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Abstract— We describe several features of parallel or 

distributed asynchronous iterative algorithms such as 

unbounded delays, possible out of order messages or flexible 

communication. We concentrate on the concept of macro-

iteration sequence which was introduced in order to study the 

convergence or termination of asynchronous iterations. A 

survey of asynchronous iterations for convex optimization 

problems is also presented. Finally, a new result of convergence 

for parallel or distributed asynchronous iterative algorithms 

with flexible communication for convex optimization problems 

and machine learning is proposed.  
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I. INTRODUCTION 

Iterative algorithms are successive approximation 
methods which are particularly efficient, when combined with 
parallel or distributed schemes of computation, to solve 
several classes of large-scale numerical simulation problems 
or optimization problems.  Amongst these methods, parallel 
or distributed asynchronous iterative algorithms, whereby 
iterations are carried out in parallel or distributed way in 
arbitrary order and without synchronization, have been 
studied for a long time on a theoretical and practical manner, 
e.g. see: [1], [2], [3] and [4]. 

Today, asynchronous block relaxation methods are very 
popular as smoothers for multigrid methods and in 
combination with subdomain preconditioners for Krylov 
methods [5].  

Asynchronous iterative algorithms have also been applied 
with success to the solution of convex optimization problems, 
e.g., see: [6],[7], [8], [9] and [10]. Distributed asynchronous 
iterations which aim at solving a global problem via local data 
have received considerable attention in the context of convex 
optimization [11]. 

When it comes to the analysis of distributed asynchronous 
iterative algorithms, the major difficulties come from the lack 
of global clock and absence of synchronization. In particular, 
the study of convergence, the detection of the convergence 
and the analysis of the convergence rate of asynchronous 
iterative algorithms are complex issues. 
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In this paper we survey important concepts and results in 
the domain of parallel or distributed asynchronous iterative 
algorithms for convex optimization problems. In particular, 
we consider the concepts of unbounded delays, out of order 
messages, macro-iteration sequence and flexible 
communication. We analyze the advantages of parallel or 
distributed asynchronous iterations. Finally, we present a new 
convergence result for parallel or distributed asynchronous 
iterations with flexible communication with application to 
convex optimization and machine learning applications. 

Section II deals with related works. Unbounded delays and 
possible out of order messages are studied. Macro-iteration 
sequence is analyzed in Section III. Asynchronous iterations 
with flexible communication are presented in section IV. A 
new convergence result for parallel or distributed 
asynchronous iterations with flexible communication for 
convex optimization and machine learning applications is 
proposed in section V. Conclusions and future work are 
presented in section VI. 

II. RELATED WORKS 

In pioneering works Chazan and Miranker [12], Rosenfeld 
[13] and Miellou [14] have proposed and studied chaotic 
relaxation methods for the solution of linear and nonlinear 
fixed-point problems, respectively.  

The mathematical model of chaotic relaxation features 
bounded delays in order to represent the nondeterministic 
behavior of the proposed parallel iterative methods, whereby 
computations are carried out in arbitrary order and without 
synchronization. 

Baudet introduced the general model of asynchronous 
iterations with unbounded delays in [1]. Asynchronous 
iterative methods are defined as follows. 

Definition 1:  Let 𝐹 be an operator from ℝ𝑛 to ℝ𝑛, for all             
𝑖 ∈ {1, … , 𝑛}, let the functions 𝑙𝑖: 𝑁 → 𝑁, an asynchronous 
iteration (𝐹, 𝑥(0), 𝒮, ℒ) associated to the operator 𝐹  and 
starting with the given iterate vector 𝑥(0) , is a sequence 
{𝑥(𝑗)}, 𝑗 = 0, 1, … ,of vectors of ℝ𝑛defined recursively by: 

 

𝑥𝑖(𝑗) = {
𝐹𝑖 (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)))  𝑖𝑓 𝑖 ∈ 𝒮𝑗 ,

