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Abstract

Circuits in a graph are interesting structures and identifying them is
of an important relevance for many applications. However, enumerat-
ing circuits is known to be a difficult problem, since their number can
grow exponentially. In this paper, we propose fast parallel approaches for
enumerating elementary circuits of a directed graphs based on Graphics
Processing Unit (GPU). Our algorithms are based on a massive explo-
ration of the graph in a Breadth First Search (BFS) strategy. Algorithm
V-FEC explores the graph starting from different vertices simultaneously.
To further reduce the search space, we present T-FEC, another algorithm
that uses triplets as an initial set to start exploring. To the best of our
knowledge, those are the first parallel GPU-based algorithms for finding
all circuits of a given graph. The evaluation results show that the pro-
posed approaches achieves up to 190x speed-up over Johnson’s algorithm,
one of the most efficient sequential algorithms for finding circuits.
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1 Introduction

The problems of enumerating structures such as circuits, paths, trees and
cliques in graphs and networks are of fundamental importance. This kind of
tasks is usually hard to deal with, due to its challenging time/space complex-
ity. Indeed, even a small graph may contain a huge number of such structures.
In the enumeration process, it is important to point that counting and finding
are two different processes: finding is the construction of elements, counting
is determining their number. Generally, knowing the count is rarely useful in
finding the objects and even if we are able to count the elements in polynomial
time, we might not be able to find all of them due to an exponential num-
ber of elements and huge memory requirements. In the following, we will use
enumeration and finding interchangeably.

Our interest is for finding the elementary circuits of a directed graph. Not
only it is a fundamental problem of graph theory, a circuit is a loop through
which information propagates, and is widely used in real world applications:
in the financial field, circuits can reveal money laundering [1]. In food webs,
they represent fragile dependencies in ecosystems [2]. Finding circuits is also
interesting in fraud detection [3]. For social networks, circuits represent a way
to analyse and model networks [4] and are used to evaluate networks bal-
ance [5]. Finding circuits is also important in biology [6], [7], [8], and Internet
systems [9].

Several algorithms for finding elementary circuits of a directed graph have
been formulated but they either require large amounts of memory or are time
exponential [10],[11]. Hence, they become impractical as the graph size grows.
One of the most important algorithms is the algorithm by Johnson [12]. With
the lowest time complexity, it is still the best state of the art algorithm. Yet,
it may fail to handle some large graphs. To deal with larger graphs, Lu et
al. [13] introduce a parallel algorithm based on Johnson’s algorithm aiming
at reducing the execution time. Their algorithm is based on firstly splitting
the job into small ones and then applying Johnson’s algorithm on each one in
parallel. Giscard et al. [14] proposed an algorithm that counts the circuits of a
graph without enumerating them. It gives the number of circuits for a length
l, but it is tested for a limit of l = 10. In [15] the authors present an algorithm
that deals with large graphs but only finds circuits of length less than or equal
to k. The limit in their tests is k = 6.

In this paper, we present parallel approaches for finding all circuits of a
directed graph. We first detect whether the graph contains circuits by searching
for the strongly connected components, then we start exploring the graph to
find all the circuits. Our algorithms proceed by a massive exploration of paths.
We present two approaches based on the initial set used for exploration: the
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first uses vertices of the graph to which we assign a search area while the
second uses triplets to reduce the search space of exploration. Our algorithms
permit to find circuits of a given length l and circuits with a specific vertex or
edge. We develop a parallel implementation of the proposed approaches in a
Graphics Processing Unit (GPU) environment that is better suited for massive
exploration. Our algorithms can find millions of circuits in a reduced time.
We provide, to the best of our knowledge, the first GPU-based algorithms for
finding elementary circuits of directed graphs.

The remaining of this paper is organized as follows. In Section 2 we present
the background and related work. In Section 3 we introduce some preliminary
definitions. The parallel algorithms are explained in Section 4. Details of the
GPU implementation and examples are given in Section 5. Section 6 describes
the experimental tests and results. Conclusion and future work are discussed
in Section 7.

2 Related Work

Several algorithms have been proposed to find elementary circuits in a directed
graph. Tiernan [10] was the first to propose the idea of blocking visited ver-
tices. The algorithm is based on a backtracking procedure. It generates all
elementary paths p = (v1, v2, . . . , vk) with v1 < vi for all i ∈ {2, . . . , k}. Start-
ing from some vertex v1, it chooses an edge to traverse to some vertex v2 such
that v2 > v1 and continue this way. Whenever no vertex can be reached, the
procedure backs up one vertex and chooses a different edge to traverse. If v1
is adjacent to vk the algorithm lists an elementary circuit (v1, v2, . . . , vk, v1).
This approach examines more simple paths than necessary, making the worst-
case time bound exponential in the number of elementary circuits and in the
graph size.

Tarjan’s algorithm [11] is based on Tiernan’s depth-first method but it is
faster. It lists all the cycles in O((|V | + |E|)|C|) time. It uses backtracking
procedure to avoid unnecessary work. Two stacks are needed, the point stack
for storing the path currently being examined, and a boolean vector called
marked stack to indicate whether a vertex is used in a path or not. Whenever
a new circuit is found, all vertices in the current point stack will eventually
be unmarked when popped from this stack. If no circuit is found involving a
vertex, it will be deleted from the point stack, but continue to be marked. Some
of the unnecessary work in Tiernan’s algorithm is avoided by the condition
that a vertex can be added to the point stack only if it is unmarked.

The algorithm by Weinblatt [16] begins processing the graph by eliminating
vertices which cannot belong to any circuits. Next, it selects a starting vertex
and chooses an edge to follow. Circuits are found when a path is cyclic or by
combining parts of previously discovered circuits with a part of the path that
is being processed. However, this requires more storage and the time saved by
efficient search is lost in searching the constructed circuits and paths.
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Of all the algorithms analyzed, the algorithm of Johnson [12] is the fastest
algorithm having an upper time bound of O((|V | + |E|)|C|). The success of
this backtrack algorithm is due to an effective pruning technique which avoids
much of the fruitless search present in earlier algorithms. For each start ver-
tex s, a recursive backtracking procedure is invoked and its computation is
similar to that of Tarjan’s algorithm, except for the marking system, which
was considerably enhanced. A vertex is blocked each time it enters the stack.
It remains blocked until we backtrack from a vertex v that belongs to the last
enumerated circuit. The unblock process recursively unblocks the vertices that
have a path to v.

