summarized in Table 2, where we indicate the number of atoms (cor-
responding to a cp-factorization with that many factors) when the extraction procedure
is successful.We indicate that the extraction procedure fails by reporting “# atoms=0”.
As mentioned in [37], one may indeed try and apply the extraction procedure even if
flatness does not hold.

For the dense bounds of level t = 2, flatness does not hold for the matrices ex1
and ex2. However, while one does not succeed to extract atoms for matrix ex1, the
extraction is successful for matrix ex2 and returns 6 atoms. Interestingly, flatness
holds for the ideal-sparse bounds and the atom extraction is successful. However, the
number of extracted atoms is 10 for matrix ex1, thus twice the cp-rank. To verify
that the extracted atoms are (approximatively) correct, we use them to construct a
cp-matrix Arec, which we then compare to the original matrix A. In all cases we obtain
‖Arec − A‖1 ≤ 10−8, which shows that a correct factorization has been constructed.

Note that for the ideal-sparse parameter, since one splits the problem over the
maximal cliques and has a distinct linear functional Lk for each clique Vk , it may be
more difficult to satisfy the flatness condition (21) (since each Lk must satisfy it), as
happens for matrices ex3 and ex4.

4.3.3 Doubly nonnegative matrices that are not completely positive

In this section we consider the following three matrices that are known to be doubly
nonnegative but not completely positive (taken from [6, 53, 57]):

ex5 =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 3

⎞
⎟⎟⎟⎟⎠ , ex6 =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

⎞
⎟⎟⎟⎟⎠ , ex7 =

⎛
⎜⎜⎜⎜⎜⎜⎝

7 1 2 2 1 1
1 12 1 3 3 5
2 1 2 3 0 0
2 3 3 5 0 0
1 3 0 0 2 4
1 5 0 0 4 10

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The objective is to see whether the hierarchies are able to detect that the matrix
is not cp. This can be achieved in two ways: when the solver returns an infeasibility
certificate, or when it returns a bound that exceeds a known upper bound on the cp-
rank. We test this for the bounds at level t = 1 and t = 2. At level t = 2 we try
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Table 3 Detecting non-cp
matrices for t = 1 A n r ξ

cp
1 ξ

cp,isp
1 ξ

cp,wisp
1 rcp ≤

ex5 5 4 2.47 * * 5

ex6 5 5 2.59 * * 5

ex7 6 6 2.4 3.02 3.02 17

* = infeasibility certificate

different variants by adding the constraints (36), (37), (38), and (39) and their sparse
analogs. The results are presented in Tables 3 and 4.

There we indicate one of three possible outcomes. The first outcome is indicated
with a question mark “?", which indicates that the solver could not reach a decision
within the default MOSEK solver parameters. The second possible outcome is when
the solver returns an infeasibility certificate (indicated with *), or when it returns a
value that exceeds a known upper bound for the cp-rank (in which case the bound
is marked with *). The last column in both tables, labeled “rcp ≤", provides such an
upper bound on the cp-rank of a cp-matrix with the given support graph. The third
possible outcome is when the solver returns a value that does not violate the upper
bound, in which case no conclusion can be reached. All computations took less than
a second and hence times are not shown.

We make three observations about Tables 3 and 4. The first is that the ideal-sparse
hierarchies show infeasibility at level t = 1 already for examples ex5 and ex6 while
the dense hierarchy shows the same only at level t = 2 with all additional constraints
imposed. Secondly, the ideal-sparse hierarchy correctly identifies ex7 as not cp at
level t = 2 while the dense hierarchy does not succeed even at level t = 3. The
third observation is that adding additional constraints helps prevent the solver from
returning an “unknown result status" but this seems to be less needed in the case of the
ideal-sparse hierarchies. It should be noted that increasing the level of the hierarchy
creates more opportunity for numerical errors in the computations, as seen in Table 4.

5 Application to the nonnegative rank

In this section we indicate how the treatment in the previous section for the cp-rank
extends naturally to the asymmetric setting of the nonnegative rank.

