
HAL Id: hal-03793141
https://laas.hal.science/hal-03793141v1

Submitted on 30 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Parallel or Distributed Asynchronous Iterations with
Unbounded Delays and Possible Out of Order Messages

or Flexible Communication for Convex Optimization
Problems and Machine Learning

Didier El Baz

To cite this version:
Didier El Baz. On Parallel or Distributed Asynchronous Iterations with Unbounded Delays and
Possible Out of Order Messages or Flexible Communication for Convex Optimization Problems and
Machine Learning. 2022 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), May 2022, Lyon, France. pp.807-813, �10.1109/IPDPSW55747.2022.00135�. �hal-
03793141�

https://laas.hal.science/hal-03793141v1
https://hal.archives-ouvertes.fr

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

On Parallel or Distributed Asynchronous Iterations

with Unbounded Delays and Possible Out of Order

Messages or Flexible Communication for Convex

Optimization Problems and Machine Learning

Didier El-Baz

LAAS-CNRS

Université de Toulouse, CNRS

Toulouse, France

elbaz@laas.fr

Abstract— We describe several features of parallel or

distributed asynchronous iterative algorithms such as

unbounded delays, possible out of order messages or flexible

communication. We concentrate on the concept of macro-

iteration sequence which was introduced in order to study the

convergence or termination of asynchronous iterations. A

survey of asynchronous iterations for convex optimization

problems is also presented. Finally, a new result of convergence

for parallel or distributed asynchronous iterative algorithms

with flexible communication for convex optimization problems

and machine learning is proposed.

Keywords— asynchronous iterative algorithms; unbounded

delays; out of order messages; flexible communication; parallel

computing; distributed computing; convex optimization; machine

learning.

I. INTRODUCTION

Iterative algorithms are successive approximation
methods which are particularly efficient, when combined with
parallel or distributed schemes of computation, to solve
several classes of large-scale numerical simulation problems
or optimization problems. Amongst these methods, parallel
or distributed asynchronous iterative algorithms, whereby
iterations are carried out in parallel or distributed way in
arbitrary order and without synchronization, have been
studied for a long time on a theoretical and practical manner,
e.g. see: [1], [2], [3] and [4].

Today, asynchronous block relaxation methods are very
popular as smoothers for multigrid methods and in
combination with subdomain preconditioners for Krylov
methods [5].

Asynchronous iterative algorithms have also been applied
with success to the solution of convex optimization problems,
e.g., see: [6],[7], [8], [9] and [10]. Distributed asynchronous
iterations which aim at solving a global problem via local data
have received considerable attention in the context of convex
optimization [11].

When it comes to the analysis of distributed asynchronous
iterative algorithms, the major difficulties come from the lack
of global clock and absence of synchronization. In particular,
the study of convergence, the detection of the convergence
and the analysis of the convergence rate of asynchronous
iterative algorithms are complex issues.

Research work funded by CIMI-ANR-11-LABX-0040 - LABX-2011.

In this paper we survey important concepts and results in
the domain of parallel or distributed asynchronous iterative
algorithms for convex optimization problems. In particular,
we consider the concepts of unbounded delays, out of order
messages, macro-iteration sequence and flexible
communication. We analyze the advantages of parallel or
distributed asynchronous iterations. Finally, we present a new
convergence result for parallel or distributed asynchronous
iterations with flexible communication with application to
convex optimization and machine learning applications.

Section II deals with related works. Unbounded delays and
possible out of order messages are studied. Macro-iteration
sequence is analyzed in Section III. Asynchronous iterations
with flexible communication are presented in section IV. A
new convergence result for parallel or distributed
asynchronous iterations with flexible communication for
convex optimization and machine learning applications is
proposed in section V. Conclusions and future work are
presented in section VI.

II. RELATED WORKS

In pioneering works Chazan and Miranker [12], Rosenfeld
[13] and Miellou [14] have proposed and studied chaotic
relaxation methods for the solution of linear and nonlinear
fixed-point problems, respectively.

The mathematical model of chaotic relaxation features
bounded delays in order to represent the nondeterministic
behavior of the proposed parallel iterative methods, whereby
computations are carried out in arbitrary order and without
synchronization.

Baudet introduced the general model of asynchronous
iterations with unbounded delays in [1]. Asynchronous
iterative methods are defined as follows.