In 2006, an algorithm by Liu and Wang [17] present a way to enumerate
circuits in directed and undirected graphs. It uses k − 1 paths to generate k
circuits by exploring adjacent vertices of the tail (the last vertex in the path),
this way it can enumerate circuits by length. Compared to Johnson’s and
Tiernan’s algorithms, their algorithm is slower and not efficient.

In [18], the authors propose a parallelizable algorithm into |V − 1| parts.
They use a backtracking strategy using pointers allowing to backtrack more
than one vertex at a time, jumping directly to the vertex from which further
path extensions are possible.

The algorithm by Lu et al [13] is capable of handling large-scale graphs.
The idea is to split the job into subroutines depending on the number of
edges. Then apply Johnson’s algorithm to find all elementary circuits including
an edge in parallel for each subroutine. Every subroutine has a search area
that consists of the graph after deleting all the edges in inputs for previous
subroutines. For this, they grade the edges, by estimating the number of all
elementary paths from a vertex v to a vertex u. The edge with higher Id
will have smaller search area. This approach is implemented on Hadoop using
the MapReduce technique. Compared to previous approaches, this algorithm
reduces the running time for finding elementary circuits of a graph but it uses
Depth First Search (DFS) sequential algorithm of Johnson. Theoretically, DFS
has been proven by Reif [19] to be inherently sequential. It is considered to
be a challenging problem for parallelization.

The algorithm we propose in this paper exploits the massive parallelism
of the multi-cores GPU by running multiple searches simultaneously which
makes it capable of finding millions of circuits in a short time. The exploration
process is based on the Breadth First Search (BFS) algorithm that is better
suited to parallel implementation. Details are given in the following.

3 Preliminaries

In this section, we present formal definitions that support our approaches to
enumerate all elementary circuits of a graph. LetG = (V,E) be a finite directed
simple graph with vertex set V and edge set E. Let Id(v) denotes the number
associated with the vertex v.
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Definition 1 (Elementary path) A simple path p in a graph G = (V,E) is a finite
sequence of vertices p = ⟨v1, v2, . . . , vk⟩, such that (vi, vi+1) ∈ E for i ∈ {1, 2, . . . , k−
1}. A path is elementary if no vertex appears twice.

Definition 2 (Elementary circuit) A circuit is a path in which the first and the
last vertices are identical. An elementary circuit is a circuit where no vertex appears
twice except the first and the last vertices.

Two elementary circuits are distinct if one is not a cyclic permutation of the
other. Note that, in this paper we represent a circuit as a sequence of vertices c =
⟨v1, v2, . . . , vk⟩ without writing the redundant vertex twice.

Definition 3 (Strongly Connected Component) A strongly connected component
(SCC) in a directed graph is defined as a subgraph in which every vertex is reachable
from every other vertex. That is, for any two vertices u and v in a strongly connected
component, there exists a path from u to v, and a path from v to u.

We define In-edges(v), the set of incoming edges of a vertex v such that:

In-edges(v) = {(u, v)|(u, v) ∈ E}

Similarly, we define Out-edges(v) the set of outgoing edges of v:

Out-edges(v) = {(v, u)|(v, u) ∈ E}

We name the destination vertex of the outgoing edge of v the out-neighbor of v.
Likewise, the origin vertex of the incoming edge of v is called the in-neighbor.

Definition 4 (Triplets) We denote by T (G) the set of triplets of G = (V,E) defined
as:

T (G) = {⟨x, v, y⟩|x, y, v ∈ V with (x, v) ∈ In-edges(v),

(v, y) ∈ Out-edges(v),

Id(v) < Id(x),

Id(v) < Id(y)}

A triplet is a sequence of vertices that initiate a path of length greater than two.
We name v the source-vertex and x the in-vertex for a triplet ⟨x, v, y⟩. Using triplets
allows to find every circuit only once and reduce the search space, as we shall see in
the sequel.

In the following, we present our algorithms for finding all elementary
circuits.
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4 Parallel algorithms for Finding Elementary
Circuits

We present here our parallel approaches for finding elementary circuits of
directed graphs. Circuits are constructed starting from a source-vertex s. We
build elementary paths by iteratively exploring adjacent vertices.

To avoid visiting vertices that do not belong to any circuit, we first find
all the SCCs of the graph as a pre-processing task. Definition 3 shows that
an SCC consisting of more than one vertex must contain circuits and that all
vertices in any circuit should be in the same SCC. Decomposing the graph into
SCCs reduce the number of initial source vertices and the number of neighbors
to be visited. Only neighbors that are in the same SCC are considered, hence,
reducing the number of paths to be explored. In this work, we use the algorithm
by Tarjan [20] for finding SCCs of the graph. The algorithm’s running time is
linear in the number of edges and vertices in G, it finds SCCs in O(|V |+ |E|)
time.

Once the graph has been partitioned into SCCs, we move to the explo-
ration phase. A straightforward approach to obtain all circuits is to enumerate
all combinations of distinct edges and check if the path may construct a circuit.
On this basis, we propose two algorithms: Vertex-based algorithm for Finding
Elementary Circuits (V-FEC) and Triplets-based algorithm for Finding Ele-
mentary Circuits (T-FEC). Our algorithms are based on a massive exploration
of paths. For each SCC found, we run a parallel Breadth First Search (BFS)
starting from a set of initial source vertices and build exploration trees. The
detailed algorithm V-FEC, is presented in Sub-Section 4.1.

