Amira Benachour
email: abenachour@usthb.dz

Saïd Yahiaoui
email: syahiaoui@cerist.dz

Didier El Baz
email: elbaz@laas.fr

Nadia Nouali-Taboudjemat

Hamamache Kheddouci
email: hamamache.kheddouci@univ-lyon1.fr

Fast parallel algorithms for finding elementary circuits of a directed graph: A GPU-based approach

Keywords: Finding circuits, Cycles, Directed graph, Parallel processing, GPU

Circuits in a graph are interesting structures and identifying them is of an important relevance for many applications. However, enumerating circuits is known to be a difficult problem, since their number can grow exponentially. In this paper, we propose fast parallel approaches for enumerating elementary circuits of a directed graphs based on Graphics Processing Unit (GPU). Our algorithms are based on a massive exploration of the graph in a Breadth First Search (BFS) strategy. Algorithm V-FEC explores the graph starting from different vertices simultaneously. To further reduce the search space, we present T-FEC, another algorithm that uses triplets as an initial set to start exploring. To the best of our knowledge, those are the first parallel GPU-based algorithms for finding all circuits of a given graph. The evaluation results show that the proposed approaches achieves up to 190x speed-up over Johnson's algorithm, one of the most efficient sequential algorithms for finding circuits.

Fast parallel algorithms for finding elementary circuits of a directed graph

Introduction

The problems of enumerating structures such as circuits, paths, trees and cliques in graphs and networks are of fundamental importance. This kind of tasks is usually hard to deal with, due to its challenging time/space complexity. Indeed, even a small graph may contain a huge number of such structures. In the enumeration process, it is important to point that counting and finding are two different processes: finding is the construction of elements, counting is determining their number. Generally, knowing the count is rarely useful in finding the objects and even if we are able to count the elements in polynomial time, we might not be able to find all of them due to an exponential number of elements and huge memory requirements. In the following, we will use enumeration and finding interchangeably.

Our interest is for finding the elementary circuits of a directed graph. Not only it is a fundamental problem of graph theory, a circuit is a loop through which information propagates, and is widely used in real world applications: in the financial field, circuits can reveal money laundering [START_REF] Fronzetti Colladon | Using social network analysis to prevent money laundering[END_REF]. In food webs, they represent fragile dependencies in ecosystems [START_REF] Dunne | Network structure and biodiversity loss in food webs: robustness increases with connectance[END_REF]. Finding circuits is also interesting in fraud detection [START_REF] Bodaghi | Automobile insurance fraud detection using social network analysis[END_REF]. For social networks, circuits represent a way to analyse and model networks [START_REF] Safar | Universal cycles distribution function of social networks[END_REF] and are used to evaluate networks balance [START_REF] Giscard | Evaluating balance on social networks from their simple cycles[END_REF]. Finding circuits is also important in biology [START_REF] Kwon | Analysis of feedback loops and robustness in network evolution based on boolean models[END_REF], [START_REF] Klamt | Computing paths and cycles in biological interaction graphs[END_REF], [START_REF] Chitturi | Complete enumeration of compact structural motifs in proteins[END_REF], and Internet systems [START_REF] Parasar | Drain: Deadlock removal for arbitrary irregular networks[END_REF].

Several algorithms for finding elementary circuits of a directed graph have been formulated but they either require large amounts of memory or are time exponential [START_REF] Tiernan | An efficient search algorithm to find the elementary circuits of a graph[END_REF], [START_REF] Tarjan | Enumeration of the elementary circuits of a directed graph[END_REF]. Hence, they become impractical as the graph size grows. One of the most important algorithms is the algorithm by Johnson [START_REF] Johnson | Finding all the elementary circuits of a directed graph[END_REF]. With the lowest time complexity, it is still the best state of the art algorithm. Yet, it may fail to handle some large graphs. To deal with larger graphs, Lu et al. [START_REF] Lu | A parallel algorithm for finding all elementary circuits of a directed graph[END_REF] introduce a parallel algorithm based on Johnson's algorithm aiming at reducing the execution time. Their algorithm is based on firstly splitting the job into small ones and then applying Johnson's algorithm on each one in parallel. Giscard et al. [START_REF] Giscard | A general purpose algorithm for counting simple cycles and simple paths of any length[END_REF] proposed an algorithm that counts the circuits of a graph without enumerating them. It gives the number of circuits for a length l, but it is tested for a limit of l = 10. In [START_REF] Gupta | Finding all bounded-length simple cycles in a directed graph[END_REF] the authors present an algorithm that deals with large graphs but only finds circuits of length less than or equal to k. The limit in their tests is k = 6.

In this paper, we present parallel approaches for finding all circuits of a directed graph. We first detect whether the graph contains circuits by searching for the strongly connected components, then we start exploring the graph to find all the circuits. Our algorithms proceed by a massive exploration of paths. We present two approaches based on the initial set used for exploration: the first uses vertices of the graph to which we assign a search area while the second uses triplets to reduce the search space of exploration. Our algorithms permit to find circuits of a given length l and circuits with a specific vertex or edge. We develop a parallel implementation of the proposed approaches in a Graphics Processing Unit (GPU) environment that is better suited for massive exploration. Our algorithms can find millions of circuits in a reduced time. We provide, to the best of our knowledge, the first GPU-based algorithms for finding elementary circuits of directed graphs.

The remaining of this paper is organized as follows. In Section 2 we present the background and related work. In Section 3 we introduce some preliminary definitions. The parallel algorithms are explained in Section 4. Details of the GPU implementation and examples are given in Section 5. Section 6 describes the experimental tests and results. Conclusion and future work are discussed in Section 7.

Related Work

Several algorithms have been proposed to find elementary circuits in a directed graph. Tiernan [START_REF] Tiernan | An efficient search algorithm to find the elementary circuits of a graph[END_REF] was the first to propose the idea of blocking visited vertices. The algorithm is based on a backtracking procedure. It generates all elementary paths p = (v 1 , v 2 , . . . , v k) with v 1 < v i for all i ∈ {2, . . . , k}. Starting from some vertex v 1 , it chooses an edge to traverse to some vertex v 2 such that v 2 > v 1 and continue this way. Whenever no vertex can be reached, the procedure backs up one vertex and chooses a different edge to traverse. If v 1 is adjacent to v k the algorithm lists an elementary circuit (v 1 , v 2 , . . . , v k , v 1). This approach examines more simple paths than necessary, making the worstcase time bound exponential in the number of elementary circuits and in the graph size.