5.1 Ideal-sparsity bounds for the nonnegative rank

Given a nonnegative matrix M ∈ R
m×n , its nonnegative rank, denoted rank+(M), is

the smallest integer r for which there exist nonnegative vectors a� ∈ R
m+ and b� ∈ R

n+
such that

M =
r∑

�=1

a�b
T
� . (56)
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Computing the nonnegative rank is an NP-hard problem [62]. Fawzi and Parrilo [29]
introduced the following natural “convexification" of the nonnegative rank:

τ+(M) = inf

{
λ : 1

λ
M ∈ conv{xyT : x ∈ R

m+, y ∈ R
n+, M ≥ xyT }

}
,

which can be seen as an asymmetric analog of τcp. We consider the analogs of the

parameters ξ
cp
t and ξ

cp,isp
t , which now involve linear functionals acting on polynomials

inm+n variables.As in the introduction, setV = [m+n] = U∪W , whereU = [m] =
{1, . . . ,m} (corresponding to the row indices of M) and W = {m + 1, . . . ,m + n}
(corresponding to the column indices of M , up to a shift by m). Set

EM = {{i, j} ∈ U × W : Mi, j−m �= 0},

so that the bipartite graphGM = (V = U ∪W , EM ) corresponds to the support graph

of M . We also set E
M = (U×W )\EM and Mmax = maxi∈U , j∈W Mi, j−m . As is well-

known (see, e.g., [33]), the vectors in (56) may be assumed to satisfy ‖a�‖∞, ‖b�‖∞ ≤√
Mmax (after rescaling). This motivates the definition of the semialgebraic set KM

from (19) and, for any integer t ≥ 1, of the parameter:

ξ+
t (M) = min{L(1) : L ∈ R[x1, . . . , xm+n]∗2t , (57)

L(xi x j ) = Mi, j−m (i ∈ U , j ∈ W ), (58)

L([x]t [x]Tt ) 
 0, (59)

L((
√
Mmaxxi − x2i )[x]t−1[x]Tt−1) 
 0 for i ∈ V , (60)

L((Mi, j−m − xi x j )[x]t−1[x]Tt−1) 
 0 for {i, j} ∈ EM , (61)

L(xi x j [x]2t−2) = 0 for {i, j} ∈ E
M }. (62)

If we omit the (ideal) constraint (62) and require the constraint (61) to hold also for

pairs {i, j} ∈ E
M
, then we obtain the (weaker) parameter ξ+

t (M), introduced in [33]
as a lower bound on τ+(M) (and thus on rank+(M)).

In addition, we can define ideal-sparse bounds, by further exploiting the sparsity
pattern of M . As the support graph GM is now a bipartite graph it is convenient to
use the following notion of biclique. A biclique in GM corresponds to a complete
bipartite subgraph and it is thus given by a pair (A, B) with A ⊆ U and B ⊆ W
such that {i, j} ∈ EM for all (i, j) ∈ A × B; it is maximal if A ∪ B is maximal. Let
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V1 = A1 ∪ B1, . . . , Vp = Ap ∪ Bp be the vertex sets of the maximal bicliques in GM

and, for any integer t ≥ 1, define the parameter

ξ
+,isp
t (M) =min

{ p∑
k=1

Lk(1) : Lk ∈ R[x(Vk)]∗2t (k ∈ [p]), (63)

∑
k∈[p]:{i, j}⊆Vk

Lk(xi x j ) = Mi, j−m (i ∈ U , j ∈ W ), (64)

Lk([x(Vk)]t [x(Vk)]Tt ) 
 0 (k ∈ [p]), (65)

Lk((
√
Mmaxxi − x2i )[x(Vk)]t−1[x(Vk)]Tt−1) 
 0 (i ∈ Vk, k ∈ [p]),

(66)

Lk((Mi, j−m − xi x j )[x(Vk)]t−1[x(Vk)]Tt−1) 
 0 (i ∈ U , j ∈ W ,

{i, j} ⊆ Vk, k ∈ [p])
}
. (67)

Summarizing, we have the following inequalities among the above parameters

ξ+
t−1(M) ≤ ξ+

t (M) ≤ ξ
+,isp
t (M) ≤ τ+(M) ≤ rank+(M) for any t ≥ 2,

with asymptotic convergence of all bounds to τ+(M); this was shown in [33] for the
bounds ξ+

t (M) (and this also follows as an application of Theorem 1).
As in the case of the cp-rank, there are more constraints that may be added to the

above programs to strengthen the bounds. In [33] the authors propose to exploit the
nonnegativity of the variables and add the constraints