Definition 1: Let 𝐹 be an operator from ℝ𝑛 to ℝ𝑛, for all
𝑖 ∈ {1, … , 𝑛}, let the functions 𝑙𝑖: 𝑁 → 𝑁, an asynchronous
iteration (𝐹, 𝑥(0), 𝒮, ℒ) associated to the operator 𝐹 and
starting with the given iterate vector 𝑥(0) , is a sequence
{𝑥(𝑗)}, 𝑗 = 0, 1, … ,of vectors of ℝ𝑛defined recursively by:

𝑥𝑖(𝑗) = {
𝐹𝑖 (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗))) 𝑖𝑓 𝑖 ∈ 𝒮𝑗 ,

𝑥𝑖(𝑗 − 1) 𝑖𝑓 𝑖 ∉ 𝒮𝑗,
 (1)

where 𝒮 = {𝒮𝑗| 𝑗 = 1,2, … } is a sequence of nonempty

subsets of {1, … , 𝑛} and ℒ = {(𝑙1(𝑗), … , 𝑙𝑛(𝑗))}, 𝑗 = 1,2, …
is a sequence of tuples in ℕ𝑛. In addition, 𝒮 and ℒ are subject
to the following conditions for all 𝑖 ∈ {1, … , 𝑛}:

a) 𝑙𝑖(𝑗) ≤ 𝑗 − 1, 𝑗 = 1,2, … ;

b) 𝑙𝑖: ℕ → ℕ, is such that 𝑙𝑖𝑚
𝑗→∞

𝑙𝑖(𝑗) → +∞;

c) i occurs infinitely often in the sets 𝒮𝑗, 𝑗 = 1,2, …

 The above mathematical model details the updating phases
of asynchronous iterations. The vector 𝑥(0) corresponds to an
initial approximation of the solution of the problem. The
components of the iterate vector 𝑥 are updated in parallel or in
a distributed way. Since the global behavior of asynchronous
iterations is non-deterministic, the set 𝒮 accounts for all
possible steering policies, i.e., for the choice of the set of
components of the iterate vector that are updated (or relaxed)
at each iteration. This feature contributes to make
asynchronous iterations a general model of parallel or
distributed iterative algorithms. The set ℒ accounts for the
labels of the iterations which are used at each updating phase.

 Condition a) accounts for the obvious fact that the value
used at each updating phase are produced at previous updating
phases, i.e., previous iterations.

It follows from assumptions a) and b) that labels 𝑙𝑖(𝑗)
correspond to past updates, i.e. delayed components of the
iterate vector. We note that the introduction of delays in the
mathematical model of asynchronous iterations does not
imply that parallel or distributed asynchronous iterative
methods are not efficient. Delays are a convenient way to
represent the lack of synchronicity and nondeterministic
behavior of asynchronous iterations. The use of unbounded
delay accounts for representing a general model of parallel or
distributed iterative methods. In particular, condition b)
models the unpredictable behavior of asynchronous iterative
algorithms that do not feature synchronization mechanisms. It
also accounts for unbounded delays and possible out of order
messages or updates. This last point is particularly important
in practice when considering distributed systems or
distributed memory architectures whereby data are exchanged
via message passing.

 Condition c) implies that no component of the iterate
vector is abandoned forever during the global updating
process.

 We highlight that one can hardly prove that asynchronous
iterative algorithms converge without conditions b) and c).

Figure 1 displays an example of parallel or distributed
asynchronous iterative algorithm. For facility of presentation,
we consider a case with two processors denoted by 𝑃1 and 𝑃2,

Fig. 1 Example of parallel or distributed asynchronous iterative algorithm.

respectively. Figure 1 shows the sequence of updating phases
as time progresses. Each rectangle corresponds to an updating
phase that is labelled by an iteration number. For easiness of
understanding, we can think about a fixed-point operator 𝐹
from ℝ2 to ℝ2, where component 𝑥1is updated by processor
𝑃1 and component 𝑥2 is updated by processor 𝑃2.

 In Figure 1, data exchange is represented. It can be
performed via message passing or writing in a shared memory.
The value of the components of the iterate vector that are
labelled by an iteration number are communicated at the end
of each updating phase. Arrows represent operations of
communication between processors. For example, the first
arrow from processor 𝑃1 to processor 𝑃2 corresponds to the
communication of 𝑥1(1). The second arrow from processor
𝑃2 to processor 𝑃1 corresponds to the communication of
𝑥2(2).

 Each processor goes at its own pace. Processors perform
updating phases according to their computing load. We note
that computations are covered by communication. As a
consequence, there are no idle time resulting from
communication. Similarly, there is no waiting due to
synchronization.

 The general model of asynchronous iterations features
unbounded delays. In [1], Baudet gives the following simple
example where delays are unbounded and condition b) is
satisfied. Let processor 𝑃1 always update component 𝑥1 in
one unit of time and assume that it takes 𝑘 units of times for
processor 𝑃2 to perform the 𝑘 − 𝑡ℎ updating phase of
component 𝑥2. Then, a simple calculation shows that the delay

in updating component 𝑥2 grows as √𝑗 and we have:

lim
j→∞

l2(j) = lim
j→∞

𝑗 − √𝑗 → +∞.