𝑥𝑖(𝑗 − 1) 𝑖𝑓 𝑖 ∉ 𝒮𝑗,                        
    (1) 

 



where  𝒮 = {𝒮𝑗| 𝑗 = 1,2, … }  is a sequence of nonempty 

subsets of {1, … , 𝑛}  and ℒ = {(𝑙1(𝑗), … , 𝑙𝑛(𝑗))},   𝑗 = 1,2, … 
is a sequence of tuples in ℕ𝑛. In addition,  𝒮 and ℒ are subject 
to the following conditions for all  𝑖 ∈ {1, … , 𝑛}: 

a) 𝑙𝑖(𝑗) ≤ 𝑗 − 1, 𝑗 = 1,2, … ; 

b) 𝑙𝑖: ℕ → ℕ, is such that 𝑙𝑖𝑚
𝑗→∞

𝑙𝑖(𝑗) → +∞; 

c) i occurs infinitely often in the sets 𝒮𝑗, 𝑗 = 1,2, …  

 

   The above mathematical model details the updating phases 
of asynchronous iterations. The vector 𝑥(0) corresponds to an 
initial approximation of the solution of the problem. The 
components of the iterate vector 𝑥 are updated in parallel or in 
a distributed way. Since the global behavior of asynchronous 
iterations is non-deterministic, the set   𝒮  accounts for all 
possible steering policies, i.e., for the choice of the set of 
components of the iterate vector that are updated (or relaxed) 
at each iteration. This feature contributes to make 
asynchronous iterations a general model of parallel or 
distributed iterative algorithms. The set  ℒ  accounts for the 
labels of the iterations which are used at each updating phase.  

  Condition a) accounts for the obvious fact that the value 
used at each updating phase are produced at previous updating 
phases, i.e., previous iterations. 

It follows from assumptions a) and b) that labels 𝑙𝑖(𝑗) 
correspond to past updates, i.e. delayed components of the 
iterate vector. We note that the introduction of delays in the 
mathematical model of asynchronous iterations does not 
imply that parallel or distributed asynchronous iterative 
methods are not efficient. Delays are a convenient way to 
represent the lack of synchronicity and nondeterministic 
behavior of asynchronous iterations. The use of unbounded 
delay accounts for representing a general model of parallel or 
distributed iterative methods. In particular, condition b) 
models the unpredictable behavior of asynchronous iterative 
algorithms that do not feature synchronization mechanisms. It 
also accounts for unbounded delays and possible out of order 
messages or updates. This last point is particularly important 
in practice when considering distributed systems or 
distributed memory architectures whereby data are exchanged 
via message passing. 

  Condition c) implies that no component of the iterate 
vector is abandoned forever during the global updating 
process.  

  We highlight that one can hardly prove that asynchronous 
iterative algorithms converge without conditions b) and c).  

Figure 1 displays an example of parallel or distributed 
asynchronous iterative algorithm.  For facility of presentation, 
we consider a case with two processors denoted by 𝑃1 and 𝑃2,  

 

Fig. 1 Example of parallel or distributed asynchronous iterative algorithm. 

respectively. Figure 1 shows the sequence of updating phases 
as time progresses. Each rectangle corresponds to an updating 
phase that is labelled by an iteration number. For easiness of 
understanding, we can think about a fixed-point operator 𝐹 
from ℝ2 to ℝ2, where component 𝑥1is updated by processor 
𝑃1 and component 𝑥2 is updated by processor 𝑃2.  

  In Figure 1, data exchange is represented. It can be 
performed via message passing or writing in a shared memory. 
The value of the components of the iterate vector that are 
labelled by an iteration number are communicated at the end 
of each updating phase. Arrows represent operations of 
communication between processors.  For example, the first 
arrow from processor 𝑃1  to processor 𝑃2  corresponds to the 
communication of 𝑥1(1). The second arrow from processor 
𝑃2  to processor 𝑃1  corresponds to the communication of 
𝑥2(2). 

