
HAL Id: hal-03808885
https://laas.hal.science/hal-03808885v1

Submitted on 10 Oct 2022 (v1), last revised 6 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to Predict Action Feasibility for Task and
Motion Planning in 3D Environments
Smail Ait Bouhsain, Rachid Alami, Thierry Simeon

To cite this version:
Smail Ait Bouhsain, Rachid Alami, Thierry Simeon. Learning to Predict Action Feasibility for Task
and Motion Planning in 3D Environments. 2023 IEEE International Conference on Robotics and
Automation (ICRA), May 2023, London, United Kingdom. �hal-03808885v1�

https://laas.hal.science/hal-03808885v1
https://hal.archives-ouvertes.fr


Learning to Predict Action Feasibility for Task and
Motion Planning in 3D Environments
Smail Ait Bouhsain

LAAS-CNRS
Toulouse, France

saitbouhsa@laas.fr

Rachid Alami
LAAS-CNRS

Toulouse, France
alami@laas.fr

Thierry Siméon
LAAS-CNRS

Toulouse, France
simeon@laas.fr

Abstract—In Task and motion planning (TAMP), symbolic
search is combined with continuous geometric planning. A task
planner finds an action sequence while a motion planner checks
its feasibility and plans the corresponding sequence of motions.
However, due to the high combinatorial complexity of discrete
search, the number of calls to the geometric planner can be
very large. Previous works [1] [2] leverage learning methods to
efficiently predict the feasibility of actions, much like humans
do, on tabletop scenarios. This way, the time spent on motion
planning can be greatly reduced. In this work, we generalize
these methods to 3D environments, thus covering the whole
workspace of the robot. We propose an efficient method for 3D
scene representation, along with a deep neural network capable of
predicting the probability of feasibility of an action. We develop
a simple TAMP algorithm that integrates the trained classifier,
and demonstrate the performance gain of using our approach on
multiple problem domains. On complex problems, our method
can reduce the time spent on geometric planning by up to 90%.

Index Terms—Task and motion planning, 3D scene represen-
tation, Action feasibility prediction, Deep learning

I. INTRODUCTION

Task and motion planning (TAMP) [3] [4] [5] [6] requires
combining a discrete search over a space of symbolic deci-
sions, with a continuous search over the space of associated
geometric motions. A logical task planner searches for an
action sequence leading to a symbolic goal state, while a
motion planner ensures its geometric feasibility and plans the
corresponding sequence of motions. Given the combinatorial
complexity of discrete search, this results in a large number
of calls to the motion planner before a geometrically feasible
solution is found. In fact, motion planning is a bottleneck for
combined task and motion planning [7].

In this work, we extend the approach proposed by Driess et
al. [1] [2]. The idea is to predict the feasibility of discrete
actions during task planning, so that the search over the
symbolic space can be informed. Hence, the number of calls
to the geometric planner can be greatly reduced, since the
task planner will prioritize promising solutions first. This can
be done by training a classifier to predict the probability
of feasibility given the state of the environment and the
considered action.

The method proposed in [1] [2] is however limited to
tabletop environments and problems in which only one object
has a goal pose. Our goal is to generalize this approach to
3D environments such as the one shown in Figure 1, with

Fig. 1: An example of a 3D environment our approach is able
to deal with. It includes multiple support surfaces and objects
placed at different poses.

different numbers and poses of support surfaces and object,
thus covering the whole workspace of the robot. Also, we
aim at solving a wider range of problems, in which multiple
objects can have a goal pose. In order to achieve this, some
challenges have to be tackled. First, existing learning models
require inputs with a fixed dimensionality. Therefore, there is a
need for fixed-size representations of the 3D environment, the
object of interest and the considered action. Another challenge
is the integration of the trained classifier to a TAMP algorithm.
The latter must take advantage of feasibility prediction in order
to accelerate the search for a geometrically feasible solution,
while ensuring its completeness.