 Chazan, Miranker and Miellou have considered bounded
delays in the specific case of chaotic relaxation (see [12] and
[14]). They have proposed a mathematical model of chaotic
iterations with functions 𝑙𝑖: ℕ → ℕ, 𝑖 ∈ {1, … , 𝑛} relative to
delayed labels such that 𝑙𝑖(𝑗) = 𝑗 − 𝑑𝑖(𝑗), for all 𝑖 ∈
{1, … , 𝑛}. These functions satisfy the following condition:

d) there exists a natural number 𝑏 > 0 and a function

𝑏(𝑗): ℕ → ℕ, such that

1) 𝑏(𝑗) ≤ min{𝑏, 𝑗},

2) 𝑗 − 𝑏(𝑗) is a monotone increasing function of 𝑗,

3) ∀𝑗 ∈ ℕ, ∀ 𝑖 ∈ {1, … , 𝑛}, 0 ≤ 𝑑𝑖(𝑗) < 𝑏(𝑗).

In the case of chaotic relaxation methods, the natural number
𝑏 in assumption d) represents the bound on the delay to access
the previous updates that are used in computations.

Later, Miellou studied asynchronous iterations with
unbounded delays, e.g., see [15]. Miellou published important
theoretical contributions in the domain; most of them are
related to numerical simulation. At that time there, was a
bloom of scientific publications of the “French school” on
parallel or distributed asynchronous iterative algorithms (in
particular, see [2] and [4]) and some experts, such as Professor
Yousef Saad, have pointed that the French research works
were “visionary” and “in advance of several decades” (see
[16]).

From the late seventies to the beginning of the new
millennium, the motivation of researchers of the French
school came from the conviction that future supercomputers
and High-Performance Computing systems will be massively
parallel machines with hundred thousand processors and that
synchronization was the major performance-limiting factor, in
this context. Capacity of integration of microprocessors was
always increasing according to Moore’s law and clock
frequency was clearly a limiting factor with regards to energy
consumption. We note that we have implemented
asynchronous iterative algorithms on supercomputers such as
the Cray T3E and IBM SP4 for convex optimization problems
and numerical simulation problems in [10] and [26],
respectively.

Another motivation of our research work on distributed
asynchronous iterations was that distributed systems will
follow the same trend. As a matter of fact, in the context of
packet-switched network, the first routing algorithm to be
implemented on the Arpanet in 1969 was a distributed
asynchronous Bellman-Ford algorithm (see [11], pp. 479-
480). We recall that Arpanet was the precursor of the Internet.
The asynchronous Bellman-Ford algorithm was also used in
other data communication networks, see [17]. The concepts of
modular robotics and distributed autonomous robotic systems
also supported new trends in favor of massively distributed
systems. These concepts have applications in fault-tolerant,
resilient, perdurable, and reconfigurable robotics systems
whose duration and profitability are increased, as well as in
the concept of programmable matter which aims at featuring
ten thousand tiny modules [18], [19], [20] and [21].

 The main advantages of parallel or distributed asynchronous

iterative algorithms are:

- to get rid of waiting time resulting from synchronization;

- to recover communication by computation;

- to cope naturally with load unbalancing; this property is

particularly important in the case of massive parallelism or

distribution.

 These properties generally contribute to improve efficiency

and scalability of parallel or distributed iterative methods.

Aside, the lack of synchronization leads to some fault-

tolerance, e.g., transient faults in data exchange are covered

by the arrival of new messages or data.

III. MACRO-ITERATION SEQUENCE

 When studying asynchronous iterations, it is especially

important to focus on the concept of macro-iteration

sequence. Macro-iteration sequence is derived from the

concept of R-chaotic sequence introduced by Miellou (see

[14], p. 63) in the context of chaotic relaxation. In [15], a new

stopping criterion that relies on macro-iteration sequence is

proposed for linear perturbed asynchronous iterations.

Macro-iterations sequence is also commonly used for

studying the convergence of parallel or distributed

asynchronous iterations [22].

 We recall the definition of macro-iteration sequence.

Definition 2: Consider: 𝑙(𝑗) = min

ℎ∈{1,…,𝑛}
{𝑙ℎ(𝑗)}, then, the

macro-iteration sequence {𝑗𝑘}𝑘∈ℕ, is defined as follows:

𝑗0 =0,

𝑗𝑘+1 = min
𝑗

{ ⋃ 𝒮𝑟

𝑗𝑘≤𝑙(𝑟)≤𝑟≤𝑗

= {1, … , 𝑛}}.

 The concept of macro-iteration sequence presents the
interest to introduce a valuable sequence of macro-labels
{𝑗𝑘}, 𝑘 = 1,2, …

 It follows from Definition 2, that each update 𝑥𝑖(𝑗) at label
𝑗, with 𝑗𝑘+1 ≤ 𝑗, is guaranteed to use values

𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)) which satisfy:

𝑗𝑘 ≤ 𝑙𝑖(𝑗), 1≤ 𝑖 ≤ 𝑛.