Tarjan's algorithm [START_REF] Tarjan | Enumeration of the elementary circuits of a directed graph[END_REF] is based on Tiernan's depth-first method but it is faster. It lists all the cycles in O((|V | + |E|)|C|) time. It uses backtracking procedure to avoid unnecessary work. Two stacks are needed, the point stack for storing the path currently being examined, and a boolean vector called marked stack to indicate whether a vertex is used in a path or not. Whenever a new circuit is found, all vertices in the current point stack will eventually be unmarked when popped from this stack. If no circuit is found involving a vertex, it will be deleted from the point stack, but continue to be marked. Some of the unnecessary work in Tiernan's algorithm is avoided by the condition that a vertex can be added to the point stack only if it is unmarked.

The algorithm by Weinblatt [START_REF] Weinblatt | A new search algorithm for finding the simple cycles of a finite directed graph[END_REF] begins processing the graph by eliminating vertices which cannot belong to any circuits. Next, it selects a starting vertex and chooses an edge to follow. Circuits are found when a path is cyclic or by combining parts of previously discovered circuits with a part of the path that is being processed. However, this requires more storage and the time saved by efficient search is lost in searching the constructed circuits and paths.

Of all the algorithms analyzed, the algorithm of Johnson [START_REF] Johnson | Finding all the elementary circuits of a directed graph[END_REF] is the fastest algorithm having an upper time bound of O((|V | + |E|)|C|). The success of this backtrack algorithm is due to an effective pruning technique which avoids much of the fruitless search present in earlier algorithms. For each start vertex s, a recursive backtracking procedure is invoked and its computation is similar to that of Tarjan's algorithm, except for the marking system, which was considerably enhanced. A vertex is blocked each time it enters the stack. It remains blocked until we backtrack from a vertex v that belongs to the last enumerated circuit. The unblock process recursively unblocks the vertices that have a path to v.

In 2006, an algorithm by Liu and Wang [START_REF] Liu | A new way to enumerate cycles in graph[END_REF] present a way to enumerate circuits in directed and undirected graphs. It uses k -1 paths to generate k circuits by exploring adjacent vertices of the tail (the last vertex in the path), this way it can enumerate circuits by length. Compared to Johnson's and Tiernan's algorithms, their algorithm is slower and not efficient.

In [START_REF] Sankar | A time and memory efficient way to enumerate cycles in a graph[END_REF], the authors propose a parallelizable algorithm into |V -1| parts. They use a backtracking strategy using pointers allowing to backtrack more than one vertex at a time, jumping directly to the vertex from which further path extensions are possible.

The algorithm by Lu et al [START_REF] Lu | A parallel algorithm for finding all elementary circuits of a directed graph[END_REF] is capable of handling large-scale graphs. The idea is to split the job into subroutines depending on the number of edges. Then apply Johnson's algorithm to find all elementary circuits including an edge in parallel for each subroutine. Every subroutine has a search area that consists of the graph after deleting all the edges in inputs for previous subroutines. For this, they grade the edges, by estimating the number of all elementary paths from a vertex v to a vertex u. The edge with higher Id will have smaller search area. This approach is implemented on Hadoop using the MapReduce technique. Compared to previous approaches, this algorithm reduces the running time for finding elementary circuits of a graph but it uses Depth First Search (DFS) sequential algorithm of Johnson. Theoretically, DFS has been proven by Reif [19] to be inherently sequential. It is considered to be a challenging problem for parallelization.

The algorithm we propose in this paper exploits the massive parallelism of the multi-cores GPU by running multiple searches simultaneously which makes it capable of finding millions of circuits in a short time. The exploration process is based on the Breadth First Search (BFS) algorithm that is better suited to parallel implementation. Details are given in the following.

Preliminaries

In this section, we present formal definitions that support our approaches to enumerate all elementary circuits of a graph. Let G = (V, E) be a finite directed simple graph with vertex set V and edge set E. Let Id(v) denotes the number associated with the vertex v.

Definition 1 (Elementary path) A simple path p in a graph G = (V, E) is a finite sequence of vertices p = ⟨v 1 , v 2 , . . . , v k ⟩, such that (v i , v i+1) ∈ E for i ∈ {1, 2, . . . , k - 1}. A path is elementary if no vertex appears twice.
Definition 2 (Elementary circuit) A circuit is a path in which the first and the last vertices are identical. An elementary circuit is a circuit where no vertex appears twice except the first and the last vertices.

Two elementary circuits are distinct if one is not a cyclic permutation of the other. Note that, in this paper we represent a circuit as a sequence of vertices c = ⟨v 1 , v 2 , . . . , v k ⟩ without writing the redundant vertex twice.

Definition 3 (Strongly Connected Component) A strongly connected component (SCC) in a directed graph is defined as a subgraph in which every vertex is reachable from every other vertex. That is, for any two vertices u and v in a strongly connected component, there exists a path from u to v, and a path from v to u.

We define In-edges(v), the set of incoming edges of a vertex v such that:

In-edges(v) = {(u, v)|(u, v) ∈ E}
Similarly, we define Out-edges(v) the set of outgoing edges of v:

Out-edges(v) = {(v, u)|(v, u) ∈ E}
We name the destination vertex of the outgoing edge of v the out-neighbor of v. Likewise, the origin vertex of the incoming edge of v is called the in-neighbor.

Definition 4 (Triplets) We denote by T (G) the set of triplets of G = (V, E) defined as:

T (G) = {⟨x, v, y⟩|x, y, v ∈ V with (x, v) ∈ In-edges(v), (v, y) ∈ Out-edges(v), Id(v) < Id(x), Id(v) < Id(y)}
A triplet is a sequence of vertices that initiate a path of length greater than two. We name v the source-vertex and x the in-vertex for a triplet ⟨x, v, y⟩. Using triplets allows to find every circuit only once and reduce the search space, as we shall see in the sequel.

In the following, we present our algorithms for finding all elementary circuits.