In order to tackle these challenges, we propose a new 3D
scene representation consisting of a multi-channel image, each
channel corresponding to a specific view of the scene. We use
depth images rather than regular images in order to incorporate
the 3 dimensions in each view and generalize our approach
to real world scenarios. Objects of interest are encoded as
multi-channel masks in the same way as the 3D environment
(Section IV). We also propose an algorithm that makes use
of the predictions to accelerate task and motion planning, and
can solve a wide range of problems (Section V).

In summary, the contributions of this paper are:
• We generalize the work proposed in [1] [2] to 3D

environments, introducing a new approach for efficient



3D scene representation.
• We propose a TAMP algorithm which takes advantage

of the classifier to accelerate the planning process, and
is able to solve a wider range of complex problems
involving the displacement of multiple objects to their
goal pose.

II. RELATED WORK

A. Manipulation Planning

Early works in TAMP viewed the problem from a ge-
ometrical perspective [8] [9] [10] [11]. The main idea is
to search for a solution in a manipulation graph, which
maps the intersection between the sets of valid grasps and
valid placements, as well as motions connecting them. These
methods suffer from a combinatorial explosion if the number
of objects in the scene increases. [12] extends this approach
to include non prehensile actions such as pushing or pulling.
Works such as [13] [14] [15] [16] generalize this class of
methods as multi-modal motion planning.

Some recent methods [17] [18] [19] focus on representing
actions using constraints that define manifolds. The goal is to
find a sequence of manifolds in a constraint graph that brings
the environment from an initial to a goal state. However, if the
number of objects increases, the constraint graph can be very
complex to build. Also, a known issue with these approaches
is the crossed foliation issue [20].

B. Classical TAMP

Most of existing TAMP methods combine symbolic plan-
ning with geometric planning [4] [5] [21] [6] [22] [23]. A
logical task planner is used to explore symbolic states of
the environment and possible actions, while a motion planner
checks their feasibility and plans the corresponding motions.
If an action is infeasible, then geometric backtracking is
performed. As the number of movable objects increases, the
combinatorial complexity of the symbolic search increases
exponentially. This results in a very high number of calls to
the geometric planner, most of these calls being for infea-
sible actions. Works such as [24] [25] propose an informed
backtracking strategy using feedback from the motion planner,
e.g. which obstacle causes a collision or which kinematic
constraints are violated. This method allows to sort possible
actions by relevance to the task. Although this accelerates the
planning process, motion planning problems still have to be
solved to get information on the relevance of actions.

C. Learning for TAMP

Recent works leverage learning methods to accelerate
TAMP algorithms [7] [1] [2] [26] [27] [28] [29] [30] [31].
The goal of these methods is to provide a learned heuristic to
the task planner in order to prioritize promising actions, and
hence reduce the number of calls to the geometric planner.
Kim et al. [27] propose a method that uses experience from
previous plannings, using a score-space representation. Xu et
al. [28] propose a reinforcement learning model which predicts
action affordances. These are then used to select the most

promising action sequences. However, these approaches are
domain-specific, meaning that each time the problem domain
changes, the learning model has to be retrained.

Works such as [7] [1] [2] [26] propose generalizable learn-
ing approaches which can be applicable to multiple domains.
Wells et al. [7] use SVMs to predict the geometrical feasibility
of actions in tabletop environments containing two movable
objects. Used as a heuristic, this prediction reduces consid-
erably the number of calls to the motion planner. However,
several SVMs have to be trained, each one specialized in
a pair (action, grasp). Also, the environment is represented
using manually designed feature vectors. Thus, applying this
approach to scenes with more than two objects requires calling
the SVMs on each pair of objects.