To reduce the search space and filter out some unnecessary combinations,
we propose algorithm T-FEC, that uses triplets instead of vertices as ini-
tial set. As with the precedent algorithm, V-FEC, we first find SCCs of the
graph. Then, we generate the set of initial triplets and begin exploration.
The same process of exploration is used. It is interesting to note that using
triplets helps to balance exploration trees. The detailed algorithm is presented
in Sub-Section 4.2.

For the following, C denotes the set of circuits found. Set P is used to
contain the explored paths.

4.1 A vertex-based approach V-FEC

As explained above, the first algorithm is vertex-based. We begin by finding
the SCCs of the graph. Then, we initialize the set of paths P with vertices of
the SCCs: P = {⟨s1⟩, ⟨s2⟩, . . . , ⟨sk⟩}.

We define the Search Area (SA) of a vertex s by the subgraph induced by
s and vertices with Id greater than the Id of s which are in the same SCC:
SA(s) = {u ∈ V |SCC(u) = SCC(s) and Id(u) > Id(s)}, SCC(v) denotes the
identifier of the SCC where vertex v belongs. In other words, for a vertex
s we only consider vertices in the same SCC with Id greater than Id of s.
Comparably, in Johnson’s algorithm, we consider vertex s to be the smallest
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vertex in the SCC. When all circuits from s are found, we remove s, In-edges(s)
and Out-edges(s), then, we explore the rest of the SCC in a similar manner.

In the exploration phase, for every vertex si in P , we only explore vertices in
its search area. We start by visiting the out-neighbors of si. Then, we iteratively
explore the visited vertices until no more vertices can be visited. The above-
mentioned process is outlined in Algorithm 1.

Algorithm 1 Vertex-based Finding Elementary Circuits V-FEC(G)

Require: Graph G
Ensure: Set C of all elementary circuits of G
1: C ⇐ ∅
2: SCC ⇐ findSCC(G)
3: foreach scc ∈ SCC do
4: foreach s ∈ scc in parallel do
5: C ⇐ exploreV-FEC(s) ▷ See Procedure 1

6: return C

4.1.1 Exploration

Now we detail the exploration phase.
Our algorithm is based on running multiple BFS graph exploration simulta-
neously from every initial paths pi ∈ P (P has been already initialised with
vertices of the SCCs found). We construct exploration trees for every source-
vertex si of pi by visiting the out-neighbors of the last vertex v of path pi. For
any neighbor u of v, one of the following situations occurs:

• Vertex u is the source-vertex si: pi is an elementary circuit. Add pi to C,
• u is not visited and belongs to the search area of si: pi is extended. We add
⟨pi, u⟩ to the set of paths P .

• u is already visited: the path ⟨pi, u⟩ can not constitute an elementary circuit.

The algorithm proceeds iteratively by visiting the last visited vertex of
each resulting path until no path can be found (P = ∅). At the end of the
exploration phase, we would have listed all the circuits ordered by their length.
A pseudo-code of the explained process is presented in Procedure 1.

Example 1 To better explain the proposed algorithm we run an example on graph
G = (V,E), |V | = 12 and |E| = 22 shown in Fig 1a. We begin with a search for the
SCCs of the graph to eliminate unnecessary vertices and edges. Graph G contains
three strongly connected components, a large SCC: SCC0 and two trivial ones:
SCC1 and SCC2, illustrated in Fig 1b. We remove all the trivial SCCs and the
edges going to or from them and begin processing the remaining graph.

We initialize the set P of paths with the vertices of SCC0 (l = 0 in Fig 2).
Then we start constructing exploration trees for each source-vertex s. We visit out-
neighbors of s that are in its search area. We recall that a vertex u is in the search
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Procedure 1 exploreV-FEC

Require: Vertex s
Ensure: Set of circuits C
1: P ⇐ {⟨s⟩}
2: visited(s) ⇐ true
3: while P ̸= ∅ do
4: foreach p ∈ P do
5: v ⇐ lastV ertex(p) ▷ returns the last vertex of p
6: foreach u ∈ out-neighbors(v) do
7: if Id(u) = Id(s) then
8: C ⇐ C ∪ {p}
9: else

10: if ¬ visited(u) and u ∈ SA(s) then
11: P ⇐ P ∪ {⟨p, u⟩}
12: visited(u) ⇐ true

13: P ⇐ P − {p}
14: return C
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(a) Directed graph G
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(b) Decomposition of graph G into
Strongly Connected Components (SCC)

Fig. 1: Graph decomposition into SCCs

area of vertex s if the two vertices are in the same SCC and Id(u) > Id(s). Consider
vertex s, Id(s) = 1. Vertex s has three out-neighbors: vertex 0, 2 and 4. Vertex 0
is not in SA(s) since 0 < 1. In this case, vertex 0 is not considered. If a vertex has
no visited neighbors, the path is removed. e.g. paths: ⟨8⟩ and ⟨9⟩ have no visited
neighbors, so they are removed. (l = 0 in Fig 2).
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Fig. 2: Exploration trees from different source vertices: V-FEC approach

4.2 A triplets approach T-FEC

We aim to reduce the search space for the exploration phase by generating
triplets using direct neighbors of each vertex. The idea is to construct what can
constitute potential circuits by joining incoming and outgoing edges of a given
vertex. We divide the process into two stages and define a parallel algorithm
for each one of them. As a first step, (1) we generate the set of triplets T (G),
then, (2) we run a parallel breadth first search (BFS) for each resulting triplet
in a likewise strategy as in the V-FEC approach. Algorithm 2 outlines the
proposed approach.

4.2.1 Triplets generation

The idea of using triplets to begin exploration helps reducing the search space
and avoids redundant circuits. Triplets also permit to have more balanced
exploration trees, thus, a more balanced work charge. We build the set of
triplets by making every possible combination ⟨x, v, y⟩ of the in-neighbors and
out-neighbors of vertex v such as:

• x is the in-neighbor of v with x ∈ SA(v), i.e. Id(v) < Id(x) and v and x are
in the same SCC.

• Similarly, y is the out-neighbor of v with y ∈ SA(v).



