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Advanced machine learning for the detection of
single event effects

Adrien Dorise, Louise Travé-Massuyès, Audine Subias, Corinne Alonso

Abstract—With the increase of component complexity, pro-
tection against single event effects becomes a critical point
for the dependability of space systems. In this paper, machine
learning is investigated to improve the detection of radiation
faults. An algorithm named DYD2 that meets space application
requirements is proposed. In addition, a study to improve the
characterisation of single event effects through feature extraction
is described. Finally, results of experimentation based on a heavy-
ion campaign test are discussed.

Index Terms—Artificial intelligence, Machine learning, Single
event effects, Space radiations, Anomaly detection, Electronic
applications

I. INTRODUCTION

In the last decades, the growth in computation power has
evolved significantly. This led to applications becoming more
complex and to many technological breakthroughs. However,
due to the harsh environment in space, the space industry used
to need time to integrate those breakthroughs and catch up.
Nonetheless, with the advent of SpaceX and the successful
launch of its reusable launcher Falcon9 in 2010, the space
industry is taking a new trajectory known as the new space
era. Use of Components Out of The Shelf (COTS) has known
a massive increase in space applications. The lowered price of
space missions was followed by a massive increase in satellite
launches per year, as well as the number of mission failures
[1].

Single Event Effects (SEEs) represent faults induced in
electronic components by highly energetic particles collisions.
Sensitive parts of components are called sensitive nodes [2].
When a SEE occurs in a component, the last line of de-
fence is a threshold-based anti-latch-up system. However, non-
destructive SEEs like single event functional interrupt or micro
latch-up hidden in the nominal behaviour are not detected by
such a system. Therefore, extensive research is performed to
improve the detection of single event effects [3].

In a previous work, the possibility to use artificial intelli-
gence algorithms to improve the baseline detection method of
single event effects is discussed [4]. The main conclusion of
this work is that, even though learning algorithms could not
replace the baseline anti-latch-up system for destructive hard
errors, they are relevant for the detection of non-destructive
and hidden faults. From there, a new algorithm called Dynamic
Double anomaly Detection (DYD2) is developed to meet the
space industry requirements [5].

This paper presents the application and results of the
machine learning algorithm DYD2 on experimental tests
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performed. In section II, a brief presentation of DYD2 is
given. Section III reports the experimental setups composed of
californium-252 and laser testing on an ATMEL SAM3X8E.
Section IV presents a discussion about the adequate features
to characterise single event effects efficiently. Finally, section
V describes the results of DYD2 on experimental data.

II. DYD2 ALGORITHM

A. Anomaly detection specifications in space applications

Space applications impose many constraints that machine
learning algorithms generally do not meet. Therefore, the
machine learning algorithm DYD2 has been designed to
detect single effects in space missions while satisfying the
requirements below:

1) Change point anomaly detection in time series: The
algorithm must be able to detect anomalies in data sets that
take the form of time series. Those anomalies are defined
as anomalous change points in the time series. In a space
application, anomalies can be considered as high current
events in the supply current. Moreover, the detection algorithm
should be able to detect critical and destructive SEE, such
as single event latch-up, accurately. Finally, it must be able
to detect soft errors that can pass through the baseline anti-
latch-up system. DYD2 is specifically designed to handle time
series. Furthermore, a change point detection followed by
a two-phase anomaly detection algorithm enables DYD2 to
detect anomalous behaviours.

2) Low memory usage: The algorithm must be able to be
embedded and run on minimal resources. Indeed, some space
missions are designed for microcontrollers with only a few
Kbytes of flash memory, and available memory space must
be optimised as much as possible. DYD2 is based on specific
objects called µ-clusters that group together similar samples.
Therefore, only the µ-clusters need to be stored in memory,
instead of the entirety of the data set, drastically decreasing
memory usage.

3) Real-time detection: The algorithm must be able to run
efficiently in real-time in regards to the capability of space
components. DYD2 uses a fast change point detection to
classify new samples as potential anomalies. Doing so avoids
processing non-anomalous data points, thus saving time. Also,
the µ-clusters design accelerates the detection process. Indeed,
fewer objects need to be addressed as opposed to the entirety
of the data set.

4) Adaptability in evolving environment: The algorithm
must be able to adapt to a constantly changing environment.
Indeed, due to the total ionising dose, a component behaviour
evolves during the entirety of the mission. These evolutions
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modify significantly the supply current, so any training per-
formed beforehand becomes irrelevant. By the use of an update
phase that is constantly adapting to incoming data, DYD2 is
able to follow the deviation of a data set and does not require
additional training for that.

5) Training on normal behaviour only: The training phase
must be performed using only normal data. Indeed, the simu-
lation of single event effects can be tedious and complex, and
removing the need for extensive radiation testing is crucial.
It is complicated to get an extensive database of all possible
anomalies for complex components, such as a microcontroller.
Therefore, the database can only be partially created, and so
the quality of the prediction of a machine learning algorithm
can be severely altered. DYD2 is part of a sub-field of machine
learning called one-class classification, in which only one
type of data is needed to create a model: data of the normal
behaviour.