Driess et al. [1] [2] solve this issue by representing the
environment using a top-view depth image, which can encode
multiple objects at once. They also propose a neural network
which provides a probability of feasibility. The actions can
then be sorted using this probability for exploration. However,
this method is limited to tabletop environments. Also, it aims
at solving problems involving the displacement of one object
only to a target location. Xu et al. [26] made a first contribution
towards a generalization to 3D environments, by providing the
relative position of the support surface to the robot’s base as
input to the classifier. However, only a small area from the
scene in represented. It is also not applicable to environments
containing multiple support surfaces, especially when they act
as obstacles. Our approach generalizes the work of Driess et
al. [1] [2] to cover the whole workspace of the robot and
hence predict action feasibility in 3D environments. These can
include support surfaces such as shelves or cupboards, as well
as objects that are placed on higher surfaces than the table.
Moreover, we aim at covering more complex problems, in
which the goal is to bring multiple objects to their targets
poses.

III. PROBLEM DESCRIPTION

In this work, we focus on manipulation problems involving
sequences of Pick and Place actions as solutions. The ma-
nipulation environment E is composed of nO movable objects
and nS stable support surfaces. Let S be the state of the
environment and the robot, representing the configuration of
all movable objects in the planning scene as well as the state
of the robot {Free,Holding}. Let an action be a(O,G,qO),
where a ∈ {Pick, P lace}, O is the considered object, G is a
discrete grasp by which the object is (or was) picked, and qO

is the current pose of O in case of a Pick action, or the pose
at which O should be placed in case of Place action. For an
easier read, we simplify the notation a(O,G,qO) to a.

Furthermore, let π(S, a) be the motion plan associated with
applying action a at state S, and Fπ(π(S, a), E) a function
that checks the feasibility of a motion plan such that:

Fπ(π(S, a), E) =

{
0, if π(S, a) is infeasible
1, if π(S, a) is feasible

(1)



Here, infeasibility can be due to either a collision with
another object, a collision with a support surface, the kinematic
constraints of the robot or the lack of a feasible motion.

The goal of TAMP is to find a geometrically feasible task
plan τ = {a0, a1, ..., aK} and the corresponding sequence of
motions Π = {π0, π1, ..., πK}, which brings the environment
from an initial state S0 to a goal state Sg . Since symbolic
task planners do not have any built-in motion planning or
geometric reasoning capabilities, they have no way of finding
Π or verifying (1). Hence, there is a need for a geometric
planner as well. However, the combinatorial complexity of
discrete search results in a high number of calls to the
latter. Moreover, geometric planning can be computationally
expensive depending on the feasibility of an action as well
as its difficulty. Previous works [7] [26] have shown that in
TAMP, most of planning time is spent on geometric planning,
mostly checking infeasible actions.

IV. ACTION FEASIBILITY PREDICTION

In order to overcome these challenges, as in [1] [2], we
seek to provide a heuristic to the task planner, allowing it to
get fast feedback on the feasibility of an action, and thus call
the motion planner on promising action sequences first. To
accomplish this, we propose to train a classifier f to predict
the feasibility given an action a and a specific state of the
environment S. However, as mentioned previously, we first
need a fixed-size and generalizable representation of the state
of the environment.

A. 3D Scene Representation

We extend the method proposed by Driess et al. [1] [2]
for tabletop scene representation to 3D environments. Their
idea is to use fixed-size, top view depth images that can
represent scenes with different numbers of objects and a single
support surface. Although this representation is efficient for
tabletop environments, it has a major issue in the case of
3D environments. Indeed, contrarily to the tabletop case, 3D
scenes can have support surfaces at different heights, which
might create occlusions. For example, if a scene contains a
table, a shelf, and one movable object placed underneath the
shelf, the object will not be visible in a top view depth image
of the scene. As a result this representation does not encode
any information about the shape, size and pose of the object.

In order to solve this issue, we propose to represent the
3D scene as 5-channel depth images, with each channel
corresponding to a specific view of the scene (top, front, rear,
left, right) as shown in Figure 3. This representation reduces
greatly the effect of occlusions, because unless the object is
hidden from all sides of the scene, it will be visible in at
least one view, and information about that object is encoded.
Using this approach, the environment E and the state S which
dimensionality is clearly dependent on nO and nS , becomes
Iscene ∈ R5×w×h which has a fixed dimensionality, w and
h being the dimensions of the images. Iscene represents not
only information about movable objects, but also the support
surfaces in the scene.