 In the worst case, the values of the components of the
iterate vector that are used during an updating phase
correspond to labels located at the previous macro-iteration.
This point is convenient for structuring the sequence of labels
{𝑗}, 𝑗 = 1,2, … in particular when studying the convergence
of asynchronous iterations or for establishing stopping
criteria (see [15] and [23]).

 Since the theoretical work of Miellou, the concept of
macro-iteration has been widely used in the literature in order
to show the convergence of asynchronous iterations (with
unbounded delays and possible out of order messages) for
applications that range from numerical simulation and
Markov systems to convex optimization. In the special case
of numerical simulation, the reader is referred to in particular
[22], where macro-iterations are used for convergence
analysis as well as convergence detection purpose.

 The General Convergence Theorem of Bertsekas for
totally asynchronous iterative algorithms, i.e. asynchronous
iterations with unbounded delays and out of order messages,
also relies on the concept of macro-iteration sequence (see [3]
and [11, p. 431]). The theorem which considers Cartesian
product of sets and introduces level sets, i.e., boxes, is a
powerful tool to prove convergence of asynchronous
iterations for many applications. The basic idea is that from
one macro-iteration to the next one, the sequence of iterate
vectors, which starts from a level set (a box), enters the next
box that is smaller and consequently progresses towards the
solution of the problem, i.e., the fixed point that is situated at
the intersection of all level sets.

 The convergence of asynchronous iterations relies on

mathematical properties of the associated operator 𝐹:
- monotonicity and continuity, e.g., see [4],
- or contraction, e.g. see [1].

 With this regards, macro-iteration sequences have been
widely used in the domain of convex optimization. There are
many contributions in the literature on the convergence of
distributed or parallel asynchronous iterative algorithms
(with unbounded delays and out of order messages) for
various optimization problems. In particular, the convergence
of distributed asynchronous relaxation methods, i.e.,
distributed asynchronous iterative algorithms with
unbounded delays and possible out of order messages, has
been proposed for convex optimization problems in [6]. The

Fig. 2 Example of asynchronous iterative algorithm with flexible
communication.

convergence of asynchronous gradient algorithms (with
unbounded delays, possible out of order messages and fixed
step-size) is shown in [8], where we have considered convex
separable network flow problems.

IV. ASYNCHRONOUS ITERATIONS WITH FLEXIBLE

COMMUNICATION

In [9], we have proposed a new class of parallel or
distributed asynchronous iterative algorithms with flexible
communication. The monotone convergence of this new class
of asynchronous iteration is also studied in [9]. The new class
of parallel or distributed iterative method extends
asynchronous iterations. It does not necessarily make use of
values of components on the iterate vector that are labelled by

an iteration number such as 𝑥𝑖(𝑙𝑖(𝑗)), it can also use partial

updates of the iterate vector in the computation.

The behavior of asynchronous iterations with flexible
communication is shown in Figure 2 where communications
of partials updates of the iterate vector are displayed as
hatched lines with arrow.

As a consequence, asynchronous iterations with flexible
communication are particularly well suited to the context of
monotone convergence (updating phases can immediately
take benefit of partial updates) and block iterative methods
(partial results of computation can be used before the end of
an iteration, i.e., before obtaining a new block update). This
new class of asynchronous iterations is also well suited to
modern communication operations such as one-sided MPI or
direct memory access via put() or get() communication
operations. Another interest of asynchronous iterations with
flexible communication (which are sometimes called
asynchronous iterations with order intervals, e.g., see [23]) is
that they use approximate operators.

 We now present the definition of asynchronous iterations
with flexible communication [24] (see also [9] and [23]).

Definition 3: Let 𝐹 be an operator from ℝ𝑛 to ℝ𝑛. Let 𝐺
an operator from ℝ𝑛 to ℝ𝑛 such that for all 𝑖 ∈
{1, … , 𝑛}, 𝐺𝑖(𝑥) approximates 𝐹𝑖(𝑥). An asynchronous
iteration with flexible communication (𝐺, 𝑥(0), 𝒮, ℒ)
associated to operator 𝐺 and starting with iterate vector 𝑥(0)

is a sequence: {𝑥(𝑗)}, 𝑗 = 0, 1, … , of vectors of ℝ𝑛 defined

recursively by:

𝑥𝑖(𝑗) ={
G𝑖(�̃�1(𝑗), … , �̃�𝑛(𝑗)) 𝑖𝑓 𝑖 ∈ 𝒮𝑗,

𝑥𝑖(𝑗 − 1) 𝑖𝑓 𝑖 ∉ 𝒮𝑗 ,
 (2)

where, 𝒮 and ℒ are subject to conditions a), b) and c) given in
section II. Moreover, the values �̃�1(𝑗) of the components of
the iterate vector (which correspond to exchanged data) must
satisfy the following norm constraint:

‖𝑥𝑖(𝑗)−𝑥𝑖
∗‖

𝑖

𝑢𝑖
≤ ‖𝑥(𝑙(𝑗)) − 𝑥∗‖

𝑢
, ∀𝑖 ∈ {1, … , 𝑛}, (3)

where 𝑥(𝑙(𝑗)) denotes the vector (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗))).