   Each processor goes at its own pace. Processors perform 
updating phases according to their computing load. We note 
that computations are covered by communication. As a 
consequence, there are no idle time resulting from 
communication. Similarly, there is no waiting due to 
synchronization. 

   The general model of asynchronous iterations features 
unbounded delays. In [1], Baudet gives the following simple 
example where delays are unbounded and condition b) is 
satisfied. Let processor  𝑃1  always update component 𝑥1 in 
one unit of time and assume that it takes 𝑘 units of times for 
processor 𝑃2  to perform the 𝑘 − 𝑡ℎ  updating phase of 
component 𝑥2. Then, a simple calculation shows that the delay 

in updating component 𝑥2 grows as √𝑗 and we have:  

lim
j→∞

l2(j) = lim
j→∞

𝑗 − √𝑗 → +∞. 

 

    Chazan, Miranker and Miellou have considered bounded 
delays in the specific case of chaotic relaxation (see [12] and 
[14]). They have proposed a mathematical model of chaotic 
iterations with functions 𝑙𝑖: ℕ → ℕ, 𝑖 ∈ {1, … , 𝑛}  relative to 
delayed labels such that 𝑙𝑖(𝑗) = 𝑗 − 𝑑𝑖(𝑗),  for all 𝑖 ∈
{1, … , 𝑛}. These functions satisfy the following condition: 

d) there exists a natural number 𝑏 > 0 and a function 

𝑏(𝑗): ℕ → ℕ, such that 

 

1) 𝑏(𝑗) ≤ min{𝑏, 𝑗}, 

2) 𝑗 − 𝑏(𝑗) is a monotone increasing function of 𝑗, 

3) ∀𝑗 ∈ ℕ, ∀ 𝑖 ∈ {1, … , 𝑛}, 0 ≤ 𝑑𝑖(𝑗) < 𝑏(𝑗). 

In the case of chaotic relaxation methods, the natural number 
𝑏 in assumption d) represents the bound on the delay to access 
the previous updates that are used in computations.  

Later, Miellou studied asynchronous iterations with 
unbounded delays, e.g., see [15]. Miellou published important 
theoretical contributions in the domain; most of them are 
related to numerical simulation. At that time there, was a 
bloom of scientific publications of the “French school” on 
parallel or distributed asynchronous iterative algorithms (in 
particular, see [2] and [4]) and some experts, such as Professor 
Yousef Saad, have pointed that the French research works 
were “visionary” and “in advance of several decades” (see 
[16]).  



From the late seventies to the beginning of the new 
millennium, the motivation of researchers of the French 
school came from the conviction that future supercomputers 
and High-Performance Computing systems will be massively 
parallel machines with hundred thousand processors and that 
synchronization was the major performance-limiting factor, in 
this context. Capacity of integration of microprocessors was 
always increasing according to Moore’s law and clock 
frequency was clearly a limiting factor with regards to energy 
consumption. We note that we have implemented 
asynchronous iterative algorithms on supercomputers such as 
the Cray T3E and IBM SP4 for convex optimization problems 
and numerical simulation problems in [10] and [26], 
respectively. 

Another motivation of our research work on distributed 
asynchronous iterations was that distributed systems will 
follow the same trend. As a matter of fact, in the context of 
packet-switched network, the first routing algorithm to be 
implemented on the Arpanet in 1969 was a distributed 
asynchronous Bellman-Ford algorithm (see [11], pp. 479-
480). We recall that Arpanet was the precursor of the Internet. 
The asynchronous Bellman-Ford algorithm was also used in 
other data communication networks, see [17]. The concepts of 
modular robotics and distributed autonomous robotic systems 
also supported new trends in favor of massively distributed 
systems. These concepts have applications in fault-tolerant, 
resilient, perdurable, and reconfigurable robotics systems 
whose duration and profitability are increased, as well as in 
the concept of programmable matter which aims at featuring 
ten thousand tiny modules [18], [19], [20] and [21]. 