10 Fast parallel algorithms for finding elementary circuits of a directed graph

Algorithm 2 Triplet-based Finding Elementary Circuits T-FEC(G)

Require: Graph G
Ensure: Set C of all elementary circuits of G
1: C ⇐ ∅
2: T ⇐ ∅
3: SCC ⇐ findSCC(G)
4: foreach scc ∈ SCC do
5: foreach v ∈ scc in parallel do
6: T ⇐ generateTriplets(v) ▷ See Procedure 2

7: foreach t ∈ T in parallel do
8: C ⇐ exploreT-FEC(t) ▷ See Procedure 3

9: return C

If x = y, c = ⟨v, y⟩ is a 2-length circuit. The generation process is presented
in Procedure 2.

Procedure 2 generateTriplets

Require: Vertex v
Ensure: Set T of initial triplets
1: foreach x ∈ in-neighbors(v) do
2: foreach y ∈ out-neighbors(v) do
3: if x = y then
4: C ⇐ C ∪ {⟨x, v⟩}
5: else
6: if x ∈ SA(v) and y ∈ SA(v) then
7: T ⇐ T ∪ {⟨x, v, y⟩}
8: visited(x) ⇐ true
9: visited(v) ⇐ true

10: visited(y) ⇐ true

11: return T

4.2.2 Exploration

The exploration phase for Algorithm T-FEC is similar to the exploration in
Algorithm V-FEC. Initially we visit the out-neighbors of y for every triplet
⟨x, v, y⟩ ∈ T . Only neighbors in SA(v) are considered. Then, we iteratively visit
the out-neighbors of the last visited vertex vk of every path pi ∈ P . We recall
that for a triplet ⟨x, v, y⟩, v denote the source-vertex and x is the in-vertex.
For any neighbor u of vertex vk, the exploration goes as follow:

• u is the in-vertex (u = x): pi is an elementary circuit. Add pi to C,
• u is not visited and u ∈ SA(v): pi is extended, its an elementary path. We
add ⟨pi, u⟩ to P .
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• u is already visited: ⟨pi, u⟩ is not an elementary path.

The exploration is over when no path can be expanded (P = ∅). The
exploration process is described in Procedure 3.

Procedure 3 exploreT-FEC

Require: Triplet t⟨x, v, y⟩
Ensure: Set of circuits C
1: P ⇐ {t}
2: while P ̸= ∅ do
3: foreach p ∈ P do
4: vk = lastV ertex(p)
5: foreach u ∈ out-neighbors(vk) do
6: if u = x then
7: C ⇐ C ∪ {p}
8: else
9: if ¬ visited(u) and u ∈ SA(v) then

10: P ⇐ P ∪ {⟨p, u⟩}
11: visited(u) ⇐ true

12: P ⇐ P − {p}
13: return C

4.3 Proof of correctness

In the following, we will prove that Algorithms V-FEC and T-FEC find every
elementary circuit of a graph exactly once.

We start by showing that both algorithms find only elementary circuits of
a graph.

Lemma 1 Algorithms V-FEC and T-FEC find elementary circuits only.

Proof In Algorithm V-FEC, every vertex in a path is marked as visited and a new
vertex is added to a path if it is not already visited. If a vertex is visited we do
not visit it again (line 10 of Procedure 1). Hence, a path can not contain redundant
vertices. Let a path p = ⟨v1, . . . , vi, . . . , vk⟩ to be expanded, and let vertices vl and
vi be in out-neighbors of vertex vk. Suppose that vertex vl is not visited yet. If
vl ∈ SA(v1), it will be added to p and marked as visited. However, since vertex
vi is previously visited, it will not be explored again. This confirms that Algorithm
V-FEC finds only elementary circuits.

Similarly, for Algorithm T-FEC, in Procedure 3 exploreT-FEC, in line 9, visited
vertices are not explored again, thus, the resulting circuits are elementary. □
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Theorem 1 Algorithms V-FEC and T-FEC find all the elementary circuits of a
graph exactly once.

Proof The correctness of this lemma can be verified by the following: (1) Algorithms
V-FEC and T-FEC find any elementary circuit exactly once, (2) all the elementary
circuits of the graph are found.

To prove the first property, we suppose a circuit is found more than once. Let
⟨v1, vi, . . . , vl⟩ be a circuit, such that Id(vi) = i, ∀vi ∈ V , and vertex v1 has the
smallest Id. Many permutations of the same circuit can be found by starting from
different source vertices. A circuit can be expressed in a permuted form as many times
as the number of vertices it has: ⟨v1, vi, . . . , vl⟩, ⟨vi, . . . , vl, v1⟩, . . . , ⟨vl, v1, vi, . . . ⟩.

In Algorithm V-FEC, during the exploration phase every vertex of each SCC
starts building its exploration tree by visiting its out-neighbors. A new vertex is added
to a path if its Id is greater than the Id of the source-vertex (line 10 in Procedure 1:
see the definition of SA(s) in Section 4.1). As a consequence, the first vertex in a
path is always the vertex with the smallest Id.

Consider a circuit c = ⟨v1, vi, . . . , vl⟩ and two cyclic permutations of c: c′ =
⟨vi, . . . vl, v1⟩ and c′′ = ⟨vl, v1, vi, . . . ⟩. Following Procedure 1 exploreV-FEC, we try
to construct circuit c and its permutations starting from different source vertices v1,
vi, ..., and vl. Each time we visit a neighbor we check if its Id is greater than the
Id of the source-vertex of the path. Since Id(v1) < Id(vi) and Id(v1) < Id(vl), in
both cases, ⟨vi, . . . vl, v1⟩ and ⟨vl, v1, vi, . . . ⟩, vertex v1 is not explored, thus, circuits
c′ and c′′ can not be constructed. Hence, no circuit can be found more than once.

In a similar way, when generating triplets for a vertex v in Algorithm T-FEC,
we only consider neighbors that have Ids greater than Id(v), and likewise for the
exploration phase, this guarantees that circuits are not duplicated. We come to the
conclusion that both algorithms find each circuit exactly once.