We note that the values �̃�𝑖(𝑗) in (2) and (3) can either
correspond to updates (which are represented by arrows in
Figure 2) or partial updates (which are depicted by hatched
arrows in the same figure).

Asynchronous iterations with flexible communication
feature also unbounded delays and possible out of order
messages since conditions a), b) and c) are satisfied. More
details on asynchronous iterations with flexible
communication can be found in [24] (see also [9] and [23]).

Asynchronous iterations with flexible communication are
based on the use of operator 𝐺 which approximates the
operator 𝐹. We note that the operators 𝐺 can be generated via
an iterative process.

The monotone convergence of distributed asynchronous
approximate gradient algorithms with flexible communication
and fixed step-size was shown in [9] for a class of convex
optimization problems, i.e., convex network flow problems.

The implementation of asynchronous approximate
gradient algorithms with flexible communication was carried
out on a Tnode parallel machine with distributed memory
architecture, see [9]. Numerical results are also presented in
[9]. The implementation on the Cray T3E supercomputer of
asynchronous gradient type algorithms via the put() function
of the SHMEM library of Cray is presented in [10], where the
case of flexible communication is also considered. Computing
results for convex optimization problems show the great
efficiency of asynchronous gradient type algorithms. Flexible
communication permits one to improve efficiency of
asynchronous gradient algorithms.

The convergence of asynchronous modified Newton and
Newton multi-splitting method with flexible communication
was shown in [25] for convex network flow problems.

We underline that the convergence of asynchronous
iterative algorithms with flexible communication has also
been shown for contracting operators in [24].

Convex optimization problems are not the sole domain of
application where distributed or parallel asynchronous
iterative algorithms exhibit excellent efficiency. We have
obtained excellent efficiency and scalability for applications
related to numerical simulation. In particular, asynchronous
iterative algorithms performing a huge amount of data
exchanges for the solution of the obstacle problem have been
carried out with success in real conditions on several
supercomputers such as the IBM SP4 supercomputer (see
[26], where several data exchange frequencies have been
studied).

We have also considered distributed computing platforms
such as Planetlab, whereby computations were carried out on
several computing nodes scattered on different continents. In
particular, computing experiments were performed on a

network with nodes located in Australia and North America,
see [27] and optimization as well as numerical simulation
problems were solved thanks to the cooperation of these
distant computing nodes. Finally, we have considered clusters
and grid computing infrastructures such as GRID5000 (see
[28]), whereby computations were distributed among several
clusters situated in different cities in a multicore and multi
network configuration, i.e., a configuration that combines
Infiniband, Myrinet and fast Ethernet network for the same
computing application. In all cases, asynchronous iterative
algorithms have exhibited interesting efficiencies. In
particular, efficiency and scalability of asynchronous
iterations was better than the one of their synchronous
counterparts. See also [29], for other computational tests on
supercomputer architectures.

Recently, Mishchenko, Iutzeler and Malick have
considered the solution of a class of convex optimization
problems via distributed flexible asynchronous proximal
gradient algorithms with unbounded delays [30]. The authors
introduce the concept of epochs sequence: {𝑘𝑚}𝑚∈ℕ with

𝑘0 = 0,

and

𝑘𝑚+1 = min
𝑘

{

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒𝑎𝑐ℎ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒
𝑚𝑎𝑑𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑢𝑝𝑑𝑎𝑡𝑒𝑠

𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 {𝑘𝑚, 𝑘}
}

In particular, Mishchenko, Iutzeler and Malick claim that
“in order to subsume delays, they develop a new epoch-based
mathematical analysis, encompassing computation times and
communication delays, to refocus the theory on algorithmics.”
They note also that “the main feature of the epoch sequence is
that it automatically adapts to variations of behaviors of
machines across time (such as one worker being slow at first
that gets faster with time). The sequence then allows for
intrinsic convergence analysis without any knowledge of the
delays, as shown in the previous sections. This simple but
powerful remark is one of the main technical contributions of
the paper.” They also add in the conclusion of their paper
“these special features lead us to two key theoretical findings:
i) an epoch-based analysis adapted to any kind of delays…”

 We underline that the concept of epoch or meta-iteration of
Mishchenko, Iutzeler and Malick is less general than the
concept of macro-iteration sequence that was introduced a
long time ago (see [15]). In particular, macro-iteration
sequences account for possible out of order messages while
epochs do not. In a macro-iteration, all components of the
iterate vector are updated at least one time using available
values of the components of the iterate vector that are
associated to the previous macro-iteration.