Parallel algorithms for Finding Elementary Circuits

We present here our parallel approaches for finding elementary circuits of directed graphs. Circuits are constructed starting from a source-vertex s. We build elementary paths by iteratively exploring adjacent vertices.

To avoid visiting vertices that do not belong to any circuit, we first find all the SCCs of the graph as a pre-processing task. Definition 3 shows that an SCC consisting of more than one vertex must contain circuits and that all vertices in any circuit should be in the same SCC. Decomposing the graph into SCCs reduce the number of initial source vertices and the number of neighbors to be visited. Only neighbors that are in the same SCC are considered, hence, reducing the number of paths to be explored. In this work, we use the algorithm by Tarjan [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF] for finding SCCs of the graph. The algorithm's running time is linear in the number of edges and vertices in G, it finds SCCs in O(|V | + |E|) time.

Once the graph has been partitioned into SCCs, we move to the exploration phase. A straightforward approach to obtain all circuits is to enumerate all combinations of distinct edges and check if the path may construct a circuit. On this basis, we propose two algorithms: Vertex-based algorithm for Finding Elementary Circuits (V-FEC) and Triplets-based algorithm for Finding Elementary Circuits (T-FEC). Our algorithms are based on a massive exploration of paths. For each SCC found, we run a parallel Breadth First Search (BFS) starting from a set of initial source vertices and build exploration trees. The detailed algorithm V-FEC, is presented in Sub-Section 4.1.

To reduce the search space and filter out some unnecessary combinations, we propose algorithm T-FEC, that uses triplets instead of vertices as initial set. As with the precedent algorithm, V-FEC, we first find SCCs of the graph. Then, we generate the set of initial triplets and begin exploration. The same process of exploration is used. It is interesting to note that using triplets helps to balance exploration trees. The detailed algorithm is presented in Sub-Section 4.2.

For the following, C denotes the set of circuits found. Set P is used to contain the explored paths.

A vertex-based approach V-FEC

As explained above, the first algorithm is vertex-based. We begin by finding the SCCs of the graph. Then, we initialize the set of paths P with vertices of the SCCs: P = {⟨s 1 ⟩, ⟨s 2 ⟩, . . . , ⟨s k ⟩}.

We define the Search Area (SA) of a vertex s by the subgraph induced by s and vertices with Id greater than the Id of s which are in the same SCC: SA(s) = {u ∈ V |SCC(u) = SCC(s) and Id(u) > Id(s)}, SCC(v) denotes the identifier of the SCC where vertex v belongs. In other words, for a vertex s we only consider vertices in the same SCC with Id greater than Id of s. Comparably, in Johnson's algorithm, we consider vertex s to be the smallest vertex in the SCC. When all circuits from s are found, we remove s, In-edges(s) and Out-edges(s), then, we explore the rest of the SCC in a similar manner.

In the exploration phase, for every vertex s i in P , we only explore vertices in its search area. We start by visiting the out-neighbors of s i . Then, we iteratively explore the visited vertices until no more vertices can be visited. The abovementioned process is outlined in Algorithm 1.

Algorithm 1 Vertex-based Finding Elementary Circuits V-FEC(G) Require: Graph G Ensure: Set C of all elementary circuits of G 1: C ⇐ ∅ 2: SCC ⇐ findSCC(G) 3: foreach scc ∈ SCC do 4:
foreach s ∈ scc in parallel do 5:

C ⇐ exploreV-FEC(s) ▷ See Procedure 1 6: return C 4.1.

Exploration

Now we detail the exploration phase.

Our algorithm is based on running multiple BFS graph exploration simultaneously from every initial paths p i ∈ P (P has been already initialised with vertices of the SCCs found). We construct exploration trees for every sourcevertex s i of p i by visiting the out-neighbors of the last vertex v of path p i . For any neighbor u of v, one of the following situations occurs:

• Vertex u is the source-vertex s i : p i is an elementary circuit. Add p i to C, • u is not visited and belongs to the search area of s i : p i is extended. We add ⟨p i , u⟩ to the set of paths P . • u is already visited: the path ⟨p i , u⟩ can not constitute an elementary circuit.

The algorithm proceeds iteratively by visiting the last visited vertex of each resulting path until no path can be found (P = ∅). At the end of the exploration phase, we would have listed all the circuits ordered by their length. A pseudo-code of the explained process is presented in Procedure 1. We remove all the trivial SCCs and the edges going to or from them and begin processing the remaining graph.

We initialize the set P of paths with the vertices of SCC 0 (l = 0 in Fig 2). Then we start constructing exploration trees for each source-vertex s. We visit outneighbors of s that are in its search area. We recall that a vertex u is in the search

foreach u ∈ out-neighbors(v) do 7:
if Id(u) = Id(s) then

A triplets approach T-FEC

We aim to reduce the search space for the exploration phase by generating triplets using direct neighbors of each vertex. The idea is to construct what can constitute potential circuits by joining incoming and outgoing edges of a given vertex. We divide the process into two stages and define a parallel algorithm for each one of them. As a first step, (1) we generate the set of triplets T (G), then, (2) we run a parallel breadth first search (BFS) for each resulting triplet in a likewise strategy as in the V-FEC approach. Algorithm 2 outlines the proposed approach.

Triplets generation

The idea of using triplets to begin exploration helps reducing the search space and avoids redundant circuits. Triplets also permit to have more balanced exploration trees, thus, a more balanced work charge. We build the set of triplets by making every possible combination ⟨x, v, y⟩ of the in-neighbors and out-neighbors of vertex v such as:

• x is the in-neighbor of v with x ∈ SA(v), i.e. Id(v) < Id(x) and v and x are in the same SCC. • Similarly, y is the out-neighbor of v with y ∈ SA(v).

Algorithm 2 Triplet-based Finding Elementary Circuits T-FEC(G)

Require: Graph G Ensure: Set C of all elementary circuits of G 1: C ⇐ ∅ 2: T ⇐ ∅ 3: SCC ⇐ findSCC(G) 4: foreach scc ∈ SCC do 5:
foreach v ∈ scc in parallel do 6:

T ⇐ generateTriplets(v) ▷ See Procedure 2 7: foreach t ∈ T in parallel do 8: C ⇐ exploreT-FEC(t) ▷ See Procedure 3 9: return C If x = y, c = ⟨v, y⟩ is a 2-length circuit.
The generation process is presented in Procedure 2.

