
HAL Id: hal-03808933
https://laas.hal.science/hal-03808933v1

Submitted on 10 Oct 2022 (v1), last revised 6 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Sensitivity-Aware Motion Planner (SAMP) to
Generate Intrinsically-Robust Trajectories

Simon Wasiela, Paolo Robuffo Giordano, Juan Cortés, Thierry Simeon

To cite this version:
Simon Wasiela, Paolo Robuffo Giordano, Juan Cortés, Thierry Simeon. A Sensitivity-Aware Motion
Planner (SAMP) to Generate Intrinsically-Robust Trajectories. 2023 IEEE International Conference
on Robotics and Automation (ICRA), May 2023, London, United Kingdom. �hal-03808933v1�

https://laas.hal.science/hal-03808933v1
https://hal.archives-ouvertes.fr


A Sensitivity-Aware Motion Planner (SAMP) to Generate
Intrinsically-Robust Trajectories

Simon Wasiela1, Paolo Robuffo Giordano2, Juan Cortés1 and Thierry Siméon1

Abstract— Closed-loop state sensitivity [1], [2] is a recently
introduced notion that can be used to quantify deviations of
the closed-loop trajectory of a robot/controller pair against
variations of uncertain parameters in the robot model. While
local optimization techniques are used in [1], [2] to generate
reference trajectories minimizing a sensitivity-based cost, no
global planning algorithm considering this metric to compute
collision-free motions robust to parametric uncertainties has
yet been proposed. The contribution of this paper is to propose
a global control-aware motion planner for optimizing a state
sensitivity metric and producing collision-free reference motions
that are robust against parametric uncertainties for a large class
of complex dynamical systems. Given the prohibitively high
computational cost of directly minimizing the state sensitivity
using asymptotically optimal sampling-based tree planners,
the proposed RRT*-based SAMP planner uses an appropri-
ate steering method to first compute a (near) time-optimal
and kinodynamically feasible trajectory that is then locally
deformed to improve robustness and decrease its sensitivity
to uncertainties. The evaluation performed on planar/full-3D
quadrotor UAV models shows that the SAMP method produces
low sensitivity robust solutions with a much higher performance
than a planner directly optimizing the sensitivity.

I. INTRODUCTION

Modern motion planners can generate feasible and
globally-optimal paths for high-dimensional systems and
complex constraints/environments. However, most planners
do not consider (and, even less, exploit) the unavoidable
presence of the feedback controller that will track the planned
trajectories of the robot, thus leading to poor intrinsic robust-
ness and potential loss of optimality due to the controller
actions at runtime.

The idea of merging planning with control for generating
“robust planners” or more “global controllers” for dealing
with the robustness problem in a more comprehensive way
is however not completely novel in the robotics community.
For example, the “feedback motion planning” approach intro-
duced in [3] exploits the possibility of constructing explicit
Lyapunov functions, but assuming a LQR controller and
linearizing the robot dynamics around a nominal trajectory.
This idea was extended in [4] by considering a polyno-
mial form for the robot dynamics/control strategy. This
method is however computationally heavy and it requires
the off-line computation of a finite set of motion primitives
with their associated ”funnels” where the system state is
guaranteed to evolve. Also, in the control-aware motion

* This work was supported by the project ANR-20-CE33-0003 “CAMP”
1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France,

{swasiela, simeon, jcortes}@laas.fr
2 CNRS, Univ Rennes, Inria, IRISA, Rennes, France,

prg@irisa.fr

Fig. 1. Solutions with their uncertainty tube (in green) computed by our
SAMP method between the same start/goal states of a quadrotor dynamical
model for small/high parameters uncertainties (top/bottom, respectively)

planner [5], an Inverse Kinematics controller is used as local
planner to connect randomly sampled states within a RRT
algorithm. Although this method relies on some coupling
between planning and control, uncertainties/disturbances are
not explicitly considered. Other robust planning techniques
integrate a reasoning on uncertainty models. In particular
Belief -planning is a popular alternative for providing a prin-
cipled and general framework for dealing with uncertainties,
especially using POMDPs [6] [7]. However, despite recent
progress in efficient point-based solvers, planning in belief -
space still suffers from computational bottlenecks that limit
applicability to low dimensional problems.

Work has also been carried out on the control community
side to propose “less local” controllers, resulting in the
popular Model Predictive Control (MPC) technique [8] that
iteratively replans an optimal (and feasible) trajectory with
a feedback from the current robot state (that may deviate
from the desired one because of disturbances/uncertainties).
Robust versions of MPC-based schemes have also been
investigated [9] for providing a robustness layer to the
classical MPC formulation.