Now we prove the second property: Algorithms V-FEC and T-FEC find all the
elementary circuits of a graph. We know from the definition of SCC that every SCC
with more than one vertex must have circuits, and that all vertices in any circuit
belong to the same SCC. Finding all elementary circuits of a graph is equivalent to
finding all elementary circuits starting from a vertex, for every vertex of the graph.

In Algorithm V-FEC, Procedure exploreV-FEC finds for a vertex s all the ele-
mentary circuits starting from s such that Id(s) is the smallest, by visiting every
neighbor of every vertex within SA(s) not visited yet in the same SCC, making
every possible combination of possible paths (follows directly from Lemma 1 and
the proof of property(1)). Thus, for every elementary circuit of the graph, with all
vertices in SA(s), its cyclic permutation starting by vertex s is returned at the end
of the algorithm. Since Procedure exploreV-FEC, is called for every vertex of every
SCC of the graph, every elementary circuit is found.

Similarly for T-FEC, in the triplets generation phase, we consider all neighbors of
vertex v having Id greater than Id(v). Procedure exploreT-FEC visits every neighbor
of every vertex within SA(v) not visited yet in the same SCC. It finds for a triplet
⟨x, v, y⟩ all the elementary circuits starting from v and including vertices x and y,
such that Id(v) is the smallest. The procedure is called for every generated triplet,
thus, every elementary circuit is found. We conclude that the proposed algorithms
find all the elementary circuits of a graph exactly once. This completes the proof.

□
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4.4 Circuits and paths given a source vertex

For some applications, we are interested in the enumeration of circuits that
goes through a certain vertex v. The proposed approaches can be easily
adapted to only find circuits that contains vertex v.

To achieve this, we make an adjustment in the initialization phase. In
the vertex-based approach, we initialize the set of paths to v and then call
Procedure 1 exploreV-FEC which only runs for vertex v. For the triplets
approach, we generate triplets for vertex v by calling Procedure 2: gener-
ateTriplets and omit the condition about considering only vertices greater than
v, which was mainly put to avoid enumerating circuits that are enumerated in
the exploration process of other vertices. Since we just list circuits of v, cir-
cuits containing vertices of inferior Id are not found if we do not consider all
vertices of the graph. That means, the set of triplets is generated using all of
v’s neighbors and there will be no redundant circuits. For both approaches,
the exploration procedure remains the same, except for the condition about
vertices Ids for the same reason explained above. In this case, the entire graph
is considered.

In a similar manner, we can find circuits with a given edge (u, v) by initial-
izing Paths to ⟨u, v⟩ in the vertex based approach. Or by generating triplets
of form ⟨xi, u, v⟩ with xi ∈ in-neighbors of u, for the triplet based approach.
It is also possible to enumerate existing paths from a given source vertex s to
a destination vertex d by searching circuits containing the edge (d, s) or Using
triplets ⟨d, s, yi⟩ where yi ∈ out-neighbors of s.

5 GPU implementation

In the following, we present a GPU implementation of the proposed
approaches. We proceed in parallel, multiple BFS explorations. This model
fits the multi-threaded GPU architecture. The GPU adopts a SIMD-based
(Single Instruction Multiple Data) architecture, which gains high performance
through massive parallelism.

The SCC decomposition algorithm was not parallelized due to the low
impact in the processing time of the algorithm. A GPU-kernel is used to imple-
ment the exploration phase of the vertex-based version. For T-FEC two kernels
are used: The first kernel generates the set of initial triplets, the second one
explores the graph.

Developing efficient graph processing algorithms in GPU is a challenging
task. A GPU has limitations such as a relatively small memory size. Thus,
the choice of data structures and strategies employed to take advantage of
the characteristics of the different types of GPU memories is important to
overcome these limitations. In our implementation, we use data structures that
are best suited to the GPU. We also take advantage of the GPU global, local
and private memories.

In this section we discuss our choices for data structures and detail the
implementation of our algorithms.
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(a) CSR representation (b) CSC representation

Fig. 3: Data structure for graph representation

5.1 Data structures

5.1.1 Graph representation

Compressed adjacency list is the most common data structure for graph rep-
resentation in GPU. It provides compact storage for large sparse graphs and
regular memory access. It uses two arrays to store the graph G = (V,E) and
only requires O(|V | + |E|) memory space. Adjacency lists of all vertices are
packed into a single large array that we name the edge array . We store the
starting position of the adjacency list in the edge array for each vertex [21].
When outgoing edges are used in the edge array, we name this adjacency list
format, the Compressed Sparse Row (CSR). If incoming edges are used in
the edge array , it is called Compressed Sparse Column (CSC)[22]. To gener-
ate triplets both CSR and CSC representations are used, since we need to
access both incoming and outgoing edges of each vertex. Once the triplets
are generated we no longer need the incoming edges, CSC arrays are deleted.
An example of the CSR and CSC representations of the graph in Fig 1a is
represented in Fig 3.

5.1.2 Intermediate data storage and results

When searching for circuits, a number of paths is generated in every iteration.
We keep track of them by using a global integer array. Initially, it contains
the initial vertices or generated triplets. Another array stores the circuits.
Since the GPU do not allow dynamic memory allocation, every memory that
becomes necessary must be previously allocated. We declare two static struc-
tures Circuits and Paths larger enough for the purpose they were intended
to.

During exploration, previously visited vertices in a path must not be visited
again. This guarantees that circuits found are elementary. A single bit indicat-
ing whether or not the vertex is in the path is sufficient. Accordingly, a bitmap
(bit array) Visited is employed to mark the already visited vertices. This map
is defined by a bi-dimensional matrix that contains a row for each path and
|V | columns of bits, one for each vertex of the graph. In terms of bytes, the

number of columns is ⌈ |V |
8 ⌉. e.g. in a graph G with |V | = 12 a path storage

occupy only 2 bytes. A Vertex vj belongs to path i if and only if, bit j of row
i is set to 1. Fig 4 shows an example of these arrays. The Paths matrix stores
the vertices of an explored path in the order in which they are discovered. In
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the Visited matrix, each row contains a combination of bits that corresponds
to the visited vertices of a path.