  The main advantages of parallel or distributed asynchronous 

iterative algorithms are: 

- to get rid of waiting time resulting from synchronization; 

- to recover communication by computation; 

- to cope naturally with load unbalancing; this property is 

particularly important in the case of massive parallelism or 

distribution. 

  These properties generally contribute to improve efficiency 

and scalability of parallel or distributed iterative methods.  

Aside, the lack of synchronization leads to some fault-

tolerance, e.g., transient faults in data exchange are covered 

by the arrival of new messages or data. 
 

III. MACRO-ITERATION SEQUENCE 

    When studying asynchronous iterations, it is especially 

important to focus on the concept of macro-iteration 

sequence. Macro-iteration sequence is derived from the 

concept of R-chaotic sequence introduced by Miellou (see 

[14], p. 63) in the context of chaotic relaxation. In [15], a new 

stopping criterion that relies on macro-iteration sequence is 

proposed for linear perturbed asynchronous iterations. 

Macro-iterations sequence is also commonly used for 

studying the convergence of parallel or distributed 

asynchronous iterations [22]. 

 

  We recall the definition of macro-iteration sequence.  

 
Definition 2: Consider: 𝑙(𝑗) = min

ℎ∈{1,…,𝑛}
{𝑙ℎ(𝑗)}, then, the 

macro-iteration sequence {𝑗𝑘}𝑘∈ℕ,  is defined as follows: 

 

𝑗0 =0, 

𝑗𝑘+1 = min
𝑗

{ ⋃ 𝒮𝑟

𝑗𝑘≤𝑙(𝑟)≤𝑟≤𝑗

= {1, … , 𝑛}}. 

 

 
   The concept of macro-iteration sequence presents the 
interest to introduce a valuable sequence of macro-labels 
{𝑗𝑘}, 𝑘 = 1,2, …  

   It follows from Definition 2, that each update 𝑥𝑖(𝑗)  at label 
𝑗,  with 𝑗𝑘+1 ≤ 𝑗,  is guaranteed to use values 

𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)) which satisfy: 

 

𝑗𝑘 ≤ 𝑙𝑖(𝑗), 1≤ 𝑖 ≤ 𝑛. 
 

 
    In the worst case, the values of the components of the 
iterate vector that are used during an updating phase 
correspond to labels located at the previous macro-iteration. 
This point is convenient for structuring the sequence of labels 
{𝑗}, 𝑗 = 1,2, … in particular when studying the convergence 
of asynchronous iterations or for establishing stopping 
criteria (see [15] and [23]). 

    Since the theoretical work of Miellou, the concept of 
macro-iteration has been widely used in the literature in order 
to show the convergence of asynchronous iterations (with 
unbounded delays and possible out of order messages) for 
applications that range from numerical simulation and 
Markov systems to convex optimization. In the special case 
of numerical simulation, the reader is referred to in particular 
[22], where macro-iterations are used for convergence 
analysis as well as convergence detection purpose. 

    The General Convergence Theorem of Bertsekas for 
totally asynchronous iterative algorithms, i.e. asynchronous 
iterations with unbounded delays and out of order messages, 
also relies on the concept of macro-iteration sequence (see [3] 
and [11, p. 431]). The theorem which considers Cartesian 
product of sets and introduces level sets, i.e., boxes, is a 
powerful tool to prove convergence of asynchronous 
iterations for many applications. The basic idea is that from 
one macro-iteration to the next one, the sequence of iterate 
vectors, which starts from a level set (a box), enters the next 
box that is smaller and consequently progresses towards the 
solution of the problem, i.e., the fixed point that is situated at 
the intersection of all level sets. 

    The convergence of asynchronous iterations relies on 

mathematical properties of the associated operator 𝐹: 
- monotonicity and continuity, e.g., see [4], 
- or contraction, e.g. see [1]. 