Fig. 2: Visualization of the 6 discrete grasps considered.

B. Action Representation

Following the approach proposed in [2], we decompose
actions into two parts. The first is â(G) representing a Pick or
Place with a specific grasp G. The second is the pair (O,qO)
corresponding to the considered object and its pose in the
environment. This way, we can have a representation for the
object of interest, and one for the action in question separately.

For the pair (O, qO), we complement the 3D scene represen-
tation by adding a 5-channel mask Iobject ∈ R5×w×h showing
only the object of interest at the pose qO. This incorporates all
information related to the object that is relevant to the classi-
fier, i.e. its shape, size, and pose. Combining Iscene and Iobject,
we obtain a single 10-channel image I(S,E,O) ∈ R10×w×h.
This representation is highly compact compared to existing 3D
environment representations such as point clouds, voxel-based
or cell decomposition-based representations.

Regarding the action â(G), we consider 6 discrete types
of grasps as shown Figure 2, each one corresponding to a
specific side of the object in the perspective of the robot
(e.g. approach from the right or from the rear). These discrete
grasps are more general than the ones proposed in [1] [2].
It is important to note that these are types of grasps and not
grasp poses, meaning that it specifies the side from which
the object has to be grasped, but the height and depth of the
grasp are free parameters chosen by the geometric planner. As
a result, we have 12 discrete actions corresponding to Pick
or Place tasks with one of the 6 discrete grasps. In general,
it is not advisable to use a single categorical variable as input
to learning models. For that reason, we use one hot encoding
to generate a 12-dimension vector âohe ∈ R12, where each
dimension corresponds to a discrete action â(G).

C. Neural Network Architecture

The complete proposed architecture is detailed in Figure
3. Given the scene-object and action representations, our
proposed model is a classifier f(I(S,E,O), âohe) which
approximates Fπ(π(S, a), E). In our case, the latter is the
output of a sampling-based motion planner. As in, [1], our
Action Feasibility Prediction Neural Network (AFP-Net) has
an encoder-decoder architecture. Since we are working with
images, the most natural choice for a scene-object encoder is
a convolutional neural network (CNN). In our model, we use
the ResNet architecture [32] which has a good performance on



Fig. 3: Detailed architecture of the proposed neural network AFP-Net.

image classification and object detection tasks, and is robust to
neural network training issues such as the vanishing gradient
problem. We modify the first layer of the CNN in order for
it to accept 10-channel image inputs rather than classic 3-
channel RGB images. Also we add a flattening layer and a
fully connected layer with a ReLU activation function at the
end of the CNN.

The action vector âohe is encoded using a fully connected
layer with a ReLU activation function as well. Each encoder
outputs a latent vector, these are then concatenated into a
single vector containing encoded information from the 3D
scene, the considered object, the action as well as the type
of grasp to be checked for feasibility. This vector is then fed
to a multi-layer perceptron followed by a Sigmoid activation
function. The output of our model is a probability of feasibility
p of an action given the state of the environment and the robot.

V. TASK AND MOTION PLANNING

In order to test the efficiency of our learned heuristic, we
developed a simple TAMP algorithm which integrates the
trained neural network in order to accelerate the search for
a geometrically feasible solution. The idea is to reduce the
number of calls to the sampling-based motion planner by
testing promising action sequences first. The main algorithm
(Algorithm 1) is a depth-first tree search with a backtracking
capability. A set Q of nodes to expand is maintained. These
nodes are equivalent to the states S defined in Section III.
They represent the configuration of all objects in the scene,
the state of the robot, and in cases where the robot is holding
an object, it contains the grasped object as well as the grasp
type.

At each iteration of the main loop, the node S with the
minimum cost and maximum probability of feasibility p is
popped from the set Q. If S is a goal state, we retrieve the
complete action sequence τ . We then call the motion planner
to verify its geometric feasibility and find its corresponding
sequence of motions Π. If it is feasible, then a geometrically
feasible solution was found and the planning is finished.
Otherwise, we perform backtracking by pruning all children
of the first infeasible node in the task plan from the tree.