Procedure 2 generateTriplets

Require: Vertex v Ensure: Set T of initial triplets

1: foreach x ∈ in-neighbors(v) do 2:
foreach y ∈ out-neighbors(v) do

Exploration

The exploration phase for Algorithm T-FEC is similar to the exploration in Algorithm V-FEC. Initially we visit the out-neighbors of y for every triplet ⟨x, v, y⟩ ∈ T . Only neighbors in SA(v) are considered. Then, we iteratively visit the out-neighbors of the last visited vertex v k of every path p i ∈ P . We recall that for a triplet ⟨x, v, y⟩, v denote the source-vertex and x is the in-vertex.

For any neighbor u of vertex v k , the exploration goes as follow:

• u is the in-vertex (u = x): p i is an elementary circuit. Add p i to C, • u is not visited and u ∈ SA(v): p i is extended, its an elementary path. We add ⟨p i , u⟩ to P .

• u is already visited: ⟨p i , u⟩ is not an elementary path.

The exploration is over when no path can be expanded (P = ∅). The exploration process is described in Procedure 3.

v k = lastV ertex(p) 5: foreach u ∈ out-neighbors(v k) do 6: if u = x then 7: C ⇐ C ∪ {p} 8: else 9:
if ¬ visited(u) and u ∈ SA(v) then P ⇐ P -{p} 13: return C

Proof of correctness

In the following, we will prove that Algorithms V-FEC and T-FEC find every elementary circuit of a graph exactly once. We start by showing that both algorithms find only elementary circuits of a graph.

Lemma 1 Algorithms V-FEC and T-FEC find elementary circuits only.

Proof In Algorithm V-FEC, every vertex in a path is marked as visited and a new vertex is added to a path if it is not already visited. If a vertex is visited we do not visit it again (line 10 of Procedure 1). Hence, a path can not contain redundant vertices. Let a path p = ⟨v 1 , . . . , v i , . . . , v k ⟩ to be expanded, and let vertices v l and v i be in out-neighbors of vertex v k . Suppose that vertex v l is not visited yet. If v l ∈ SA(v 1), it will be added to p and marked as visited. However, since vertex v i is previously visited, it will not be explored again. This confirms that Algorithm V-FEC finds only elementary circuits.

Similarly, for Algorithm T-FEC, in Procedure 3 exploreT-FEC, in line 9, visited vertices are not explored again, thus, the resulting circuits are elementary. □ Theorem 1 Algorithms V-FEC and T-FEC find all the elementary circuits of a graph exactly once.

Proof The correctness of this lemma can be verified by the following: (1) Algorithms V-FEC and T-FEC find any elementary circuit exactly once, (2) all the elementary circuits of the graph are found.

To prove the first property, we suppose a circuit is found more than once. Let ⟨v 1 , v i , . . . , v l ⟩ be a circuit, such that Id(v i) = i, ∀v i ∈ V , and vertex v 1 has the smallest Id. Many permutations of the same circuit can be found by starting from different source vertices. A circuit can be expressed in a permuted form as many times as the number of vertices it has:

⟨v 1 , v i , . . . , v l ⟩, ⟨v i , . . . , v l , v 1 ⟩, . . . , ⟨v l , v 1 , v i , . . . ⟩.
In Algorithm V-FEC, during the exploration phase every vertex of each SCC starts building its exploration tree by visiting its out-neighbors. A new vertex is added to a path if its Id is greater than the Id of the source-vertex (line 10 in Procedure 1: see the definition of SA(s) in Section 4.1). As a consequence, the first vertex in a path is always the vertex with the smallest Id.

Consider a circuit c = ⟨v 1 , v i , . . . , v l ⟩ and two cyclic permutations of c: c ′ = ⟨v i , . . . v l , v 1 ⟩ and c ′′ = ⟨v l , v 1 , v i , . . . ⟩. Following Procedure 1 exploreV-FEC, we try to construct circuit c and its permutations starting from different source vertices v 1 , v i , ..., and v l . Each time we visit a neighbor we check if its Id is greater than the Id of the source-vertex of the path. Since Id(v 1) < Id(v i) and Id(v 1) < Id(v l), in both cases, ⟨v i , . . . v l , v 1 ⟩ and ⟨v l , v 1 , v i , . . . ⟩, vertex v 1 is not explored, thus, circuits c ′ and c ′′ can not be constructed. Hence, no circuit can be found more than once.

In a similar way, when generating triplets for a vertex v in Algorithm T-FEC, we only consider neighbors that have Ids greater than Id(v), and likewise for the exploration phase, this guarantees that circuits are not duplicated. We come to the conclusion that both algorithms find each circuit exactly once. Now we prove the second property: Algorithms V-FEC and T-FEC find all the elementary circuits of a graph. We know from the definition of SCC that every SCC with more than one vertex must have circuits, and that all vertices in any circuit belong to the same SCC. Finding all elementary circuits of a graph is equivalent to finding all elementary circuits starting from a vertex, for every vertex of the graph.

In Algorithm V-FEC, Procedure exploreV-FEC finds for a vertex s all the elementary circuits starting from s such that Id(s) is the smallest, by visiting every neighbor of every vertex within SA(s) not visited yet in the same SCC, making every possible combination of possible paths (follows directly from Lemma 1 and the proof of property(1)). Thus, for every elementary circuit of the graph, with all vertices in SA(s), its cyclic permutation starting by vertex s is returned at the end of the algorithm. Since Procedure exploreV-FEC, is called for every vertex of every SCC of the graph, every elementary circuit is found.

Similarly for T-FEC, in the triplets generation phase, we consider all neighbors of vertex v having Id greater than Id(v). Procedure exploreT-FEC visits every neighbor of every vertex within SA(v) not visited yet in the same SCC. It finds for a triplet ⟨x, v, y⟩ all the elementary circuits starting from v and including vertices x and y, such that Id(v) is the smallest. The procedure is called for every generated triplet, thus, every elementary circuit is found. We conclude that the proposed algorithms find all the elementary circuits of a graph exactly once. This completes the proof. □

Circuits and paths given a source vertex

For some applications, we are interested in the enumeration of circuits that goes through a certain vertex v. The proposed approaches can be easily adapted to only find circuits that contains vertex v.