In addition to the small occupied space, adding a vertex or checking if it is
already in the solution is done using a simple logical operation in the desired
position. Because the bit-level operations are amongst the least computation-
ally expensive, this method of storage contributes to improve the algorithm
running time.

5.2 Parallel implementation

Now we detail the parallel implementations of V-FEC and T-FEC algorithms.
We first describe the triplets generation process for T-FEC, then, we detail
the exploration phase for both V-FEC and T-FEC.

5.2.1 Triplets generation

We begin by creating the set T (G) of initial triplets ⟨x, v, y⟩. Such a set is cre-
ated by selecting vertex v ∈ V and analyzing all pairs of its adjacent vertices:
x in the in-neighbors of v and y in out-neighbors of v. Procedure 2 gener-
ateTriplets describes the process of generating triplets. We launch a kernel
generateTriplets and we assign a thread to every vertex v in the SCC. Each
thread takes a vertex x from the edge array Ein and another vertex y from the
edge array Eout and verify that they are in SA(x). When this condition is sat-
isfied the thread adds the combination ⟨x, v, y⟩ to the set of triplets. Another
pair of neighbors is analyzed until all neighbors are checked. In the case where
vertex x equals vertex y, ⟨x, v⟩ is a 2-length circuit and is added to the set C.

At the end of the triplets generation phase, the set of incoming edges
is no longer needed. We free memory used by deleting Vin and Ein arrays.
We only keep the set of outgoing edges: Vout and Eout arrays, for the graph
representation.

5.2.2 Exploration

The exploration kernels, exploreV-FEC and exploreT-FEC, are quite similar.
Kernel exploreV-FEC launches a number of threads equal to the number of
initial vertices. Kernel exploreT-FEC launches a number of threads equal to
the number of generated triplets. Each thread is assigned a vertex/triplet and
starts exploring. During exploration, it is important to save:

• for V-FEC: the source-vertex and the last visited vertex.
• for T-FEC: the source-vertex, the in-vertex and the last visited vertex of a
path.

These data are essential for exploration. The last visited vertex of a path
permits to expand the set of paths with new paths. At each iteration, a thread
visits the out-neighbors of the last visited vertex of the path it is assigned to.
In V-FEC, the source-vertex determines when a circuit is found. If the new
vertex is the source-vertex, it is a circuit. For T-FEC, it is the in-vertex that
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determines a circuit. We use an atomic operation to add the discovered circuits
by copying the current path to Circuits. If the new vertex do not constitute
a circuit, the path can be expanded when the two following conditions are
met: we first check if the explored vertex is not visited using a simple bit-wise
operation, then, we check if the vertex is in the search area of the source-vertex.
Considering these data are used by a thread for as many out-neighbors there
is to explore, it is more appropriate to copy data to shared memory because it
is faster. In V-FEC, we use two vectors Vsource and Vlast to store the source-
vertex and the last visited vertex of a path, respectively. Another vectors Vin,
that stores in-vertices, is necessary for the triplet based approach. The number
of copied paths equals the number of threads per block. Chunks of the Visited
array corresponding to copied paths are also transferred to shared memory.

Each thread use a local array called frontier array to store the newly vis-
ited vertices to be copied back in global memory as new paths for the next
iteration. We use a shared array frontierOffsets, set to 0, to compute the num-
ber of new paths. Each thread increments the value corresponding to its Id
when it founds a new path. These values are used to copy the results of each
thread in parallel to global memory. We first compute offsets for each thread
on a block level by applying a parallel scan [21] on the frontierOffsets array.
We use another array blockOffsets array to store the offsets of the blocks. Since
there is no synchronization between blocks of threads, we use atomic opera-
tions to calculate the offsets of blocks. These two indices (frontierOffsets and
blockOffsets) are used to compute the global memory address for each thread
to copy its result. The schema represented in Fig 4 encapsulates the process.

Compared to the V-FEC algorithm, the exploration process in T-FEC
requires less iterations considering that two vertices are already explored for
each path, when generating triplets. Moreover, the triplets approach exposes
more parallelism in early iterations, since there is more initial triplets than
initial vertices which results in more thread occupancy.

Example 2 (Using triplets)
Consider the same graph G = (V,E) in Fig 1a. In the T-FEC algorithm we start

by initialising triplets and its corresponding Visited bitmap. A thread is mapped to a
vertex. e.g. thread 2 generates triplets corresponding to vertex 2. We generate com-
binations of in-neighbors and out-neighbors of vertex 2. The in-neighbors of vertex
2 are vertex 1 and vertex 3. Vertex 1 is not considered since 1 < 2. For vertex 3,
3 > 2, so vertex 3 is considered. The out-neighbors of vertex 2 are vertex 0 and 9.
0 < 2 vertex 0 is not considered as well. We are left with two valid vertices: vertex 3
as in-neighbor and vertex 9 as out-neighbor. As a result the triplet ⟨3, 2, 9⟩ is gener-
ated. Triplets from all SCCs are generated before starting exploration. The visited
vertices of each triplet are marked as visited in the Visited array. Array Visited is
an array of bytes (unsigned integers of length = 8 bits), we only use one bit to mark
the visited vertices. Thus, ⌈n8 ⌉ columns are needed. In this example n = 12, as a
consequence, Visited is a two columns array. During exploration, if a circuit is found,
it is added to the Circuits array next to the circuits already found at earlier itera-
tions. We take as an example triplet ⟨2, 0, 1⟩, vertex 2 is the in-vertex, vertex 0 is the
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Fig. 4: A schema for paths exploration process

source-vertex and vertex 1 is the last vertex of the path. We explore out-neighbors
of vertex 1 that are vertices 0, 2 and 4. Vertex 0 is already visited so it is not added
to Paths. Vertex 2 is the in-vertex, path ⟨2, 0, 1, 2⟩ is a circuit, we add it to Circuits.
Circuits = Circuits∪{⟨2, 0, 1⟩}. Vertex 4 is not visited and is in SA(0): the new path
⟨2, 0, 1, 4⟩ is added to Paths.