 Miellou [14] as well as Mishchenko, Iutzeler and Malick
[30] have considered the case where for all 𝑖 ∈ {1, … , 𝑛}, the
functions relative to delayed iterates 𝑙𝑖: ℕ → ℕ, such that
𝑙𝑖(𝑗) = 𝑗 − 𝑑𝑖(𝑗), are monotone increasing. Miellou has
considered bounded communication delays (see [14], p. 63)
and unbounded communication delays (see [15]).
Mishchenko, Iutzeler and Malick have considered unbounded
communication delays in [30]. The paper [30] deals with
distributed asynchronous gradient algorithms with
unbounded delays for a special class of convex optimization

problems with a smooth separable function and a non-smooth
function. In subsection 3.1, the authors say: “To the best of
our knowledge, all papers on asynchronous distributed
methods… assume that delays are uniformly upper bounded
by a constant.” Mishchenko, Iutzeler and Malick do not quote
the work by Bertsekas and El Baz on distributed asynchronous
relaxation method for convex network flow problems (see
[6]), nor the papers of El Baz on distributed asynchronous
gradient type methods for convex optimization problems, e.g.,
[8] as well as distributed asynchronous iterations with flexible
communication for convex optimization problems, e.g., see
[9] and [25] and numerical simulation problems, e.g., see [15],
[23] and [24]. In particular, we note that references [6] to [9]
and [23] to [25] deal with asynchronous iterations with
unbounded delays. Moreover, references [9] and [23] to [25]
present flexible communication and mathematical operators
which are approximations (generated via iterative processes)
of fixed-point operators (see also [31]).

V. CONVEX OPTIMIZATION AND MACHINE LEARNING

APPLICATIONS

 We consider the problem:

 min
𝑥∈ℝ𝑛

 𝑓(𝑥) +𝑔(𝑥), (4)

where 𝑓(𝑥) is a separable, L-smooth (with 𝐿 ≥ 0), 𝜇-strongly
convex function (with 𝜇 > 0) and 𝑔 is a lower semi-
continuous non-smooth convex function (see [30] and [32]).

Problem (4) describes a variety of machine learning
problems as well as signal processing applications. For
example, one can have : {(𝑦ℎ , 𝑧ℎ)}ℎ=1

𝑚 , a set of 𝑚 training
samples, each consisting of input 𝑦ℎ and target 𝑧ℎ . The
objective is to learn the parameters 𝑥 of the model 𝑝(𝑦, 𝑥) so
that 𝑝(𝑦ℎ , 𝑥)matches the target 𝑧ℎ, ℎ = 1,2, … 𝑚. Some loss
function ℎ gives a measure on how well a prediction
𝑝(𝑦ℎ , 𝑥) matches the target 𝑧ℎ . We can have: 𝑓ℎ(𝑥) =
ℎ(𝑝(𝑦ℎ , 𝑥), 𝑧ℎ). We use the regularization function 𝑔(𝑥) in
order to avoid over-fitting the training data.

Let 𝛾 ∈ (0,
2

𝜇+𝐿
] be the fixed gradient step-size associated

to the function 𝑓.

Let the proximal operator of the non-smooth convex
function g be defined as follows:

𝑝𝑟𝑜𝑥𝛾,𝑔(𝑥) = arg min
𝑣

{𝑔(𝑣) +
1

2𝛾
ǁ𝑣 − 𝑥ǁ2}.

We define the approximate gradient-type operator G with
fixed step-size.

Definition 4: The approximate gradient-type operator
𝐺: ℝ𝑛 → ℝ𝑛 associated to the convex optimization problem
(4) is such that for all 𝑖 ∈ {1, … , 𝑛}, we have:

𝑥𝑖(𝑗) = 𝐺𝑖 (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)))

= 𝑝𝑟𝑜𝑥𝛾,𝑔 (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)))

− 𝛾
𝛿𝑓(𝑝𝑟𝑜𝑥𝛾,𝑔 (𝑥1(𝑙1(𝑗)), … , 𝑥𝑛(𝑙𝑛(𝑗)))

𝛿𝑥𝑖

.

 Theorem 1: The asynchronous iteration with flexible
communication (𝐺, 𝑥(0), 𝒮, ℒ) associated to the gradient-
type operator 𝐺 satisfies for all 𝑗𝑘 ≤ 𝑗:

‖𝑥(𝑗) − 𝑥∗‖2 ≤ (1 − 𝜌)𝑘 max
1≤𝑖≤𝑛

‖𝑥𝑖(0) − 𝑥∗‖2, (5)

where

𝜌 = 𝛾. 𝜇,

and {𝑗𝑘}𝑘∈ℕ is the macro-iteration sequence introduced in
Definition 2. Moreover, the asynchronous iteration with
flexible communication (𝐺, 𝑥(0), 𝒮, ℒ) converges to the
solution 𝑥∗ of the problem (4).