  With this regards, macro-iteration sequences have been 
widely used in the domain of convex optimization. There are 
many contributions in the literature on the convergence of 
distributed or parallel asynchronous iterative algorithms 
(with unbounded delays and out of order messages) for 
various optimization problems. In particular, the convergence 
of distributed asynchronous relaxation methods, i.e., 
distributed asynchronous iterative algorithms with 
unbounded delays and possible out of order messages, has 
been proposed for convex optimization problems in [6]. The  



 
 
Fig. 2 Example of asynchronous iterative algorithm with flexible 
communication. 

 

convergence of asynchronous gradient algorithms (with 
unbounded delays, possible out of order messages and fixed 
step-size) is shown in [8], where we have considered convex 
separable network flow problems. 

 

IV. ASYNCHRONOUS ITERATIONS WITH FLEXIBLE 

COMMUNICATION 

In [9], we have proposed a new class of parallel or 
distributed asynchronous iterative algorithms with flexible 
communication. The monotone convergence of this new class 
of asynchronous iteration is also studied in [9]. The new class 
of parallel or distributed iterative method extends 
asynchronous iterations. It does not necessarily make use of 
values of components on the iterate vector that are labelled by 

an iteration number such as 𝑥𝑖(𝑙𝑖(𝑗)), it can also use partial 

updates of the iterate vector in the computation.  

The behavior of asynchronous iterations with flexible 
communication is shown in Figure 2 where communications 
of partials updates of the iterate vector are displayed as 
hatched lines with arrow. 

As a consequence, asynchronous iterations with flexible 
communication are particularly well suited to the context of 
monotone convergence (updating phases can immediately 
take benefit of partial updates) and block iterative methods 
(partial results of computation can be used before the end of 
an iteration, i.e., before obtaining a new block update). This 
new class of asynchronous iterations is also well suited to 
modern communication operations such as one-sided MPI or 
direct memory access via put() or get() communication 
operations. Another interest of asynchronous iterations with 
flexible communication (which are sometimes called 
asynchronous iterations with order intervals, e.g., see [23]) is 
that they use approximate operators. 

  We now present the definition of asynchronous iterations 
with flexible communication [24] (see also [9] and [23]). 

 

Definition 3: Let 𝐹 be an operator from ℝ𝑛 to ℝ𝑛. Let 𝐺 
an operator from ℝ𝑛  to ℝ𝑛  such that for all 𝑖 ∈
{1, … , 𝑛}, 𝐺𝑖(𝑥)   approximates 𝐹𝑖(𝑥).  An asynchronous 
iteration with flexible communication (𝐺, 𝑥(0), 𝒮, ℒ) 
associated to operator 𝐺 and starting with iterate vector 𝑥(0) 

is a sequence: {𝑥(𝑗)}, 𝑗 = 0, 1, … , of vectors of  ℝ𝑛 defined 

recursively by: 

 

𝑥𝑖(𝑗) ={
G𝑖(�̃�1(𝑗), … , �̃�𝑛(𝑗)) 𝑖𝑓 𝑖 ∈ 𝒮𝑗,

𝑥𝑖(𝑗 − 1) 𝑖𝑓 𝑖 ∉ 𝒮𝑗 ,
       (2) 

where, 𝒮 and ℒ are subject to conditions a), b) and c) given in 
section II. Moreover, the values �̃�1(𝑗) of the components of 
the iterate vector (which correspond to exchanged data) must 
satisfy the following norm constraint: 

‖𝑥𝑖(𝑗)−𝑥𝑖
∗‖

𝑖

𝑢𝑖
≤ ‖𝑥(𝑙(𝑗)) − 𝑥∗‖

𝑢
, ∀𝑖 ∈ {1, … , 𝑛},     (3) 

 

where 𝑥(𝑙(𝑗)) denotes the vector (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗))). 

 

We note that the values �̃�𝑖(𝑗)  in (2) and (3) can either 
correspond to updates (which are represented by arrows in 
Figure 2) or partial updates (which are depicted by hatched 
arrows in the same figure). 