6 Experimental results

In this section, we present the results obtained by the CUDA implementation
of our algorithms and compare them to the results of Johnson’s algorithm.
We use a Python implementation of Johnson’s algorithm in the NetworkX
package 1.

6.1 Experiment settings

Experiments were conducted on a GPU station with 32 GB RAM, with an
Intel Xeon Silver 4216 2.10GHz CPU. The GPU card is an Nvidia GeForce
RTX 2080 Ti with 11GB of GDDR6 VRAM and 4,352 CUDA cores, CUDA
Version 11.0.

6.2 Results

We use two sets of data. The first set contains synthetic graphs generated
using the R3MAT graph generator [23]. It generates graphs that resemble the
properties observed in real-world graphs following a power law distribution.
The description of these graphs, and the execution times of our implementation
compared with the execution times of Johnson’s algorithm are represented in
Table 1.

1https://networkx.org/

https://networkx.org/
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Table 1: Experimental comparison of V-FEC, T-FEC and the algorithm by
Johnson for synthetic graphs

Execution time (ms)

Graph |V | |E| |C| V-FEC T-FEC Johnson

graph-40-1-1-1 40 113 54121 24.66 19.72 1140.63
graph-40-1-1-0 40 70 1676 9.83 10.54 85.68
graph-50-1-1-1 50 149 120519 40.21 28.71 2779.66
graph-50-1-1-0 50 93 5767 11.86 18.31 176.45
graph-60-1-1-1 60 186 4942125 1547.52 1161.07 121862.10
graph-60-1-1-0 60 120 164783 76.65 386.73 8398.95
graph-70-1-1-1 70 225 281100 209.36 129.30 7143.13
graph-70-1-1-0 70 147 1820687 764.34 3712.17 96148.63
graph-80-1-1-1 80 264 329844 124.04 93.69 7043.80
graph-80-1-1-0 80 174 56067879 18200.95 - 3462429.93
graph-90-1-1-1 90 304 8257415 2730.90 2105.35 206860.77
graph-100-1-1-1 100 345 46865151 10839.7 8891.98 1186575.70

Table 2: Experimental comparison of V-FEC, T-FEC and the algorithm by
Johnson for real world graphs

Count circuits Enumerate circuits

Graph |V | |E| |C| V-FEC T-FEC V-FEC T-FEC Johnson

moreno taro 22 78 21671 50.66 35.83 51.52 36.24 1618.73
moreno sheep 28 250 19727891 27740.69 27450.56 26723.50 26982.67 703917.13

EPA 4772 8965 142 6.91 7.48 7.14 7.38 48.20
p2p-Gnutella04 10879 39994 l = 6: 1768 452.17 l = 5 483.95 l = 5 OOM
p2p-Gnutella08 6301 20777 l = 7: 15732 379.44 l = 6 371.91 l = 6 OOM
email-Eu-core 1005 24929 l = 3: 124765 154.11 213.42 166.26 214.28 OOM

Baywet 128 2106 l = 8: 7322229 l = 6 2673.55 l = 6 l = 7 OOM

Column |C| represents the number of elementary circuits found by both
Johnson’s and our parallel algorithms. For each graph, we ran the algorithms 20
times and calculate the average time taken. The execution times are presented
in milliseconds.

For the graph ”graph-80-1-1-0”, Algorithm T-FEC could not enumerate all
circuits of the graph. This is due to the large number of intermediate results
(paths) that could not fit in the GPU memory. As an alternative, we succeeded
to list all the circuits of size equal or less than 16.

For some graphs, where the number of circuits is very important, it is not
possible to enumerate all the circuits, due to memory limitations. The search
for elementary circuits with Johnson’s algorithm for these graphs result in an
out of memory error (OOM). On the other hand, our algorithms proceed by
levels. At each iteration, circuits of length l are found. This gives the possibility
to enumerate circuits of a given length without having to enumerate all the
circuits of the graph. For such graphs it is possible to proceed by enumerating
the circuits until a maximum depth is reached. Table 3 shows these results.
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Fig. 5: Experimental comparison of Johnson’s algorithm with V-FEC and T-
FEC algorithms

In addition to the synthetic graphs generated by the R3MAT model [23], we
use real-world datasets from four different sources: Konect [24] (moreno taro,
moreno sheep), SNAP Library [25] (p2p-Gnutella04, p2p-Gnutella08 and
email-Eu-core), networkrepository [26] (EPA) and Pajek [27] (Baywet). Char-
acteristics of these graphs are given in Table 2.

We adapt our algorithms to count circuits without enumerating them. This
significantly reduce the memory storage needed since we don’t keep track of
all the visited vertices. The Paths matrix is replaced by vectors that stores the
source-vertex and the last vertex for each path (in addition to the in-vertex in
the triplets approach). This permits to explore larger graphs and to explore
more levels as shown in Table 3.

6.3 Analysis

The results presented in Tables 1, 2 and 3 show that our algorithms can sig-
nificantly reduce the running time to find all elementary circuits compared
to Johnson’s algorithm. The speed-ups varies from 8.13, for graph-40-1-1-
0, to 190.23 for graph-80-1-1-0, and increases with the number of circuits.
Fig 5 shows the speed-ups achieved by V-FEC and T-FEC compared to the
algorithm by Johnson.
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Table 6: Results of the impact of the graph degree distribution on execution
time

Count circuits time (ms)

Graph |V | |E| |C| V-FEC Triplets T-FEC

G 02 02 045 2 64 147 816347 1827.96 65 2102.32
G 01 02 03 4 64 179 29404 342.46 88 331.87
G 01 02 03 5 64 179 255064 1708.35 102 748.35
G 01 02 03 6 64 179 22280272 67482.4 135 26221.7
G 02 02 045 3 64 179 3558059 13296.96 102 8240.42
G 02 02 045 4 64 230 6903928 (l = 16) 31656.84 175 14577.16