If S is not a goal node, then it is expanded by calling
findChildren() described in Algorithm 2. Depending on the
state of the robot (i.e free or holding an object), we generate all
possible Pick or Place actions, and find the resulting children

Algorithm 1 Task and motion planner
Input: E,S0, Sgoal ▷ Initial and goal states

1: Q← {S0} ▷ Set of nodes to expand
2: while Solution not found and Q not empty do
3: S ← argmaxp(argmincost Q)
4: if S = Sgoal then
5: τ ← retrieveTaskP lan(S)
6: Π← constructMotionSequence(τ, E)
7: if Π is feasible then
8: solution found
9: break

10: else
11: Sinfeasible ← getF irstInfeasibleNode(Π)
12: Q← Q \ pruneChildren(Sinfeasible)
13: continue
14: end if
15: end if
16: Q← Q ∪ findChildren(S,E)
17: end while

Algorithm 2 findChildren
Input: S,E

1: children← ∅
2: for all a applicable at S do
3: child← nextState(S, a)
4: child.cost← computeCost(child)
5: child.p← predictFeasibility(child)
6: children← children ∪ child
7: end for
8: return children

nodes. We then compute the cost of each child, which is a sum
of the number of actions performed so far and the minimum
number of actions needed to reach a goal state. After that, we
use the trained classifier to get the probability of feasibility p
of each child. Finally, all children are added to the set Q.

With this approach, the trained classifier is used to sort
the set Q. This way, the nodes with the highest probability
of feasibility are expanded first. In case of misclassifications,
false positives (infeasible actions given a high probability of
feasibility) may result in an infeasible task plan that would be
tested and dismissed by the geometric planner. If the neural
network always classifies actions as feasible, the algorithm



(a) Reorder domain (b) Unpack domain (c) Swap domain

Fig. 4: Visualization of the initial states and goal states for the 5-object version of the three problem domains used to measure
the performance of our approach.

becomes a classical TAMP method without any geometric in-
tuition. In case of false negatives (feasible actions given a low
probability of feasibility), other actions predicted as feasible
will be expanded first, which might hurt the performance of
the algorithm. Note that Algorithm 1 is complete, since using
the classifier as a heuristic does not discard any state from
the search tree. Hence, in worst case scenario, all states and
actions will be explored, and if there is a feasible solution, it
will be found.

VI. EXPERIMENTS

We focus on problems with one robot arm with a parallel
gripper (Franka Emika Panda), and scenes involving one table,
a variable number of support surfaces (shelves), and multiple
box-shaped objects, as shown in Figure 1.

A. Data Generation and Annotation

We build our dataset on the assumption that the neural
network is able to generalize to scenes with multiple objects,
even though it is trained on scenes containing two objects
only as in [1] [2]. We generate 3000 scenes for training.
Each scene has a large table on which the robot is placed
at the center. Also, a number of up to 4 support surfaces
are generated, which sizes and poses are sampled randomly.
Two box-shaped objects with sizes sampled randomly are then
generated. In order to incorporate the different challenges of
Pick and Place actions, we define 3 placement types. The first
is random placement, in which the object is placed at a random
pose on a random support surface. The second is a proximity
placement, in which the object is placed near another object.
The last placement type is underneath a support surface. As a
final step, we perform a collision checking in order to ensure
that the generated scenes are valid.

With the scenes generated, we proceed to the construction of
the dataset. For each object in the scene, we generate 6 Pick
actions, one per discrete grasp type. We also generate 6 Place
actions, two per placement type defined previously. Since we
are not interested in trivial infeasibility, we disregard grasps
corresponding to object sides larger than the gripper’s width.
This will result in at most 12 datapoints per object. Using
the same method and different random seeds, we construct a
validation set and a test set of 1000 scenes each.

We use an adapted version of Moveit! Task Constructor
[33] with a BiTRRT motion planner [34] for annotation. Data

generation and annotation takes nearly 15 hours. In all datasets
combined, the percentage of feasible datapoints is 57%.