 Proof: inequality (5) follows from (3), Definition 4, and
Lemma 3.1 in [22]. The convergence of asynchronous
iterations with flexible communication follows from (5) and
Theorem 2 in [24].

 Remark 1: we note that the convergence result for
asynchronous iterations with flexible communication relies on
the contraction property of the gradient-type operator.

 Remark 2: for simplicity of presentation, we have
considered in Definition 4, an approximate gradient-type
operator which performs only one gradient-type iteration with
fixed step-size. We can also consider approximate gradient-
type operators which perform several gradient-type iterations
with fixed step-size and we can show similarly the
convergence of asynchronous iterations with flexible
communications for those approximate operators, e.g., see
Lemma 1 in [24].

 Remark 3: parallel or distributed asynchronous iterative
algorithms with flexible communication are particularly
interesting in the context of machine learning applications
whereby training is cumbersome and models are complex and
large. The possibility to distribute computation on many
computing nodes that belong to hybrid architectures or
distributed heterogeneous systems and to scale up thanks to
asynchronous computation is especially attractive.

 Finally, we refer to [31] for a study relative to training many
neural networks in parallel with Graphic Processing Units
(GPU) via Back-Propagation. We recall that GPUs are
massively parallel computing accelerators.

VI. CONCLUSIONS

 In this paper we have presented and commented on
important concepts related to the study of parallel or
distributed asynchronous iterative algorithms. In particular,
we have considered the concepts of unbounded delays, out of
order messages, macro-iteration sequence and flexible
communication. We have presented the advantages of parallel
or distributed asynchronous iterations. Finally, we have given
a new result of convergence for parallel or distributed

asynchronous iterations with flexible communication, for
convex optimization and machine learning.

In future work, we plan to carry out on the Grid5000
platform asynchronous iterative algorithms with flexible
communication presented in this paper for machine learning.
We shall use GRIDHPC, a decentralized environment for
High Performance Computing that we have designed and
developed in a multicore and multi network configuration.

ACKNOWLEDGMENT

Part of this study has been made possible via funding of
Centre International de Mathématiques et d’Informatique de
Toulouse: CIMI-ANR-11-LABX-0040 - LABX-2011.

REFERENCES

[1] G. Baudet, “Asynchronous iterative methods for multiprocessors,”
Journal of Association of Computing Machinery, Vol. 25, N° 2, April
1978, pp. 226 – 244.

[2] M. N. El Tarazi, “Some convergence results for asynchronous iterative
algorithms, ” Numerische Mathematik, 39; 1982, pp. 325 – 340.

[3] D. Bertsekas, “Distributed asynchronous computation of fixed points,”
Mathematical Programming, 27, 1983, pp. 107 – 120.

[4] D. El Baz, “M-functions and parallel asynchronous algorithms,” SIAM
Journal on Numerical Analysis, Vol. 27, N˚1, 1990, pp. 136 – 140.

[5] M. Rodriguez, B. Philip, Z. Wang, M. Berrill, “Block-Relaxation
Methods for 3D Constant-Coefficient Stencils on GPUs and Multicore
CPUs,” Technical report, arXiv:1208.1975v2 Feb. 11, 2013.

[6] D. P. Bertsekas, D. El Baz, “Distributed asynchronous relaxation
methods for convex network flow problems,” SIAM Journal on Control
and Optimization, Vol. 25, N˚1, 1987, pp. 74 – 85.

[7] D. El Baz, “A computational experience with distributed asynchronous
iterative methods for convex network flow problems,” Proceedings of
the 28th IEEE Conference on Decision and Control, Tampa, U.S.A. 13-
15 December 1989, pp. 590 – 591.

[8] D. El Baz, “Asynchronous gradient algorithms for a class of convex
separable network flow problems, ” Computational Optimization and
Applications, Vol. 5, 1996, pp. 187 – 205.

[9] D. El Baz, P. Spiteri, J.C. Miellou, D. Gazen, “Asynchronous iterative
algorithms with flexible communication for nonlinear network flow
problems, ” Journal of Parallel and Distributed Computing, Vol. 38,
1996, pp. 1 – 15.

[10] D. El Baz, D. Gazen, M. Jarraya, P. Spiteri, J.C. Miellou, “Flexible
communication for parallel asynchronous methods with application to
a nonlinear optimization problem,” Proceedings of the Parallel
Computing Conference, ParCo 97, Bonn, Germany, 16-19 September
1997, in Advances in Parallel Computing: Fundamentals, Applications
and New Directions, Vol. 12, E. Dhollander, G. Joubert, F. Peters, and
U. Trottenberg, editors, Elsevier Science B.V., North Holland, 1998,
pp. 429 – 436.

[11] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation;
Numerical methods, Athena Scientific, first published by Prentice Hall
International Editions in 1989.

[12] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and
its Applications 2, 1969, pp. 199 – 222.