Recently, the notion of closed-loop state sensitivity has
been introduced in [1], [2]. In these works, it is shown
how to obtain the so-called closed-loop state sensitivity



matrix Π which captures the sensitivity of the states of the
robot/controller pair against variations in the model param-
eters. This sensitivity matrix Π is evaluated on the closed-
loop system by explicitly considering any nonlinear systems
dynamics and controllers. A metric based on Π (and on
related quantities) has then been used for generating locally
optimal trajectories under actuation and state constraints.
However, this metric has never been used in a global planning
framework, taking into account, for instance, presence of
obstacles.

In this respect, this paper proposes a control-aware
sampling-based planner call SAMP, that considers metrics
introduced in [1], [2] in order to plan robust collision-free
motions with a low cost w.r.t. the sensitivity-based metrics.
This approach differs from [4] by considering general forms
of controllers and systems, allowing also to get rid of the
pre-computation and thus not to be limited to a finite set
of trajectories. In addition, the proposed approach allows to
also take into account uncertainties in the robot input, which
may be relevant when considering actuation constraints.

The rest of this paper is organized as follows. Section II
recalls the main notions of the considered closed-lood sensi-
tivity metrics. Section III then first discusses the difficulties
associated with using the sensitivity in classical global plan-
ners, and then presents our SAMP method. Simulations in
different environments taking into account the full dynamics
of a 3D quadrotor are provided in Sect. IV. Finally we draw
some conclusions and future directions in Sect. V.

II. SENSITIVITY-BASED METRIC

In this section, we briefly recall the notion of closed-loop
state sensitivity introduced in [1], [2] and later extended
in [10], and discuss how this quantity can be used as a
suitable metric for our planner.

We consider a generic robot dynamical model

q̇ = f(q, u, p), q(t0) = q0, (1)

where q ∈ Rnq is the state vector, u ∈ Rnu the input
vector, and p ∈ Rnp the vector containing (possibly un-
certain) parameters of the robot model. We also consider
a reference trajectory rd(a, t) parameterized by a vector a
(e.g., the control points of a B-spline) and time. The reference
trajectory rd(a, t) is tracked by the robot by means of a
controller in the generic form{

ξ̇ = g(ξ, q, a, pc, kc, t), ξ(t0) = ξ0
u = h(ξ, q, a, pc, kc, t),

(2)

where ξ ∈ Rnξ are the internal states of the controller
(e.g., an integral action), kc ∈ Rnk the controller gains and
pc ∈ Rnp the vector of nominal robot parameters used in
the control loop. Vector pc may differ from the real p due
to potential uncertainties in the knowledge of some robot
parameters.

As discussed in [1], [2], it is possible to quantify how
variations in p (w.r.t. the ‘nominal’ pc) will affect the states

q(t) and inputs u(t) behavior for the closed-loop system (1–
2) by means of the state sensitivity matrix

Π(t) =
∂q(t)

∂p

∣∣∣∣
p=pc

∈ Rnq×np , (3)

and input sensitivity matrix

Θ(t) =
∂u(t)

∂p

∣∣∣∣
p=pc

∈ Rnu×np , (4)

These two matrices can be easily computed (numerically by
forward integration) for the robot/controller pair (1–2) and
they can be used for optimization purposes. For instance, one
may try to find a reference trajectory rd(a, t) that minimizes
a norm of Π(t) (and/or of Θ(t)) for producing a ‘motion
plan’ that would be intrinsically robust against uncertainties
in the robot parameters p.

A recent extension [10] has also shown how to leverage
the quantities Π and Θ for evaluating the tubes of perturbed
state/input trajectories given a range for the parametric de-
viations. In particular, assume that each uncertain parameter
pi lies in the range pi ∈ [pci − δpi, pci + δpi] and consider
the diagonal weight matrix W = diag(δp2i ). Letting ∆p =
p − pc, an ellipsoid in the parameter space centered at pc

and with semi-axes δpi has equation

∆pTW−1∆p = 1 (5)

from which, as explained in [10], it is possible to obtain the
resulting ellipsoids in the state space

∆qT (ΠWΠT )−1∆q = 1 (6)

and in the input space

∆uT (ΘWΘT )−1∆u = 1. (7)

Here ∆q stands for ∆q = q−qnom where qnom is the state
behavior in the nominal case (p = pc), and analogously for
∆u.