L([x]2t ) ≥ 0, (68)

L((
√
Mmaxxi − x2i )[x]2t−2) ≥ 0 for i ∈ V , (69)

L((Mi, j−m − xi x j )[x]2t−2) ≥ 0 for (i, j) ∈ U × W . (70)

Let ξ+
t,†(M) denote the parameter obtained by adding the constraint (70) to ξ+

t (M).

Similarly, one may add (70) to the parameter ξ+
t (M) (requiring (70) only for pairs

in EM ) and its sparse analog to ξ
+,isp
t (M), leading, respectively, to the parameters

ξ+
t,†(M) and ξ

+,isp
t,† (M). So, ξ+

t,†(M) ≤ ξ+
t,†(M) ≤ ξ

+,isp
t,† (M). Finally, we also intro-

duce the parameters, where we use the symbol ‡ instead of † when adding all the
constraints (68), (69), (70).

5.2 Links to combinatorial lower bounds on the nonnegative rank

We now recall some other known lower bounds on the nonnegative rank and indicate
their relations to the parameters considered here.

Fawzi andParrilo [29] introduced a semidefinite bound τ sos+ (M) and show it satisfies
τ sos+ (M) ≤ τ+(M). In [33] it is shown that the parameters ξ+

2,†(M) strengthen this

bound3:

3 This follows from the proof of [33, Proposition 15] since it only uses the relation L((Mi, j−m −
xi x j )xi x j ) ≥ 0 for any (i, j) ∈ U × W in addition to the constraints defining the basic parameter

ξ+
2 (M).
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τ sos+ (M) ≤ ξ+
2,†(M) ≤ τ+(M).

There is a well-known combinatorial lower bound on the nonnegative rank, which
can be seen as an asymmetric analog of the lower bound on the cp-rank of A given
by the edge clique-cover number c(GA). Recall GM = (U ∪ W , EM ) is the bipartite
graph defined as the support graph of M ∈ R

m×n+ . Define the edge biclique-cover
number of GM , denoted bc(GM ), as the smallest number of bicliques whose union
covers every edge in EM . Then, we have

rank+(M) ≥ bc(GM ).

As a biclique in GM corresponds to a pair (A, B) ⊆ U × W for which the rectangle
A× B is fully contained in the support of M , the parameter bc(GM ) is also known as
the rectangle covering number of M (see, e.g., [29, 32]). Define its fractional analog
bcfrac(GM ) as

bcfrac(G
M ) = min

⎧⎨
⎩

p∑
k=1

xk : x ∈ R
k+,

∑
k:{i, j}⊆Vk

xk ≥ 1 for {i, j} ∈ EM

⎫⎬
⎭ ≤ bc(GM ).

(71)
Yet another well-known combinatorial interpretation of bicliques is as follows. Define
the rectangular graph RG(M), with vertex set EM and where two distinct pairs
{i, j}, {k, �} ∈ EM form an edge of RG(M) if Mi�Mkj = 0. In other words,
{i, j}, {k, �} ∈ EM do not form an edge in RG(M) precisely if ({i, k}, { j, �}) corre-
sponds to a biclique in GM . Then, the parameter bc(GM ) coincides with the coloring
number of RG(M) and bcfrac(GM ) coincideswithχ f (RG(M)), the fractional coloring
number of RG(M). So,

rank+(M) ≥ bc(GM ) = χ(RG(M)).

The following relationships are shown in [29]:

τ+(M) ≥ χ f (RG(M)) = bcfrac(G
M ), τ sos+ (M) ≥ ϑ(RG(M)),

where ϑ(RG(M)) is the theta number of the complement of RG(M). As we now
observe, the ideal-sparse parameter ξ+,isp

1 (M) is at least as good as bcfrac(GM ), which
is the analog of Lemma 13.

Lemma 15 For M ∈ R
m×n+ we have ξ

+,isp
1 (M) ≥ bcfrac(GM ).