Asynchronous iterations with flexible communication 
feature also unbounded delays and possible out of order 
messages since conditions a), b) and c) are satisfied. More 
details on asynchronous iterations with flexible 
communication can be found in [24] (see also [9] and [23]). 

Asynchronous iterations with flexible communication are 
based on the use of operator 𝐺  which approximates the 
operator 𝐹. We note that the operators 𝐺 can be generated via 
an iterative process.  

The monotone convergence of distributed asynchronous 
approximate gradient algorithms with flexible communication 
and fixed step-size was shown in [9] for a class of convex 
optimization problems, i.e., convex network flow problems.  

The implementation of asynchronous approximate 
gradient algorithms with flexible communication was carried 
out on a Tnode parallel machine with distributed memory 
architecture, see [9]. Numerical results are also presented in 
[9]. The implementation on the Cray T3E supercomputer of 
asynchronous gradient type algorithms via the put() function 
of the SHMEM library of Cray is presented in [10], where the 
case of flexible communication is also considered. Computing 
results for convex optimization problems show the great 
efficiency of asynchronous gradient type algorithms. Flexible 
communication permits one to improve efficiency of 
asynchronous gradient algorithms.  

The convergence of asynchronous modified Newton and 
Newton multi-splitting method with flexible communication 
was shown in [25] for convex network flow problems.  

We underline that the convergence of asynchronous 
iterative algorithms with flexible communication has also 
been shown for contracting operators in [24]. 

Convex optimization problems are not the sole domain of 
application where distributed or parallel asynchronous 
iterative algorithms exhibit excellent efficiency. We have 
obtained excellent efficiency and scalability for applications 
related to numerical simulation. In particular, asynchronous 
iterative algorithms performing a huge amount of data 
exchanges for the solution of the obstacle problem have been 
carried out with success in real conditions on several 
supercomputers such as the IBM SP4 supercomputer (see 
[26], where several data exchange frequencies have been 
studied).  

We have also considered distributed computing platforms 
such as Planetlab, whereby computations were carried out on 
several computing nodes scattered on different continents. In 
particular, computing experiments were performed on a 



network with nodes located in Australia and North America, 
see [27] and optimization as well as numerical simulation 
problems were solved thanks to the cooperation of these 
distant computing nodes. Finally, we have considered clusters 
and grid computing infrastructures such as GRID5000 (see 
[28]), whereby computations were distributed among several 
clusters situated in different cities in a multicore and multi 
network configuration, i.e., a configuration that combines 
Infiniband, Myrinet and fast Ethernet network for the same 
computing application. In all cases, asynchronous iterative 
algorithms have exhibited interesting efficiencies. In 
particular, efficiency and scalability of asynchronous 
iterations was better than the one of their synchronous 
counterparts. See also [29], for other computational tests on 
supercomputer architectures.  

Recently, Mishchenko, Iutzeler and Malick have 
considered the solution of a class of convex optimization 
problems via distributed flexible asynchronous proximal 
gradient algorithms with unbounded delays [30]. The authors 
introduce the concept of epochs sequence:  {𝑘𝑚}𝑚∈ℕ with  

  

𝑘0 = 0, 

and 

𝑘𝑚+1 = min
𝑘

{

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒𝑎𝑐ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 
𝑚𝑎𝑑𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑢𝑝𝑑𝑎𝑡𝑒𝑠

𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 {𝑘𝑚, 𝑘}
} 

 

In particular, Mishchenko, Iutzeler and Malick claim that 
“in order to subsume delays, they develop a new epoch-based 
mathematical analysis, encompassing computation times and 
communication delays, to refocus the theory on algorithmics.” 
They note also that “the main feature of the epoch sequence is 
that it automatically adapts to variations of behaviors of 
machines across time (such as one worker being slow at first 
that gets faster with time). The sequence then allows for 
intrinsic convergence analysis without any knowledge of the 
delays, as shown in the previous sections. This simple but 
powerful remark is one of the main technical contributions of 
the paper.” They also add in the conclusion of their paper 
“these special features lead us to two key theoretical findings: 
i) an epoch-based analysis adapted to any kind of delays…”  