6) Interpretability: Finally, the last requirement to consider
is linked to the nature of artificial intelligence fiels and the
apparition of black-box models. The algorithm must be as
much interpretable, or explainable, as possible. It is well-
known that it is complicated to determine precisely how a
deep learning algorithm gives a specific prediction. In the
case of space application, the possibility to interpret the
prediction seems essential to apply with confidence machine
learning detection for radiation faults. It is why tools such
as neural networks are not investigated in this work. DYD2

is a deterministic algorithm. Its predictions are not based
on probabilistic measurements. Also, the evaluation of an
anomaly is based on explicable tools such as the notion of
reachability and µ-clusters. Finally, tools are developed to
visualised the evolution of DYD2 through a data set, giving
the possibility to explain its predictions.

B. DYD2 overview
Following these specifications, a new machine learning

algorithm is designed. Called Dynamic Double anomaly De-
tection (DYD2), most of its principles are described in [5].
Therefore, only a quick summary will be done here based on
Fig. 1.

First, training is performed using normal data of the com-
ponent 1 . The objective is to determine a model able to
represent the normal behaviour of the component. Therefore,
this data must match the ones monitored during the mission.
Training is performed prior to the beginning of the space
mission and constitutes the offline phase of DYD2. From there,
two maps are created: an outer map and an inner map. These
maps represent the model of the component.

After training, the online phase begins. DYD2 works as a
two-phase anomaly detection algorithm. It distinguishes the
notion of outer features and inner features. Prior to these two
detection phases, a change point detection is performed 2 .
Doing so avoids processing all data that does not correspond
to high current events.

The first detection phase 3 uses what is called outer
features. It consists of raw quantities that are quick to pro-
cess. This phase aims to detect critical and heavily out of
distributions anomalies qualified as outer anomalies.

The second detection phase 4 uses inner features. Unlike
outer features, the inner features are created by performing
deeper analysis, such as statistical or frequency analysis, on
incoming data. It aims at detecting subtle anomalies hidden
in normal behaviour called inner anomalies. To do so, a
waiting period is needed to gather enough data to create inner
features. As this phase focuses on non-critical faults (as critical
anomalies are detected in the previous phase), the waiting
period does not endanger the component.

Finally, an update phase 5 is performed on both the
outer and inner maps. These updates allow following the most
recent data, therefore adapting to incoming deviation without
the need for new training.

Fig. 1: Anomaly detection with DYD2

III. EXPERIMENTAL DETAILS

A. ATMEL SAM3X microcontroller

This study is focused on the ATMEL SAM3X8E. It is based
on the ARM Cortex-M3 processor designed for low-cost and
energy-efficient integrated circuits. The preparation of the chip
was to remove the protection on the frontside using plasma
technic. Three reasons led to choose the ATMEL SAM3X over
other microcontrollers:

1) The SAM3X family of microcontroller is used in various
projects across the space industry (such as the ANGELS
project).

2) The ATMEL SAM3X8E version is used as a central
component for the widely distributed Arduino DUE
development board. Choosing an Arduino DUE board
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(a) Optic 1x (b) Optic 20x

Fig. 2: Laser picture of the SAM3X8E

removes the need to design a whole new testing board,
and gives access to a quick setup to test the microcon-
troller functionalities.

3) The component has to be sensitive to radiation in order
to get failure examples in the study. Indeed, studies show
that even the rad tolerant version, the SAMA3X8ERT,
is sensitive to non-destructive single event effects [6].

B. Californium-252 and laser testing

To emulate single event effects, Californium-252 (Cf252)
and laser tests are performed. For both tests, a protection
device is set up at 250mA. The Cf252 LET is around 42
MeV.cm²/mg at the surface of the chip. The test facility is
located in TRAD Tests & Radiations in Labège, France. The
total irradiation time is 5200s. The whole process is monitored
every 10ms. Examples of soft errors are detected.

Laser testing is performed at the CNES laser facility
equipped with a class 1 laser linked by a specific software
on a dedicated computer. The characteristics of the laser are
given table I. Due to the impossibility of getting access to
the backside of the chip with Arduino DUE board, tests are
performed on the front side of the chip. With laser testing,
it is possible to get an image of the chip by scan process
(see Fig. 2). It enables the possibility to aim precisely at any
sensitive areas that are discovered during tests. One of them
is highlighted in green in Fig. 2b.

Many high current events are recorded during the exper-
imental tests. When a high current event that is below the
threshold is detected, a manual power cycle of the board is
performed. Most of the time, the supply current gets back to
its normal behaviour (see Fig. 3).

Wavelength Max pulse freq Power Optics Scan axis
1064nm 20MHz ≈600mW 1x, 5x, 20x X, Y

TABLE I: Laser characteristics

IV. FEATURE EXTRACTION AND SELECTION

The features are the information used as input by the ma-
chine learning algorithm to perform the prediction. Therefore,
feature selection is a crucial step. In the case of single event
effect, the monitored data consists of time series of various
indicators such as supply current, supply voltage or device
temperature. In this study, efforts are focused on the supply
current, as it is the most common indicator in single event
effects evaluation.