Proof Let (L1, . . . , L p) be an optimal solution for ξ
+,isp
1 (M). Then, Lk(Mi, j−m −

xi x j ) ≥ 0 for each k ∈ [p] and {i, j} ∈ EM such that {i, j} ⊆ Vk . As∑
k:{i, j}⊆Vk Lk(xi x j ) = Mi, j−m , this implies

∑
k:{i, j}⊆Vk Lk(1) ≥ 1 for each

{i, j} ∈ EM . Hence, the vector x = (Lk(1))
p
k=1 provides a feasible solution to

program (71), which implies
∑p

k=1 Lk(1) ≥ bcfrac(GM ). ��
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As for the cp-rank, we now give a class of matrices showing a large separation
between the ideal-sparse and dense bounds of level t = 1.

Example 16 Consider the identitymatrixM = In ∈ Sn . Clearly,we have rankcp(In) =
rank(In) = n. As the support graph GM is the disjoint union of n edges, its frac-
tional edge biclique-cover number is equal to n and thus, in view of Lemma 15, we
have ξ

+,isp
1 (In) = n = rank+(In). We now show that for the dense bound, we have

ξ+
1 (In) < 8 for any n ≥ 4. For this recall that ξ+

1 (In) is given by

ξ+
1 (In) = min{L(1) : L ∈ R[x]∗2, L(xi ) ≥ L(x2i ) (i ∈ [2n]),

L(xi xn+ j ) = δi, j (i, j ∈ [n]), L([x]1[x]T1 ) 
 0}.

Consider the linear functional L ∈ R[x]∗2 defined by L(1) = 8 n−2
n , L(xi ) = L(x2i ) =

2 n−2
n for i ∈ [2n], L(xi x j ) = L(xn+i xn+ j ) = n−4

n for i �= j ∈ [n], and L(xi xn+ j ) =
δi, j for i, j ∈ [n]. Then one can check that

L([x]1[x]T1 ) =
⎛
⎝ 8 n−2

n 2 n−2
n eT 2 n−2

n eT

2 n−2
n e In + n−4

n Jn In
2 n−2

n e In In + n−4
n Jn

⎞
⎠ 
 0.

Hence, L is feasible for the program defining ξ+
1 (In), which shows ξ+

1 (In) ≤ L(1) =
8 n−2

n < 8.

5.3 Numerical results for the nonnegative rank

In this section we test the ideal-sparse and dense hierarchies on two classes of nonneg-
ative matrices. The first class consists of size 4× 4 matrices that depend continuously
on a single variable. The second class we consider are the Euclidean distance matrices
(EDMs).

5.3.1 Matrices related to the nested rectangles problem

The nonnegative matrices we will consider have an interesting link between their
nonnegative rank and the geometric nested rectangles problem (see [13]). Bounds for
their nonnegative rank were investigated by Fawzi and Parrilo [29] and Gribling et al.
[33]. Consider the matrices

S(a, b) :=

⎛
⎜⎜⎝
1 − a 1 + a 1 − b 1 + b
1 + a 1 − a 1 − b 1 + b
1 + a 1 − a 1 + b 1 − b
1 − a 1 + a 1 + b 1 − b

⎞
⎟⎟⎠ for a, b ∈ [0, 1].

If a, b < 1, then S(a, b) is fully dense and no improvement can be expected from our
new bounds. Thus, we consider the case b = 1 and a ∈ [0, 1]. We have computed the
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Fig. 3 This figure shows ξ+
t,†(S(a, 1)) and ξ

+,isp
t,† (S(a, 1)) computed at levels t = 1, 2, 3 with a ranging

from 0 to 1 in increments of 0.01. The colour indicates a lower bound on the obtained numerical value:
yellow, red and purple show the bound is at least 2, 3, and 4, respectively. So a red square at a = 0.35 and

“sp t=2" means ξ
+,isp
2,† (M) ≥ 3

bounds ξ+
t,‡(M) and ξ

+,isp
t,‡ (M) at level t = 1, 2, 3 for M = S(a, 1) with a ranging

from 0 to 1 in increments of 0.01. The results are displayed in Fig. 3 below. We can
make the following two observations about Fig. 3. First, the ideal-sparse hierarchy is
much stronger at level t = 1, but at level t = 2 the dense and ideal-sparse hierarchies
give comparable bounds. Second, for a = 1, all bounds, except the dense bound of
level 1, are equal to 4 = rank+(S(1, 1)) (as is expected for the ideal-sparse hierarchy
in view of Lemma 15).