To achieve this, we make an adjustment in the initialization phase. In the vertex-based approach, we initialize the set of paths to v and then call Procedure 1 exploreV-FEC which only runs for vertex v. For the triplets approach, we generate triplets for vertex v by calling Procedure 2: gener-ateTriplets and omit the condition about considering only vertices greater than v, which was mainly put to avoid enumerating circuits that are enumerated in the exploration process of other vertices. Since we just list circuits of v, circuits containing vertices of inferior Id are not found if we do not consider all vertices of the graph. That means, the set of triplets is generated using all of v's neighbors and there will be no redundant circuits. For both approaches, the exploration procedure remains the same, except for the condition about vertices Ids for the same reason explained above. In this case, the entire graph is considered.

In a similar manner, we can find circuits with a given edge (u, v) by initializing Paths to ⟨u, v⟩ in the vertex based approach. Or by generating triplets of form ⟨x i , u, v⟩ with x i ∈ in-neighbors of u, for the triplet based approach. It is also possible to enumerate existing paths from a given source vertex s to a destination vertex d by searching circuits containing the edge (d, s) or Using triplets ⟨d, s, y i ⟩ where y i ∈ out-neighbors of s.

GPU implementation

In the following, we present a GPU implementation of the proposed approaches. We proceed in parallel, multiple BFS explorations. This model fits the multi-threaded GPU architecture. The GPU adopts a SIMD-based (Single Instruction Multiple Data) architecture, which gains high performance through massive parallelism.

The SCC decomposition algorithm was not parallelized due to the low impact in the processing time of the algorithm. A GPU-kernel is used to implement the exploration phase of the vertex-based version. For T-FEC two kernels are used: The first kernel generates the set of initial triplets, the second one explores the graph.

Developing efficient graph processing algorithms in GPU is a challenging task. A GPU has limitations such as a relatively small memory size. Thus, the choice of data structures and strategies employed to take advantage of the characteristics of the different types of GPU memories is important to overcome these limitations. In our implementation, we use data structures that are best suited to the GPU. We also take advantage of the GPU global, local and private memories.

In this section we discuss our choices for data structures and detail the implementation of our algorithms.

Intermediate data storage and results

When searching for circuits, a number of paths is generated in every iteration. We keep track of them by using a global integer array. Initially, it contains the initial vertices or generated triplets. Another array stores the circuits. Since the GPU do not allow dynamic memory allocation, every memory that becomes necessary must be previously allocated. We declare two static structures Circuits and Paths larger enough for the purpose they were intended to.

During exploration, previously visited vertices in a path must not be visited again. This guarantees that circuits found are elementary. A single bit indicating whether or not the vertex is in the path is sufficient. Accordingly, a bitmap (bit array) Visited is employed to mark the already visited vertices. This map is defined by a bi-dimensional matrix that contains a row for each path and |V | columns of bits, one for each vertex of the graph. In terms of bytes, the number of columns is ⌈ |V | 8 ⌉. e.g. in a graph G with |V | = 12 a path storage occupy only 2 bytes. A Vertex v j belongs to path i if and only if, bit j of row i is set to 1. Fig 4 shows an example of these arrays. The Paths matrix stores the vertices of an explored path in the order in which they are discovered. In the Visited matrix, each row contains a combination of bits that corresponds to the visited vertices of a path.

In addition to the small occupied space, adding a vertex or checking if it is already in the solution is done using a simple logical operation in the desired position. Because the bit-level operations are amongst the least computationally expensive, this method of storage contributes to improve the algorithm running time.

Parallel implementation

Now we detail the parallel implementations of V-FEC and T-FEC algorithms. We first describe the triplets generation process for T-FEC, then, we detail the exploration phase for both V-FEC and T-FEC.

Triplets generation

We begin by creating the set T (G) of initial triplets ⟨x, v, y⟩. Such a set is created by selecting vertex v ∈ V and analyzing all pairs of its adjacent vertices: x in the in-neighbors of v and y in out-neighbors of v. Procedure 2 gener-ateTriplets describes the process of generating triplets. We launch a kernel generateTriplets and we assign a thread to every vertex v in the SCC. Each thread takes a vertex x from the edge array E in and another vertex y from the edge array E out and verify that they are in SA(x). When this condition is satisfied the thread adds the combination ⟨x, v, y⟩ to the set of triplets. Another pair of neighbors is analyzed until all neighbors are checked. In the case where vertex x equals vertex y, ⟨x, v⟩ is a 2-length circuit and is added to the set C.

At the end of the triplets generation phase, the set of incoming edges is no longer needed. We free memory used by deleting V in and E in arrays. We only keep the set of outgoing edges: V out and E out arrays, for the graph representation.

Exploration

The exploration kernels, exploreV-FEC and exploreT-FEC, are quite similar. Kernel exploreV-FEC launches a number of threads equal to the number of initial vertices. Kernel exploreT-FEC launches a number of threads equal to the number of generated triplets. Each thread is assigned a vertex/triplet and starts exploring. During exploration, it is important to save:

• for V-FEC: the source-vertex and the last visited vertex.

• for T-FEC: the source-vertex, the in-vertex and the last visited vertex of a path.

These data are essential for exploration. The last visited vertex of a path permits to expand the set of paths with new paths. At each iteration, a thread visits the out-neighbors of the last visited vertex of the path it is assigned to. In V-FEC, the source-vertex determines when a circuit is found. If the new vertex is the source-vertex, it is a circuit. For T-FEC, it is the in-vertex that Fast parallel algorithms for finding elementary circuits of a directed graph determines a circuit. We use an atomic operation to add the discovered circuits by copying the current path to Circuits. If the new vertex do not constitute a circuit, the path can be expanded when the two following conditions are met: we first check if the explored vertex is not visited using a simple bit-wise operation, then, we check if the vertex is in the search area of the source-vertex.