Equation (6) can be used to define a sensitivity metric that
can capture the deviations in the states given the (known)
parametric ranges δpi. To this end, as discussed in [10], in
this work we consider the largest eigenvalue of the kernel
matrix Π(t)WΠ(t)T as sensitivity norm, since this will rep-
resent the largest (worst-case) deviation in the state space. In
particular, letting λi(t) be the eigenvalues of Π(t)WΠ(t)T ,
we approximate the max(·) operation with the p-norm

λmax(t) ≈
(∑

λi(t)
p
)1/p

(8)

for a large enough p. The total cost function c[π] for a
trajectory π is then defined as

c[π] =

∫ tf

t0

λmax(τ)dτ. (9)

Minimization of this cost will minimize the largest deviation
of the state tube along the whole motion.

A second possible use of (6–7) is to evaluate the radius
ri(t) ≥ 0 of the perturbed tubes along directions of interest
in the state and/or input spaces, see [10] for a detailed



derivation. The quantities ri(t) can then be used to bound
components of the states q(t) or inputs u(t) over time.
For example, letting qi,nom(t) the behavior of the i-th state
component in the non-perturbed case (p = pc), one has that

qi,nom(t)− ri(t) ≤ qi(t) ≤ qi,nom(t) + ri(t) (10)

for a perturbed state qi(t), and an analogous derivation is also
possible for the inputs ui(t). Availability of bounds 10 can
be exploited for, e.g., planning a trajectory that will ensure
robust collision avoidance for the envelope of perturbed
states q for any value of the parameters p in the considered
range.no

III. SENSITIVITY-AWARE MOTION PLANNING

We will now present our SAMP approach that consists
of two stages: it first plans a (near) time-optimal, collision-
free and kinodynamically feasible trajectory that is then
locally optimized for minimizing the cost function (9) via
a ‘shortcut’ technique classically used to smooth solutions
of randomized planners [11]. In the first part of this section,
we will justify the choice of this approach and in the second
part we will detail our implementation.

A. General approach

1) Sensitivity Computation: As explained in Sec.II, the
state/input sensitivity matrices Π(t) and Θ(t) are computed
by forward integration. This computation is performed along
the reference trajectory using a given time step. Thus, de-
pending of the execution time of the trajectory, the evaluation
of the sensitivity (and computation of the associated uncer-
tainty tube) can be time consuming, in the order of hundred
milliseconds for a hundred points over the trajectory, and up
to several seconds for long trajectories requiring thousands
of evaluations.

Also note that the evaluation of the sensitivity is done
along a reference trajectory, taking into account both the
dynamics of the system and the controller. Therefore, in
cases where this trajectory is not feasible with respect to the
system dynamics, there is a risk that despite the presence of
a robust controller, the tracking error will diverge, making
the sensitivity calculation impossible. Thus, this justifies
the requirement for the SAMP method of computing
kinodynamically feasible trajectories in order to guarantee
successful sensitivity computations.

2) Sensitivity-Aware Motion Planner (SAMP): One may
consider to use standard asymptotically-optimal random-
tree planners like RRT∗ [12] or SST∗ [13] for computing
robust motions directly minimizing the sensitivity metrics.
However such solution would be too inefficient for the
reasons explained below.

Regarding RRT∗, each iteration is based on an extension
phase towards a random sample followed by a rewiring
phase, both considering a neighborhood of the sampled state.
Since this neighborhood consists of a growing set of possibly
many vertices, and as the two phases mentioned above
require to compute the sensitivity for each feasible trajectory

among this set, this leads to a prohibitive computation time
per iteration.

Moreover, it is important to emphasise that the sensitivity
is not invariant for non-modified edges since Π depends on
the path taken from the root node to the source node of
the edge. Therefore, unlike a distance or time cost which
are invariant on non-modified edges, the sensitivity must
be recomputed for an edge each time one of its parents is
changed. Thus, when the rewiring is performed and the cost
of the rewired nodes is updated, the sensitivity must also
be recalculated on the edges. This re-computation can lead
to sub-optimal connections and therefore a re-connection is
necessary.

Consequently, the computation time of a RRT∗ iteration
becomes rapidly too high (up to tens of seconds), leading
to a very large running time with a slow convergence of the
algorithm as shown in Fig.2. In order to improve the speed
of random tree planners one needs to limit the number of
sensitivity path-costs computed per iteration. This is actually
the case for the SST∗ algorithm that indeed results in a much
higher performance than RRT∗ as shown in Fig.2. However,
the convergence time of SST∗ still remains very long because
in the absence of a steering method many iterations must
be performed in order to reach a goal region accurately. We
therefore propose a new approach called SAMP (Sensitivity-
Aware Motion Planner) described in Algorithm 1. SAMP
is aimed at producing an intrinsically-robust and control-
aware motion with a good sensitivity-cost in a much faster
manner than the conventional planners mentioned above. It
consists in planning a (near) time-optimal, kinodynamically
feasible and uncertainty-robust trajectory using a modified
version of RRT∗ (SARRT∗) to guarantee this robustness and
then performing a local optimization of the sensitivity of the
computed solution. This second step is currently performed
using a random ’shortcut’ algorithm [11].