5.3.2 Euclidean distance matrices

The second class of examples we consider are the Euclidean distance matrices Mn =
((i − i)2)ni, j=1 ∈ R

n×n+ , known to have a large separation between their rank and
their nonnegative rank. Indeed, rank(Mn) = 3 [8], and their bipartite support graph
GMn is Kn,n with a deleted perfect matching (known as a crown graph), whose edge
biclique-cover number satisfies bc(GMn ) = �(log n) [22]. So we have rank(Mn) = 3
and rank+(M) ≥ bc(GMn ) = �(log n). In addition, it is known that rank+(Mn) ≤
2 + � n

2 �, see [32, Theorem 9]. The numerical results are shown in Table 5. In these
examples, the ideal-sparse bound of level t = 2 is more difficult to compute, since the
support graphGM has 2n−1 maximal bicliques, eachwith n vertices. For this reasonwe
could compute ξ

+,isp
2,† only until n = 7 before running out of memory. So this example

illustrates the limitations of the ideal-sparsity approach, when the number of maximal
cliques is too large. Note that this difficulty – large number of maximal bicliques –
remains even if we would replace the support graph GMn by a supergraph G̃, obtained
by adding to MGn (say) s edges from the missing perfect matching. Indeed, such G̃
still has 2n−s−1 maximal bicliques, each with n + s vertices.

6 Concluding remarks

In this paper we have introduced a new sparsity approach for GMP, which arises
when in the formulation of GMP one has explicit ideal-type constraints that require
the support of the measure to be contained in the variety of an ideal generated by
monomials xi x j corresponding to (the non-edges of) a graph G. We compared it
to the more classic correlative sparsity structure that requires a chordal structure on
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Table 5 Bounds for the matrices
M = ((i − j)2)ni, j=1

n bc ξ+
1,† ξ+

2,† ξ
+,isp
1,† ξ

+,isp
2,† 2 + � n2 �

4 4 2 3.46 3 3.63 4

5 4 2 3.73 3.35 4.19 5

6 4 2 3.96 3.41 4.53 5

7 5 2 4.17 3.55 4.85 6

8 5 2 4.35 3.59 – 6

9 5 2 4.51 3.66 – 7

the graph G, while our new ideal-sparse hierarchy does not need it. We explored its
application to the problem of bounding the nonnnegative rank and the cp-rank of a
matrix and illustrate the new approach on some classes of examples. There are several
natural extensions and further research directions that are left open by this work. We
now sketch some of them.

How to deal withmany cliques. In the new ideal-sparse approach, instead of a single
measure on the full space R

n , one has several measures on smaller spaces indexed
by the maximal cliques of the graph G. At any given level t ≥ 1, the corresponding
ideal-sparse bounds are at least as good as their dense analogs and, depending on the
number of maximal cliques, their computation can be much faster. The computation
of the ideal-sparse parameters indeed involves several (based on the maximal cliques)
semidefinite matrices of smaller sizes. The first research direction is to investigate the
trade-off between having many cliques (in the ideal-sparse setting) and large matrix
constraints (in the dense setting). As seen in Sect. 5.3.2 the sparse hierarchy behaves
particularly bad on examples where the underlying graph has exponentially many
cliques. We suggest a possible solution in Remark 9, where we consider merging
some of the cliques by considering a (possibly chordal) extension of the support graph
G. Clique merging has been explored before in the context of power flow networks,
see [59] and [31]. These methods exploit correlative sparsity and thus require the
underlying support graph to be chordal. Finding the minimal chordal extension of
a graph is NP-complete [4], but heuristics exist for certain cases (see, e.g., [10]).
Supposing one has chosen a method for finding chordal extensions, it is still unclear
which among the possible chordal extensions will result in better SDPs. One can try to
merge small cliques based on how much it would reduce the estimated computational
burden. These estimates can be based, for example, on the number of constraints, see
[52], or on the cost of an interior-point method iteration, see [60]. As it stands, we
know of no systematic way to find a “computationally optimal" trade-off between the
dense and ideal-sparse hierarchies.