Considering these data are used by a thread for as many out-neighbors there is to explore, it is more appropriate to copy data to shared memory because it is faster. In V-FEC, we use two vectors V source and V last to store the sourcevertex and the last visited vertex of a path, respectively. Another vectors V in , that stores in-vertices, is necessary for the triplet based approach. The number of copied paths equals the number of threads per block. Chunks of the Visited array corresponding to copied paths are also transferred to shared memory. Each thread use a local array called frontier array to store the newly visited vertices to be copied back in global memory as new paths for the next iteration. We use a shared array frontierOffsets, set to 0, to compute the number of new paths. Each thread increments the value corresponding to its Id when it founds a new path. These values are used to copy the results of each thread in parallel to global memory. We first compute offsets for each thread on a block level by applying a parallel scan [START_REF] Harris | Parallel prefix sum (scan) with cuda[END_REF] on the frontierOffsets array. We use another array blockOffsets array to store the offsets of the blocks. Since there is no synchronization between blocks of threads, we use atomic operations to calculate the offsets of blocks. These two indices (frontierOffsets and blockOffsets) are used to compute the global memory address for each thread to copy its result. The schema represented in Fig 4 encapsulates the process.

Compared to the V-FEC algorithm, the exploration process in T-FEC requires less iterations considering that two vertices are already explored for each path, when generating triplets. Moreover, the triplets approach exposes more parallelism in early iterations, since there is more initial triplets than initial vertices which results in more thread occupancy.

Example 2 (Using triplets)

Consider the same graph G = (V, E) in Fig 1a . In the T-FEC algorithm we start by initialising triplets and its corresponding Visited bitmap. A thread is mapped to a vertex. e.g. thread 2 generates triplets corresponding to vertex 2. We generate combinations of in-neighbors and out-neighbors of vertex 2. The in-neighbors of vertex 2 are vertex 1 and vertex 3. Vertex 1 is not considered since 1 < 2. For vertex 3, 3 > 2, so vertex 3 is considered. The out-neighbors of vertex 2 are vertex 0 and 9. 0 < 2 vertex 0 is not considered as well. We are left with two valid vertices: vertex 3 as in-neighbor and vertex 9 as out-neighbor. As a result the triplet ⟨3, 2, 9⟩ is generated. Triplets from all SCCs are generated before starting exploration. The visited vertices of each triplet are marked as visited in the Visited array. Array Visited is an array of bytes (unsigned integers of length = 8 bits), we only use one bit to mark the visited vertices. Thus, ⌈ n 8 ⌉ columns are needed. In this example n = 12, as a consequence, Visited is a two columns array. During exploration, if a circuit is found, it is added to the Circuits array next to the circuits already found at earlier iterations. We take as an example triplet ⟨2, 0, 1⟩, vertex 2 is the in-vertex, vertex 0 is the New_paths Thread k 3 Fig. 4: A schema for paths exploration process source-vertex and vertex 1 is the last vertex of the path. We explore out-neighbors of vertex 1 that are vertices 0, 2 and 4. Vertex 0 is already visited so it is not added to Paths. Vertex 2 is the in-vertex, path ⟨2, 0, 1, 2⟩ is a circuit, we add it to Circuits. Circuits = Circuits ∪ {⟨2, 0, 1⟩}. Vertex 4 is not visited and is in SA(0): the new path ⟨2, 0, 1, 4⟩ is added to Paths.

Paths Visited 1 0 7 8 1 0 9 3 2 0 1 4 … 2 0 9 3 8 0 1 2 8 0 1 4 … … 3 1 2 9 3 1 4 6 6 1 2 9 … 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 … 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 … … 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 … Bloc 0 … Bloc 1 … Bloc n … … Bloc 0 Thread 0 … 0 1 3 … 6
1 1 1 0 0 0 0 1 … 0 1 1 0 1 1 0 0 0 … 0 1 1 1 0 1 0 1 0 … 0 1 1 1 0 0 0 0 1 … 0 1 0 1 1 1 0 0 0 … 0 1 1 1 1 0 0 0 0 … 0 1 1 0 0 1 0 1 0 … 0 1 0 0 1 1 0 0 0 … 0 New_Visited 0 8 … 56

Experimental results

In this section, we present the results obtained by the CUDA implementation of our algorithms and compare them to the results of Johnson's algorithm. We use a Python implementation of Johnson's algorithm in the NetworkX package1 .

Experiment settings

Experiments were conducted on a GPU station with 32 GB RAM, with an Intel Xeon Silver 4216 2.10GHz CPU. The GPU card is an Nvidia GeForce RTX 2080 Ti with 11GB of GDDR6 VRAM and 4,352 CUDA cores, CUDA Version 11.0.

Results

We use two sets of data. The first set contains synthetic graphs generated using the R3MAT graph generator [START_REF] Angles | R3MAT: A rapid and robust graph generator[END_REF]. It generates graphs that resemble the properties observed in real-world graphs following a power law distribution. The description of these graphs, and the execution times of our implementation compared with the execution times of Johnson's algorithm are represented in Table 1. Column |C| represents the number of elementary circuits found by both Johnson's and our parallel algorithms. For each graph, we ran the algorithms 20 times and calculate the average time taken. The execution times are presented in milliseconds.

For the graph "graph-80-1-1-0", Algorithm T-FEC could not enumerate all circuits of the graph. This is due to the large number of intermediate results (paths) that could not fit in the GPU memory. As an alternative, we succeeded to list all the circuits of size equal or less than 16.

For some graphs, where the number of circuits is very important, it is not possible to enumerate all the circuits, due to memory limitations. The search for elementary circuits with Johnson's algorithm for these graphs result in an out of memory error (OOM). On the other hand, our algorithms proceed by levels. At each iteration, circuits of length l are found. This gives the possibility to enumerate circuits of a given length without having to enumerate all the circuits of the graph. For such graphs it is possible to proceed by enumerating the circuits until a maximum depth is reached. Table 3 shows these results. g r a p h -4 0 -1 -1 -1 g r a p h -4 0 -1 -1 -0 g r a p h -5 0 -1 -1 -1 g r a p h -5 0 -1 -1 -0 g r a p h -6 0 -1 -1 -1 g r a p h -6 0 -1 -1 -0 g r a p h -7 0 -1 -1 -1 g r a p h -7 0 -1 -1 -0 g r a p h -8 0 -1 -1 -1 g r a p h -9 0 -1 -1 -1 g r a p h -1 0 0 -1 -1 -1 In addition to the synthetic graphs generated by the R3MAT model [START_REF] Angles | R3MAT: A rapid and robust graph generator[END_REF], we use real-world datasets from four different sources: Konect [START_REF] Kunegis | KONECT -The Koblenz Network Collection[END_REF] (moreno taro, moreno sheep), SNAP Library [START_REF] Leskovec | SNAP Datasets: Stanford Large Network Dataset Collection[END_REF] (p2p-Gnutella04, p2p-Gnutella08 and email-Eu-core), networkrepository [START_REF] Rossi | The Network Data Repository with Interactive Graph Analytics and Visualization[END_REF] (EPA) and Pajek [START_REF] Batagelj | Pajek datasets[END_REF] (Baywet). Characteristics of these graphs are given in Table 2.