  We underline that the concept of epoch or meta-iteration of 
Mishchenko, Iutzeler and Malick is less general than the 
concept of macro-iteration sequence that was introduced a 
long time ago (see [15]). In particular, macro-iteration 
sequences account for possible out of order messages while 
epochs do not.  In a macro-iteration, all components of the 
iterate vector are updated at least one time using available 
values of the components of the iterate vector that are 
associated to the previous macro-iteration.    

   Miellou [14] as well as Mishchenko, Iutzeler and Malick 
[30] have considered the case where for all 𝑖 ∈ {1, … , 𝑛}, the 
functions relative to delayed iterates 𝑙𝑖: ℕ → ℕ,  such that 
𝑙𝑖(𝑗) = 𝑗 − 𝑑𝑖(𝑗),  are monotone increasing. Miellou has 
considered bounded communication delays (see [14], p. 63) 
and unbounded communication delays (see [15]). 
Mishchenko, Iutzeler and Malick have considered unbounded 
communication delays in [30]. The paper [30] deals with 
distributed asynchronous gradient algorithms with 
unbounded delays for a special class of convex optimization 

problems with a smooth separable function and a non-smooth 
function. In subsection 3.1, the authors say: “To the best of 
our knowledge, all papers on asynchronous distributed 
methods… assume that delays are uniformly upper bounded 
by a constant.” Mishchenko, Iutzeler and Malick do not quote 
the work by Bertsekas and El Baz on distributed asynchronous 
relaxation method for convex network flow problems (see 
[6]), nor the papers of El Baz on distributed asynchronous 
gradient type methods for convex optimization problems, e.g., 
[8] as well as distributed asynchronous iterations with flexible 
communication for convex optimization problems, e.g., see 
[9] and [25] and numerical simulation problems, e.g., see [15], 
[23] and [24]. In particular, we note that references [6] to [9] 
and [23] to [25] deal with asynchronous iterations with 
unbounded delays. Moreover, references [9] and [23] to [25] 
present flexible communication and mathematical operators 
which are approximations (generated via iterative processes) 
of fixed-point operators (see also [31]). 

 

V. CONVEX OPTIMIZATION AND MACHINE LEARNING 

APPLICATIONS 

  We consider the problem: 

 

  min
𝑥∈ℝ𝑛

 𝑓(𝑥) +𝑔(𝑥),         (4) 

 

where 𝑓(𝑥) is a separable, L-smooth (with 𝐿 ≥ 0), 𝜇-strongly 
convex function (with 𝜇 > 0 ) and 𝑔  is a lower semi-
continuous non-smooth convex function (see [30] and [32]). 

Problem (4) describes a variety of machine learning 
problems as well as signal processing applications. For 
example, one can have : {(𝑦ℎ , 𝑧ℎ)}ℎ=1

𝑚 , a set of 𝑚  training 
samples, each consisting of input 𝑦ℎ  and target 𝑧ℎ .  The 
objective is to learn the parameters 𝑥 of the model 𝑝(𝑦, 𝑥) so 
that 𝑝(𝑦ℎ , 𝑥)matches the target 𝑧ℎ, ℎ = 1,2, … 𝑚. Some loss 
function ℎ  gives a measure on how well a prediction 
𝑝(𝑦ℎ , 𝑥) matches the target 𝑧ℎ . We can have: 𝑓ℎ(𝑥) =
ℎ(𝑝(𝑦ℎ , 𝑥), 𝑧ℎ). We use the regularization function 𝑔(𝑥) in 
order to avoid over-fitting the training data. 

Let 𝛾 ∈ (0,
2

𝜇+𝐿
] be the fixed gradient step-size associated 

to the function 𝑓.  