B. Neural Network Training/Testing
We implemented and trained our neural network using the

Pytorch library [35]. The model is trained using a weighted
binary cross entropy loss to account for class imbalance. We
use the ADAM optimizer with a learning rate of 0.0005 and
a batch size of 128. In order to prevent overfitting, we use
dropout with a probability of 0.2, and weight decay of 0.0001.

We test the performance of our classifier on the test set. As
our dataset is imbalanced, we use the F1 score, the ROC-AUC,
the true positive rate (TPR) and the true negative rate (TNR)
as metrics to measure the performance of our model. These
metrics are known to be robust to class imbalance.

C. Test Environments for the TAMP Approach
In order to measure the gain of using the classifier as a

heuristic for the TAMP algorithm, we define three problem
domains presenting different challenges to classical TAMP
methods. The first is the Reorder domain (Figure 4a), where
a number of objects are initially placed on a two-shelves
cupboard, and have to be placed on another cupboard in
different order. This problem allows us to test our algorithm
when faced with cases where the grasp choice is important,
since picking or placing objects underneath a shelf from the
top is infeasible.

The second domain is the Unpack domain (Figure 4b), in
which objects are initially on a tray-like surface and have to be
unpacked and ordered into a cupboard. The challenge here is
that initially, the objects are close to one another, so the choice
of grasp is very important in order to achieve a feasible Pick
action. This difficulty is increased by the fact that the goal
placement of the objects is underneath a shelf, meaning that
top grasps are not allowed.

The last problem is the Swap domain (Figure 4c), in which
a set of objects are placed either on the table or on higher
support surfaces, and the goal is to swap their poses. Here,
the difficulty comes from the fact that the goal poses of
objects are already occupied, hence intermediary placements
are necessary.

VII. RESULTS

We analyse first the performance of AFP-Net on the valida-
tion and test sets. We then demonstrate the performance gain



TABLE I: Comparison of the performance of the TAMP algorithm with and without using AFP-Net on the 5-object version
of the three problem domains. Results are averaged over 10 runs.

Domain Heuristic Nb Infeasible Task Plans Nb Motion Planning calls Nb Infeasible Motion Plannings Nb Expanded Nodes

Reorder None 5.0 29.8 9.8 215.0
AFP-Net 0.4 20.5 0.5 56.4

Unpack None 11.8 29.5 19.5 85.2
AFP-Net 3.3 17.1 6.3 33.3

Swap None 30.6 67.7 53.7 200.4
AFP-Net 3.9 22.0 7.8 85.3

of using the neural network as a heuristic on the test problem
domains.

A. Neural Network Performance

Our network achieves an F1-score of approximately 90%
on both the validation and test sets. It also has an AUC of
96%. For comparison, the AUC of a random classifier is 50%.
This shows that the model is able to predict accurately the
feasibility of actions in 3D environments even though it is
trained on imbalanced data. It also shows that our proposed
approach for 3D scene representation is capable of encoding
enough information about the objects and support surfaces in
the environment. Moreover, Using a probability threshold of
0.5, AFP-Net has a true feasible rate of 91.5% and a true
infeasible rate of 84.3% on the test set. This is a comparable
performance to the one obtained by Driess et al. [1] even
though our test data is not limited to tabletop environments.

B. Performance on Test Domains

We ran our TAMP algorithm on the three experiment
scenarios for 10 runs each. In order to test the generalizability
of our method to scenes with more than 2 objects, we ran the
algorithm on two versions of each scenario: one containing 2
objects only, and the other containing 5 objects. We compare
our approach to one which does not use any heuristic on
geometrical feasibility of actions.