G 02 03 02 1 64 147 770263 3503.28 107 3298.44
G 02 03 02 3 64 147 783545 3415.25 110 2675.1

G 035 015 035 2 64 147 938758 4067.80 91 4123.50
G 025 025 025 2 64 147 2873222 8648.52 99 8105
G 02 03 02 4 64 179 32980789 (l = 25) 78766.44 157 79135.08
G 02 03 02 5 64 179 11348731 28826.70 127 25192.58
G 02 03 02 6 64 179 37618516 (l = 28) 68731.56 159 87724.42

G 025 025 025 3 64 179 17920050 (l = 25) 81767.37 118 43598.87
G 035 015 035 3 64 179 22603921 (l = 26) 88475.50 134 72638.87
G 025 025 025 4 64 230 6669043 (l = 15) 15742.1 277 15594.58
G 035 015 035 4 64 230 4563399 (l = 16) 12570.66 215 14345.82

G 05 02 015 2 64 147 988967 503.95 241 2354.7
G 06 01 015 1 64 147 3180582 1536.35 280 5055.02
G 06 01 015 2 64 147 1766087 1060.39 252 3434.8
G 06 01 015 3 64 147 419801 806.74 172 748.73
G 05 02 015 3 64 179 42767911 (l = 21) 17457.02 289 84379.7
G 06 01 015 4 64 179 48576117 (l = 19) 24837.16 451 72551.22
G 06 01 015 5 64 179 35867587 22945.82 345 56180.6
G 06 01 015 6 64 179 16792958 10489.28 324 20738
G 05 02 015 4 64 230 13016638 (l = 13) 4715.12 506 17352.32

We analyse the effect of the SCC decomposition phase on the overall pro-
cessing time by comparing the execution time of both approaches with and
without decomposing the graph into SCCs. Detailed results for V-FEC and T-
FEC algorithms are listed in Table 4 and Table 5. V-FEC + SCC and T-FEC
+ SCC present execution times of V-FEC and T-FEC using SCC decomposi-
tion, while V-FEC - SCC and T-FEC - SCC present the execution times of the
algorithms without the SCC decomposition phase. The results show that the
decomposition of the graph into SCCs can reduce processing time compared
to when the graph is not decomposed into SCCs. In fact, finding the SCCs of
the graph can reduce the number of vertices to be explored and avoid fruitless
paths, thus, minimizing the time of the exploration phase, which justify the
use of the pre-processing phase in our algorithms. Experiments demonstrate
that time achieved by the decomposition phase is negligible compared to the
overall running time.
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Fig. 6: Results of the impact of the graph degree distribution

We note that while V-FEC algorithm performs better in some graphs, T-
FEC gives better results in others. In an attempt to identify what variables
affect the results, we run a series of experiments on synthetic graphs, using the
R-Mat graph generator model [28]. The generator takes as an input |V |, |E|
and the parameters a b c and d which represents the probabilities of an edge
falling into partitions. We fix |V |= 64 and vary |E| and the values of a, b, c and
d and observe the behavior of both V-FEC and T-FEC approaches. Results
are presented in Table 6. We observe that the degree distribution of the graph
is a relevant parameter in the algorithms’ performance. We divide Table 6
into three sets based on the degree distribution. We represent the execution
times of both approaches on these graphs in Fig 6. The second set in the table
represent graphs where the degrees of vertices are almost uniform. For these
graphs, we remark that V-FEC and T-FEC algorithms are equivalent (Fig 6c).
The first and the third set are graphs with few vertices having higher degree
than other vertices with a difference in the ordering of these vertices. In the
first set the high degree vertices are processed in the end, while in the last
set they are processed in the beginning. We observe that V-FEC algorithm
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Fig. 7: Results of the impact of the degree distribution order

outperforms the T-FEC algorithm for the graphs in the last set of the table
(Fig 6b). In this case, the number of triplets that are generated is important for
those vertices with high degree. Indeed, a lot of combinations are generated,
which means more paths to be explored and some of them are fruitless. On
the contrary, the triplets approach outperforms the vertex-based one for the
first set of graphs (Fig 6a).

To further analyze the impact of the distribution order of the vertices’
degree, we use a graph labeling function based on the in and out degrees of the
vertices of the graph. We know that the more in-neighbors and out-neighbors
a vertex has the more probable it is to belong to circuits. Based on that, we
order the vertices according to the product of their in and out degrees. We use
two graph labeling functions: the first one lAsc, organizes the vertices in an
increasing order of in-degree * out-degree. The second function lDesc, lists the
vertices in a decreasing order of the vertices’ in-degree * out-degree. We apply
this labeling to some of the graphs in Table 6 and run Algorithm V-FEC.
We compare the results with and without the labeling functions. Results are
represented in Fig 7. We observe that Algorithm V-FEC gives better results
when the ldesc label is applied. Indeed, by visiting vertices with more neighbors
in early iterations we have higher probability to find circuits earlier and without
exploring much of the fruitless paths. Experimentally observing, we can tell
that the degree distribution order is a crucial parameter in the algorithm
execution.



26 Fast parallel algorithms for finding elementary circuits of a directed graph

7 Conclusion

In this paper, we proposed parallel algorithms for enumerating all elemen-
tary circuits of a directed graph. Algorithms V-FEC and T-FEC first detect
whether a circuit exists, by searching for Strongly Connected Components,
then, explore possible paths in parallel to find elementary circuits. In addition,
they enumerate circuits of a given length and circuits going through a given
vertex. We have provided theoretical guarantees on the correctness of V-FEC
and T-FEC. The presented algorithms were implemented and tested in a GPU
environment. To the best of our knowledge, these are the first parallel GPU-
based algorithms for finding all the elementary circuits of a graph. Conducted
experiments showed a significant improvement in execution times of V-FEC
and T-FEC compared with the algorithm by Johnson, due to the massive par-
allelism offered by the GPU. The speed-up over the sequential algorithm was
from ≈ 8 to 190 times.

It is to mention that the size of the GPU memory is a restricting factor
which do not allow to handle large graphs with millions of circuits. To further
our research, we plan to work on a multi-GPU approach to scale to larger
graphs.
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