We adapt our algorithms to count circuits without enumerating them. This significantly reduce the memory storage needed since we don't keep track of all the visited vertices. The Paths matrix is replaced by vectors that stores the source-vertex and the last vertex for each path (in addition to the in-vertex in the triplets approach). This permits to explore larger graphs and to explore more levels as shown in Table 3.

Analysis

The results presented in Tables 1, 2 and 3 show that our algorithms can significantly reduce the running time to find all elementary circuits compared to Johnson's algorithm. The speed-ups varies from 8.13, for graph-40-1-1-0, to 190.23 for graph-80-1-1-0, and increases with the number of circuits. We note that while V-FEC algorithm performs better in some graphs, T-FEC gives better results in others. In an attempt to identify what variables affect the results, we run a series of experiments on synthetic graphs, using the R-Mat graph generator model [START_REF] Chakrabarti | R-mat: A recursive for graph mining[END_REF] 6. We observe that the degree distribution of the graph is a relevant parameter in the algorithms' performance. We divide Table 6 into three sets based on the degree distribution. We represent the execution times of both approaches on these graphs in Fig 6 . The second set in the table represent graphs where the degrees of vertices are almost uniform. For these graphs, we remark that V-FEC and T-FEC algorithms are equivalent (Fig 6c). The first and the third set are graphs with few vertices having higher degree than other vertices with a difference in the ordering of these vertices. In the first set the high degree vertices are processed in the end, while in the last set they are processed in the beginning. We observe that V-FEC algorithm . In this case, the number of triplets that are generated is important for those vertices with high degree. Indeed, a lot of combinations are generated, which means more paths to be explored and some of them are fruitless. On the contrary, the triplets approach outperforms the vertex-based one for the first set of graphs (Fig 6a).

G _0 2 _0 2 _0 4 5 _2 G _0 1 _0 2 _0 3 _4 G _0 1 _0 2 _0 3 _5 G _0 1 _0 2 _0 3 _6 G _0 2 _0 2 _0 4 5 _3 G _0 2
G _0 2 _0 3 _0 2 _1 G _0 2 _0 3 _0 2 _3 G _0 3 5 _0 1 5 _0 3 5 _2 G _0 2 5 _0 2 5 _0 2 5 _2 G _0 2 _0 3 _0 2 _4 G _0 2 _0 3 _0 2 _5 G _0 2 _0 3 _0 2 _6 G _0 2
To further analyze the impact of the distribution order of the vertices' degree, we use a graph labeling function based on the in and out degrees of the vertices of the graph. We know that the more in-neighbors and out-neighbors a vertex has the more probable it is to belong to circuits. Based on that, we order the vertices according to the product of their in and out degrees. We use two graph labeling functions: the first one l Asc , organizes the vertices in an increasing order of in-degree * out-degree. The second function l Desc , lists the vertices in a decreasing order of the vertices' in-degree * out-degree. We apply this labeling to some of the graphs in Table 6 and run Algorithm V-FEC. We compare the results with and without the labeling functions. Results are represented in Fig 7 . We observe that Algorithm V-FEC gives better results when the l desc label is applied. Indeed, by visiting vertices with more neighbors in early iterations we have higher probability to find circuits earlier and without exploring much of the fruitless paths. Experimentally observing, we can tell that the degree distribution order is a crucial parameter in the algorithm execution.

Conclusion

In this paper, we proposed parallel algorithms for enumerating all elementary circuits of a directed graph. Algorithms V-FEC and T-FEC first detect whether a circuit exists, by searching for Strongly Connected Components, then, explore possible paths in parallel to find elementary circuits. In addition, they enumerate circuits of a given length and circuits going through a given vertex. We have provided theoretical guarantees on the correctness of V-FEC and T-FEC. The presented algorithms were implemented and tested in a GPU environment. To the best of our knowledge, these are the first parallel GPUbased algorithms for finding all the elementary circuits of a graph. Conducted experiments showed a significant improvement in execution times of V-FEC and T-FEC compared with the algorithm by Johnson, due to the massive parallelism offered by the GPU. The speed-up over the sequential algorithm was from ≈ 8 to 190 times.

It is to mention that the size of the GPU memory is a restricting factor which do not allow to handle large graphs with millions of circuits. To further our research, we plan to work on a multi-GPU approach to scale to larger graphs.

Example 1

 1 To better explain the proposed algorithm we run an example on graph G = (V, E), |V | = 12 and |E| = 22 shown in Fig 1a. We begin with a search for the SCCs of the graph to eliminate unnecessary vertices and edges. Graph G contains three strongly connected components, a large SCC: SCC 0 and two trivial ones: SCC 1 and SCC 2 , illustrated in Fig 1b.

10 :Fig. 1 :Fig. 2 :

 1012 Fig. 1: Graph decomposition into SCCs

6 :

 6 if x ∈ SA(v) and y ∈ SA(v) then 7: T ⇐ T ∪ {⟨x, v, y⟩} 8: visited(x) ⇐ true 9: visited(v) ⇐ true 10: visited(y) ⇐ true 11: return T

10 :P

 10 ⇐ P ∪ {⟨p, u⟩} 11: visited(u) ⇐ true 12:

Fig. 3 :

 3 Fig. 3: Data structure for graph representation

Table 3 :

 3 The results per level showing the maximum depth for each algorithm, the maximum number of circuits and the number of circuits for each level

Fig. 5 :

 5 Fig. 5: Experimental comparison of Johnson's algorithm with V-FEC and T-FEC algorithms

 Fig 5 shows the speed-ups achieved by V-FEC and T-FEC compared to the algorithm by Johnson.