Figure 5 shows the improvement in planning time when
AFP-Net is used as a heuristic for the TAMP algorithm. Using
feasibility prediction reduces considerably the time spent on
geometric planning. Indeed, for 2-object problems, our ap-
proach reduces motion planning time by 50% on the Reorder
and Unpack domains and 90% on the Swap domain. On the
other hand, for 5-object problems, motion planning time is
74% lower using AFP-Net as a heuristic for the Reorder and
Unpack domains, and 87% lower for the Swap domain. These
results show that the higher the complexity of the problem
is, the higher the performance gain from using our approach
will be. Note that unlike a non-informed TAMP algorithm,
the planning time using our proposed method remains quasi-
constant across problems with different levels of difficulty.
Moreover, the added computational cost of feasibility pre-
diction does not hurt the total planning time. The average
feasibility prediction time is 50ms, including the construction
of scene projections and querying the neural network.

Table I shows the efficiency of our approach in terms of
reduction of the number of calls to the geometric planner.

(a) 2-object problems (b) 5-object problems

Fig. 5: Detailed planning time of our algorithm on the three
defined problem domains with and without using AFP-Net,
averaged over 10 runs.

For the Reorder domain, the first generated task plan using
our approach is a feasible one in most of the runs. Hence,
the number of infeasible calls to the geometric planner is
0. For the Unpack domain, even though there has been
some misclassifications resulting in 3 infeasible task plans, the
performance is still better than when no heuristic is used. The
largest gain can however be observed on the Swap problem,
where the number of infeasible solutions found using AFP-
Net is 3.9, compared to 30.6 without the use of a heuristic.
These results show that our approach can reduce by up to 9
times the number of infeasible calls to the motion planner,
while being robust to classification errors.

VIII. CONCLUSION

In this work, we demonstrated an approach for generalizing
action feasibility prediction to 3D environments. In addition
to being computationally efficient, a 3D scene representation
using 5 views of the scene as depth images is capable of
encoding enough information about the size, shape and pose
of object as well as support surfaces in the environment. Using
our proposed neural network as a heuristic in a TAMP algo-
rithm decreases the number of infeasible task plans generated,
thus the number of calls to the motion planner and the total
planning time can be greatly reduced.

As a future work, the neural network can be trained and
tested on more realistic environments, including obstacles and
objects with different shapes. It would also be interesting to
extend our method to non-prehensile actions such as pushing
or pulling, as well as multi-robot TAMP problems.



REFERENCES

[1] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuris-
tics: Learning feasibility of mixed-integer programs for manipulation
planning,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 9563–9569.

[2] D. Driess, J.-S. Ha, and M. Toussaint, “Deep visual reasoning: Learning
to predict action sequences for task and motion planning from an initial
scene image,” arXiv preprint arXiv:2006.05398, 2020.

[3] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” Annual
review of control, robotics, and autonomous systems, vol. 4, pp. 265–
293, 2021.

[4] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” The International Journal of
Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[5] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE international conference on
robotics and automation (ICRA). IEEE, 2014, pp. 639–646.

[6] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “Ffrob: Leveraging
symbolic planning for efficient task and motion planning,” The Interna-
tional Journal of Robotics Research, vol. 37, no. 1, pp. 104–136, 2018.

[7] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,” IEEE
robotics and automation letters, vol. 4, no. 2, pp. 1255–1262, 2019.

[8] R. Alami, T. Simeon, and J.-P. Laumond, “A geometrical approach to
planning manipulation tasks. the case of discrete placements and grasps,”
in The fifth international symposium on Robotics research. MIT Press,
1990, pp. 453–463.

[9] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” The International Journal of
Robotics Research, vol. 23, no. 7-8, pp. 729–746, 2004.

[10] Y. Koga and J.-C. Latombe, “On multi-arm manipulation planning,” in
Proceedings of the 1994 IEEE International Conference on Robotics
and Automation. IEEE, 1994, pp. 945–952.

[11] J. M. Ahuactzin, K. Gupta, and E. Mazer, “Manipulation planning for
redundant robots: a practical approach,” The International Journal of
Robotics Research, vol. 17, no. 7, pp. 731–747, 1998.

[12] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Manipulation
with multiple action types,” in Experimental Robotics. Springer, 2013,
pp. 531–545.

[13] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 897–915, 2010.