[13] J.L. Rosenfeld, “A case study in programming for parallel processors,”
Communication of the ACM, 12, 1969, pp. 645 – 655.

[14] J.C. Miellou, “Algorithmes de relaxation chaotique à retards, RAIRO
R1, 1975, pp. 55 – 82.

[15] J.C. Miellou, P. Spiteri, D. El Baz, “A new stopping criterion for linear
perturbed asynchronous iterations,” Journal of Computational and
Applied Mathematics 219, 2008, pp. 471 – 483.

[16] Y. Saad, “Iterative methods for linear systems of equations: A brief
historical journey,” August 2019, Mathematics of Computation 75
Years, Susanne C. Brenner et al editors, American Mathematical
Society, Providence, RI, 2020.

[17] D. P. Bertsekas, R.G. Gallaguer, Data Communication networks,
Englewood Cliffs, NJ, Prentice Hall, 1987.

[18] D. El Baz, V. Boyer, J. Bourgeois, E. Dedu, K. Boutoustous,
“Distributed part differentiation in a smart surface,” Mechatronics,
Vol. 22, Issue 5, 2012, pp. 522 – 530.

[19] D. El Baz, “Smart Systems, the Fourth Industrial Revolution and New
Challenges in Distributed Computing, ” Keynote speech, International
Conference Parallel Computing, ParCo2017, Bologne Italy, 12-15
September 2017, in Parallel Computing is Everywhere, Advances in
Parallel Computing, Vol 32, S. Bassini et al. editors, IOS Press 2018,
pp. 3 – 11.

[20] L. Zhu, D. El Baz, “A programmable actuator for combined motion and
connection and its application to modular robot,” Mechatronics, Vol.
58, April 2019, pp. 9 – 19.

[21] B. Piranda, J. Bourgeois, “Datom: A Deformable modular robot for
building self-reconfigurable programmable matter,” DARS-SWARM
2021, Kyoto Japan

[22] D. El Baz, “A method of terminating asynchronous iterative algorithms
on message passing systems,” Parallel Algorithms and Applications,
Vol. 9, N˚1, 1996, pp. 153 – 158.

[23] J. C. Miellou, D. El Baz, P. Spiteri, “A new class of asynchronous
iterative methods with order intervals,” Mathematics of Computation,
Vol. 67, N˚221, 1998, pp. 237 – 255.

[24] D. El Baz, A. Frommer, P. Spiteri, “Asynchronous iterations with
flexible communication: Contracting operators,” Journal of
Computational and Applied Mathematics, Vol. 176, Issue 1, 2005, pp.
91 – 103.

[25] D. El Baz, M. Elkihel, “Parallel asynchronous modified Newton
methods for network flows,” in Proceedings of the 29th IEEE
Symposium IPDPSW 2015 / PCO 2015, Hyderabad, 25-29, May 2015,
pp. 1135 – 1142.

[26] M. Chau, D. El Baz, R. Guivarch, P. Spiteri, “MPI implementation of
parallel sub-domain methods for linear and nonlinear convection-
diffusion problems,” Journal of Parallel and Distributed Computing,
Vol. 67, 2007, pp. 581 – 591.

[27] D. El Baz, T. T. Nguyen, G. Jourjon, T. Rakotoarivelo, “HPC
applications deployment on distributed heterogeneous computing
platforms via OMF, OML and P2PDC, ” 21st International Conference
on Parallel Distributed and networked-based Processing, PDP 2014,
Torino Italy, IEEE CPS, February 13 – 15, 2014, pp. 617 – 623.

[28] Bilal Fakih, Didier El Baz, Igor Kotenko, “GRIDHPC, A Decentralized
Environment for High Performance Computing,” Concurrency and
Computation Practice and Experience, Vol. 32, N° 10, 25 Mai 2020.

[29] I. Yamazaki, E. Chow, A. Bouteiller, J. Dongarra, “Performance of
Asynchronous Optimized Schwarz with One-sided Communication,”
Parallel Computing, Vol. 86, August 2019, pp. 66 – 81.

[30] K. Mishchenko, F. Iutzeler, J. Malick, “A Distributed Flexible Delay-
Tolerant Proximal Gradient Algorithm,” SIAM Journal on
Optimization, Vol. 30, N° 1, 2020, pp. 933 – 959.

[31] J. Cruz-Lopez, V. Boyer, D. El Baz, “Training Many Neural Networks
in Parallel via Back-Propagation,” in Proceedings of the 27th IEEE
Symposium IPDPSW 2017, Orlando USA, 29 May 2 June 2017, pp.
501 – 509.

[32] Z. Peng, Y. Xu, M. Yan, W. Yin, “ARock: an Algorithmic Framework
for Asynchronous Parallel Coordinate Updates,” SIAM J. Sci.
Comput., 38(5), 2016, pp. 2851 – 2879.