Application to othermatrix factorization ranks. We have explored the application to
nonnegative and completely positive matrix factorization ranks. We have not consid-
ered their non-commutative analogs for the positive semidefinite (psd) rank and the
completely positive semidefinite (cpsd) rank, where, respectively, given M ∈ R

m×n+
one wants psd matrices Xi ,Y j ∈ Sr such that M = (〈Xi ,Y j 〉)i∈[m], j∈[n], and given
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A ∈ Sn one wants psd matrices Xi ∈ Sr+ such that A = (〈Xi , X j 〉)i, j∈[n], with r
smallest possible. One recovers the nonnegative rank and the cp-rank when restricting
the factors Xi ,Y j to be diagonalmatrices.We refer the reader to [33], where a common
polynomial optimization framework is offered to treat all these four matrix factoriza-
tion ranks. In the noncommutative setting of the psd- and cpsd-ranks, zero entries of
M (or A) also imply ideal-type constraints of the form XiY j = 0 (or Xi X j = 0).
Thus the techniques in the present paper may extend to this general setting. We leave
this extension to future work.

More general ideal-sparsity and applications. We have considered an ideal-sparsity
structure, where the ideal in (3) is generated by quadratic monomials. Beside their use
for bounding matrix factorization ranks, constraints of the form xi x j = 0 naturally
arise in a number of other applications. First we note that up to a change of variables,
one can consider more general constraints of the form (a�x + b)(c�x + d) = 0. This
type of constraint is commonly referred to as a complementarity constraint, where
either the term (a�x + b) or the term (c�x + d) is required to be zero. We mention
two areas where such complementary constraints naturally arise: analysis of neural
networks and optimality conditions in optimization.

Complementarity constraints arise naturally when modeling neural networks with
the rectified linear activation functions (ReLU). The semialgebraic representation of
the graph of the ReLU function involves a constraint of the form y(y − x) = 0,
which is exactly a complementarity constraint. The fact that the graph of the ReLU
function admits a semialgebraic representation has been exploited computationally
using the moment-sum-of-squares framework, for analyzing the Lipschitz constant
of the neural network as well as stability and performance properties of dynamical
systems controlled by the ReLU neural networks, see, e.g., [16, 17, 41]. Ideal sparsity
is therefore a natural candidate to render thesemethodsmore computationally efficient
and would deserve further study.

Complementarity systems arise also in optimization within the Karush-Kuhn-
Tucker (KKT) conditions. The complementarity slackness of the KKT condition reads
λi fi (x) = 0, where λi is the Lagrange multiplier associated to the i th constraint
fi (x) ≤ 0. If fi is affine, this is in the form of ideal constraints. The fact that the
KKT conditions form a basic semialgebraic set when the optimization problem has
polynomial data was exploited in [42] to analyze dynamical systems controlled by
optimization algorithms, albeit without exploiting the ideal-sparsity. More generally,
the ideal-sparsity could be used to analyze the linear complementarity problems (LCP)
that have applications in, e.g., economics, engineering or game theory; see [18] for an
extensive treatment of the subject.

Finally, instead of considering an ideal generated by quadratic monomials, onemay
consider an ideal generated by a set of monomials x S = ∏

i∈S xi (S ∈ S), where S is
a given collection of subsets of V = [n]. The treatment extends naturally to this more
general setting, where in the definition (2) of the set K , we replace the constraints
xi x j = 0 ({i, j} ∈ E) by

∏
i∈S xi = 0 (S ∈ S). Indeed, let V1, . . . , Vp denote

the maximal subsets of V that do not contain any set S ∈ S. Then, for the dense
formulation (1) of GMP, one can again show an equivalent sparse reformulation as in
(11), which involves p measures supported on the subspaces R

|V1|, . . . , R
|Vp | instead
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of a single measure on R
|V |. We leave it for further research to explore applications of

this more general ideal-sparsity setting and possible further extensions to other types
of varieties.
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