Fig. 6 :

 6 Fig. 6: Results of the impact of the graph degree distribution

 . The generator takes as an input |V |, |E| and the parameters a b c and d which represents the probabilities of an edge falling into partitions. We fix |V |= 64 and vary |E| and the values of a, b, c and d and observe the behavior of both V-FEC and T-FEC approaches. Results are presented in Table

Fig. 7 :

 7 Fig. 7: Results of the impact of the degree distribution order

Table 1 :

 1 Experimental comparison of V-FEC, T-FEC and the algorithm by Johnson for synthetic graphs

	Execution time (ms)

Table 2 :

 2 Experimental comparison of V-FEC, T-FEC and the algorithm by Johnson for real world graphs

					Count circuits	Enumerate circuits
	Graph	|V |	|E|	|C|	V-FEC T-FEC	V-FEC	T-FEC	Johnson
	moreno taro	22	78	21671	50.66	35.83	51.52	36.24	1618.73
	moreno sheep	28	250	19727891	27740.69 27450.56 26723.50 26982.67 703917.13
	EPA	4772 8965	142	6.91	7.48	7.14	7.38	48.20
	p2p-Gnutella04 10879 39994 l = 6: 1768	452.17	l = 5	483.95	l = 5	OOM
	p2p-Gnutella08 6301 20777 l = 7: 15732	379.44	l = 6	371.91	l = 6	OOM
	email-Eu-core 1005 24929 l = 3: 124765 154.11	213.42	166.26	214.28	OOM
	Baywet	128 2106 l = 8: 7322229 l = 6	2673.55	l = 6	l = 7	OOM

Table 4 :

 4 Experimental results for the impact of the SCC graph decomposition in V-FEC

	Time (ms) V-FEC -SCC
	Time (ms) V-FEC + SCC

Table 5 :

 5 Experimental results for the impact of the SCC graph decomposition in T-FEC

		total	476.12	-	215.75	1142.53	24.24	37.21	-	19.62	14.51	29.04	26.26	1180.97	468.48	134.97	6528.48	93.07	-	4691.74	4427.28	8029.54	5624.02	34310.3	3063.8
	Time (ms) T-FEC -SCC	T-time exploration	0.95 466.27	--	39.535 160.07	0.397 1128.53	2.243 21.22	0.029 36.34	--	0.049 18.59	0.053 13.77	0.061 27.68	0.089 25.39	0.085 1155.23	0.073 465.84	0.051 132.68	0.132 6509.8	0.053 90.86	--	0.029 4679.11	0.027 4413.85	0.086 7998.3	0.102 5596.88	0.038 33428.3	0.038 3059.05
		Triplets	69411	41752	609644	2547	6467	54	497	131	128	125	223	179	272	156	388	183	598	127	122	351	305	139	135
		total	230.42	346.54	212.24	439.27	7.39	36.58	26758.8	19.87	10.59	28.52	17.79	1163.57	377.08	141.21	3684.68	93.93	16939.6	3212.58	2563.72	4797.8	3307.99	25784.7	726.70
	Time (ms) T-FEC + SCC	SCC T-time exploration	3.511 0.807 220.87	1.963 0.932 336.11	1.133 37.954 156.36	0.108 0.346 424.99	1.014 0.027 4.27	0.019 0.028 35.43	0.026 0.114 26629.4	0.020 0.051 18.64	0.019 0.045 9.69	0.023 0.063 26.90	0.022 0.079 16.83	0.026 0.088 1137.43	0.025 0.070 374.19	0.028 0.052 138.01	0.027 0.091 3665.96	0.032 0.055 91.48	0.032 0.195 16791.4	0.028 0.034 3200.82	0.027 0.025 2551.72	0.032 0.079 4770.51	0.032 0.075 3290.73	0.027 0.031 24933.2	0.033 0.031 723.22
		Triplets	29576	17656	585882	1928	126	54	323	131	85	125	152	179	220	156	297	183	427	107	110	280	252	135	102
		Graph	p2p-Gnutella04	p2p-Gnutella08	email-Eu-core	Baywet	EPA	moreno taro	moreno sheep	graph-40-1-1-1	graph-40-1-1-0	graph-50-1-1-1	graph-50-1-1-0	graph-60-1-1-1	graph-60-1-1-0	graph-70-1-1-1	graph-70-1-1-0	graph-80-1-1-1	graph-80-1-1-0	G 02 03 02 1	G 02 03 02 3	G 06 01 015 1	G 06 01 015 2	G 01 02 03 6	G 01 02 03 5

https://networkx.org/

Acknowledgments. This work was partly supported by the Franco-Algerian program PHC Tassili BiGreen n°18 MDU 111. The experiments were conducted using the GPU station YUVA II provided by the Research Center on Scientific and Technical Information CERIST (Algeria). Part of this study has been made possible via funding of Centre International de Mathématiques et d'Informatique de Toulouse, CIMI-ANR-11-LABX-0040 -LABX-2011.

Data availability. All data generated or analysed during this study have been deposited in the Open Science Framework repository (OSF) (https://osf. io/74dve/?view only=a5291e6e898843c48686b06d49c03ed5).

We analyse the effect of the SCC decomposition phase on the overall processing time by comparing the execution time of both approaches with and without decomposing the graph into SCCs. Detailed results for V-FEC and T-FEC algorithms are listed in Table 4 and Table 5. V-FEC + SCC and T-FEC + SCC present execution times of V-FEC and T-FEC using SCC decomposition, while V-FEC -SCC and T-FEC -SCC present the execution times of the algorithms without the SCC decomposition phase. The results show that the decomposition of the graph into SCCs can reduce processing time compared to when the graph is not decomposed into SCCs. In fact, finding the SCCs of the graph can reduce the number of vertices to be explored and avoid fruitless paths, thus, minimizing the time of the exploration phase, which justify the use of the pre-processing phase in our algorithms. Experiments demonstrate that time achieved by the decomposition phase is negligible compared to the overall running time.