Let the proximal operator of the non-smooth convex 
function g be defined as follows: 

 

𝑝𝑟𝑜𝑥𝛾,𝑔(𝑥) = arg min
𝑣

{𝑔(𝑣) +
1

2𝛾
ǁ𝑣 − 𝑥ǁ2}. 

 

We define the approximate gradient-type operator G with 
fixed step-size.  

 

Definition 4: The approximate gradient-type operator 
𝐺: ℝ𝑛 → ℝ𝑛 associated to the convex optimization problem 
(4) is such that for all 𝑖 ∈ {1, … , 𝑛},  we have:  



𝑥𝑖(𝑗) = 𝐺𝑖 (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)))   

= 𝑝𝑟𝑜𝑥𝛾,𝑔 (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)))

− 𝛾
𝛿𝑓(𝑝𝑟𝑜𝑥𝛾,𝑔 (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)))

𝛿𝑥𝑖

. 

 

     Theorem 1: The asynchronous iteration with flexible 
communication (𝐺, 𝑥(0), 𝒮, ℒ) associated to the gradient-
type operator 𝐺 satisfies for all 𝑗𝑘 ≤ 𝑗: 

 

‖𝑥(𝑗) − 𝑥∗‖2 ≤ (1 − 𝜌)𝑘 max
1≤𝑖≤𝑛

‖𝑥𝑖(0) − 𝑥∗‖2,    (5) 

 

where  

𝜌 = 𝛾. 𝜇, 

and {𝑗𝑘}𝑘∈ℕ  is the macro-iteration sequence introduced in 
Definition 2. Moreover, the asynchronous iteration with 
flexible communication (𝐺, 𝑥(0), 𝒮, ℒ) converges to the 
solution 𝑥∗ of the problem (4).   

     Proof: inequality (5) follows from (3), Definition 4, and 
Lemma 3.1 in [22]. The convergence of asynchronous 
iterations with flexible communication follows from (5) and 
Theorem 2 in [24]. 

    Remark 1: we note that the convergence result for 
asynchronous iterations with flexible communication relies on 
the contraction property of the gradient-type operator. 

    Remark 2: for simplicity of presentation, we have 
considered in Definition 4, an approximate gradient-type 
operator which performs only one gradient-type iteration with 
fixed step-size. We can also consider approximate gradient-
type operators which perform several gradient-type iterations 
with fixed step-size and we can show similarly the 
convergence of asynchronous iterations with flexible 
communications for those approximate operators, e.g., see 
Lemma 1 in [24].  

    Remark 3: parallel or distributed asynchronous iterative 
algorithms with flexible communication are particularly 
interesting in the context of machine learning applications 
whereby training is cumbersome and models are complex and 
large. The possibility to distribute computation on many 
computing nodes that belong to hybrid architectures or 
distributed heterogeneous systems and to scale up thanks to 
asynchronous computation is especially attractive. 

   Finally, we refer to [31] for a study relative to training many 
neural networks in parallel with Graphic Processing Units 
(GPU) via Back-Propagation. We recall that GPUs are 
massively parallel computing accelerators. 

VI. CONCLUSIONS 

  In this paper we have presented and commented on 
important concepts related to the study of parallel or 
distributed asynchronous iterative algorithms. In particular, 
we have considered the concepts of unbounded delays, out of 
order messages, macro-iteration sequence and flexible 
communication. We have presented the advantages of parallel 
or distributed asynchronous iterations. Finally, we have given 
a new result of convergence for parallel or distributed 

asynchronous iterations with flexible communication, for 
convex optimization and machine learning. 

In future work, we plan to carry out on the Grid5000 
platform asynchronous iterative algorithms with flexible 
communication presented in this paper for machine learning. 
We shall use GRIDHPC, a decentralized environment for 
High Performance Computing that we have designed and 
developed in a multicore and multi network configuration. 
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