Fig. 3: Power cycle example

In this context, the first step to introduce artificial intelli-
gence in the detection of radiation faults is to discover which
attributes must be chosen or built to discriminate between
normal and potential degraded behaviours during a single
event effect.

The data sets gathered through Cf252 and laser testing are
the ones used for the feature selection. Therefore, the remarks
given in the following sections are valid for both experiments.
Moreover, it is important to note that this preliminary study
is heavily application-dependant. Nonetheless, we believe that
the features described in this section are still relevant in any
application aiming to characterise SEEs.

A. Statistical features

Statistical evaluation is a classic treatment in data analysis.
The statistical analysis is done by moving multiple samples
gathered in a time window across the data set and then
computing the statistical features of that time window. This
way, statistical features are calculated for each sample of the
data set.

In this study, many features were considered, but only a
small part that gave a good characterisation of a single event
effects are kept:

• The mean: For persistent anomaly, a shift of the signal
mean is a relevant indicator (see Fig. 4a). However, if the
mean shift is small enough, it can be tedious to discern
the anomaly from the normal behaviour.

• The variance: The variance is heavily affected by the
mean shift induced by a heavy ion. Therefore, a local
increase of the variance can be a symptom of a single
event effect.

• The standard error of the mean and the median absolute
deviation: These two criteria are chosen due to analysis
regarding the impact of a single event effects on the
microcontroller functionalities. Indeed, in failure mode,
multiple functions can be disabled. Therefore, this loss of
activities reverberates through the supply current profile
(see Fig. 4b).

B. Frequency features

The frequency spectrum of the supply current can be
obtained with discrete Fourier transform (DFT). Once this
treatment is done, a spectrum comparison is performed be-
tween normal behaviour and anomalous data sets. (see Fig.
5).
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(a) Mean value (b) Standard error of mean

Fig. 4: Statistical features

(a) Frequency spectrum for
normal behaviour

(b) Frequency spectrum for
faulty behaviour

(c) Frequency spectrum during a laser pass on a sensitive node

Fig. 5: Frequency spectrum

It is important to note that these results only consist of a
preliminary study on limited data sets. Indeed, an extensive
study by multiplying radiation condition tests is needed to
precisely define the impact of single event effects on the
frequency spectrum.

In this study, the frequency value corresponding to 0Hz is
removed as the amplitude of this peak is way greater than the
others. In addition to the lack of information given by this
peak, it rendered the readability of other values impossible.
Fig. 5a and Fig. 5b correspond respectively to the frequency
spectrum of the behaviours before and after the occurrence of a
single event effect. Noisy peaks appear when the component is
in one failure mode. Moreover, it can be observed a significant
decrease in the prominent peaks (8 Hz, 12Hz, 20Hz and 28Hz)
compared to the same frequencies of the normal behaviour.
When the laser is pointed at a sensitive node, a very specific
spectrum emerges (Fig. 5c). The presence of multiple peaks
in the higher range of frequencies is systematic during these
experiments. Further studies need to be done to unearth the
cause of this phenomenon.

V. DYD2 RESULTS ON HEAVY-ION TESTING

In [5], only results performed with computer simulations are
presented. In this article, new results of DYD2 on experimental
data provided by the CNES are discussed (see Fig. 6).

The data set comes from a series of heavy ion tests per-
formed in the UMCG- PARTREC facility on a BS62LV4006
CMOS. The sampling time of measures is fixed to 10ms,

Fig. 6: Test data set provided by the CNES

and the detection threshold is set to 500mA. A little bit less
than 25000 samples were recorded during these run tests, and
a hundred events were captured by the threshold detection
device. Then, DYD2 is run through the entire dataset to
compare its efficiency with the baseline threshold method.

During this test, DYD2 detects a total of 115 anomalies. All
peaks exceeding the threshold of 500mA are classified as outer
anomalies. Therefore, it can be noticed that DYD2 performed
as good as the baseline detection method. Furthermore, most
of the 15 left potential anomalies detected can be referred to
as soft errors, as the component behaviour seems to deviate
from normal condition, and return to normal after the next
power cycle.

Moreover, DYD2 is tested on on-board conditions with the
help of an Arduino Due equipped with a SAM3X8E in charge
of the detection tools. This board monitored the device under
test during the whole experiment. Thanks to the three-steps
detection, the microcontroller is able to process all the data
in real-time showing that DYD2 is perfectly compatible with
embedded applications.

VI. CONCLUSION

This paper proposes an implementation of machine learning
for the detection of single event effects. Specifications for
space missions are discussed. A feature selection is proposed
for single event effects characterisation. Finally, the algorithm
is tested on a data set coming from heavy ion test campaign.
Several points need to be investigated in the future as an ex-
tensive study of the frequency spectrum, and the performance
analysis of DYD2 relatively to false positive.
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