[14] K. Hauser, “Randomized belief-space replanning in partially-observable
continuous spaces,” in Algorithmic Foundations of Robotics IX.
Springer, 2010, pp. 193–209.

[15] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” The International
Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[16] J. Barry, L. P. Kaelbling, and T. Lozano-Pérez, “A hierarchical approach
to manipulation with diverse actions,” in 2013 IEEE International
Conference on Robotics and Automation. IEEE, 2013, pp. 1799–1806.

[17] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,
N. Mansard, and F. Lamiraux, “Hpp: A new software for constrained
motion planning,” in 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 2016, pp. 383–389.

[18] F. Lamiraux and J. Mirabel, “Prehensile manipulation planning: Mod-
eling, algorithms and implementation,” IEEE Transactions on Robotics,
2021.

[19] P. Englert, I. M. R. Fernández, R. K. Ramachandran, and G. S.
Sukhatme, “Sampling-based motion planning on sequenced manifolds,”
arXiv preprint arXiv:2006.02027, 2020.

[20] J. Mirabel and F. Lamiraux, “Manipulation planning: addressing the
crossed foliation issue,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 4032–4037.

[21] L. De Silva, M. Gharbi, A. K. Pandey, and R. Alami, “A new approach
to combined symbolic-geometric backtracking in the context of human-
robot interaction,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014, pp. 3757–3763.

[22] M. Gharbi, R. Lallement, and R. Alami, “Combining symbolic and
geometric planning to synthesize human-aware plans: toward more

efficient combined search,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 6360–6365.

[23] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Sampling-based
methods for factored task and motion planning,” The International
Journal of Robotics Research, vol. 37, no. 13-14, pp. 1796–1825, 2018.

[24] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson,
“Efficiently combining task and motion planning using geometric con-
straints,” The International Journal of Robotics Research, vol. 33, no. 14,
pp. 1726–1747, 2014.

[25] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti, “Geometric back-
tracking for combined task and motion planning in robotic systems,”
Artificial Intelligence, vol. 247, pp. 229–265, 2017.

[26] L. Xu, T. Ren, G. Chalvatzaki, and J. Peters, “Accelerating integrated
task and motion planning with neural feasibility checking,” arXiv
preprint arXiv:2203.10568, 2022.

[27] B. Kim, Z. Wang, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to
guide task and motion planning using score-space representation,” The
International Journal of Robotics Research, vol. 38, no. 7, pp. 793–812,
2019.

[28] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-
Fei, “Deep affordance foresight: Planning through what can be done in
the future,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 6206–6213.

[29] B. Kim, L. Shimanuki, L. P. Kaelbling, and T. Lozano-Pérez, “Represen-
tation, learning, and planning algorithms for geometric task and motion
planning,” The International Journal of Robotics Research, vol. 41,
no. 2, pp. 210–231, 2022.

[30] M. J. McDonald and D. Hadfield-Menell, “Guided imitation of task and
motion planning,” in Conference on Robot Learning. PMLR, 2022, pp.
630–640.

[31] J. Carpentier, R. Budhiraja, and N. Mansard, “Learning feasibility
constraints for multi-contact locomotion of legged robots,” in Robotics:
Science and Systems, 2017, p. 9p.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] M. Görner, R. Haschke, H. Ritter, and J. Zhang, “Moveit! task construc-
tor for task-level motion planning,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 190–196.

[34] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based
rrt to deal with complex cost spaces,” in 2013 IEEE International
Conference on Robotics and Automation. IEEE, 2013, pp. 4120–4125.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.


	Introduction
	Related Work
	Manipulation Planning
	Classical TAMP
	Learning for TAMP

	Problem Description
	Action feasibility prediction
	3D Scene Representation
	Action Representation
	Neural Network Architecture

	Task and Motion Planning
	Experiments
	Data Generation and Annotation
	Neural Network Training/Testing
	Test Environments for the TAMP Approach

	Results
	Neural Network Performance
	Performance on Test Domains

	Conclusion
	References