Fig. 2. Evolution of the sensitivity as a function of the running time of an
SST∗ (in green), and of an RRT∗(in red)

Algorithm 1 SAMP [xinit, xgoal]

1: solSARRT∗ ← SARRT∗(xinit, xgoal);
2: solΠ ← SAshortcut(solSARRT∗);
3: return solΠ

B. Description of SAMP

1) Steering Method: Since the cost function of eq. (9)
corresponds to the integration of the sensitivity over the
execution time of the trajectory, it is then noticeable that



starting from an initial (near) time-optimal trajectory helps
to produce initial solutions of rather good quality wrt. the
sensitivity cost. In order to produce a near time-optimal
and kinodynamically feasible trajectory, the SARRT∗ planner
currently uses as steering method the Kinosplines defined in
[14]. To ensure kinodynamic feasibility, this method consid-
ers the kinodynamic states of the system and two given states
are connected using a bang-bang snap control. Regarding
time optimality, the local optimization used to steer between
the two states aims to reach full speed as quickly as possible
and to maintain it as long as possible. This steering method,
as well as the sensitivity-based metric, is applicable to a
large class of dynamic systems, which makes the proposed
framework very general. Note that, instead of using the cost-
to-go as distance metric, an efficient state-space quasi-metric
is employed as defined in [14].

2) Sensitivity-Aware RRT∗ (SARRT∗): Algorithm 2 pro-
vides the pseudo-code of the SARRT∗ planner. It is a variant
of RRT∗, modified in order to guarantee the robustness of the
computed solution wrt. the state/input uncertainties. Indeed,
in addition to providing a kinodynamic (near) time-optimal
trajectory the algorithm verifies that the returned trajectory is
collision-free wrt. the state uncertainties and also that inputs
remain in their allowed bounds. However, as mentioned in
Sec.III-A.2, the number of sensitivity computation within the
RRT∗ must remain as limited as possible to avoid a too
long computing time. For this reason, trajectory robustness is
checked in a lazy way, only when a better solution is found,
and reconnecting the nodes optimally if necessary.

The first stage applies the unmodified RRT∗ (line 2-5)
where the Extend procedure performs the collision checking,
optimal connection, and rewiring phase for the given sample
xrand as in [12]. Then, the algorithm checks if a new solution
with a better cost has been found (line 6). If so, it computes
the uncertainties along the the trajectory (line 7-8).

Next, function TubesCC (line 9) performs a robust Col-
lision Checking by first considering the state uncertainties
(computed using eq.(6)) and then ’growing’ the geometry of
the robot consequently. It also considers the uncertainties on
the different actuators by checking that the tube associated
with each input remains in its feasibility domain. An example
of infeasible input is presented in Fig.3, where the tube (red)
around the reference trajectory (blue) exceeds the maximum
allowed input (red). This TubeCC function checks if the
motion is valid or not considering the uncertainties. In case
of collision, it also determines the first colliding tree node
(state) along the path. This node is used to perform an
optimal re-connection of the tree starting from it.

This re-connection is performed by the RobustExtend
function (line 13) that follows the same principle as the
Extend fucntion in the standard RRT∗, excepted that it only
considers for the optimal connection and rewiring stages
the neighborhoods of nodes reached by a robust trajectory
wrt. the state/input uncertainties. For this, it maintains a set
denoted Xcollide of all states already found by TubeCC to
be invalid wrt. the uncertainty tubes during the previous
iterations. This set is unique for each node of the tree. It is

Fig. 3. Profile of the nominal input 1 (in blue) for a quadrotor controlled
in rotation per minute (rpm), and its uncertainty tube (in green), along the
trajectory considering the maximum and minimum allowed inputs (in red)

first incremented for xcollide by its current parent if xcollide
is eventually found at the current iteration. Then, all the
states of the tree from xcollide are disconnected, and for
each of them an Extend procedure is executed considering the
associated Xcollide set. As in RRT∗, an optimal re-connection
is first tried. If no re-connection is found for a node, then the
node is deleted from the tree. Otherwise, the rewiring phase
is carried out considering the Xcollide set.

The output of SARRT∗ is a (near) time-optimal trajectory,
feasible both in terms of kinodynamic constraints and also
with respect to uncertainties. It is however not optimised
in terms of the sensitivity. Therefore, its robustness can be
further improved.

Algorithm 2 SARRT∗[xinit, xgoal]

1: V ← {xinit, xgoal} ;E ← ∅; sol← ∅; i← 0;
2: while i < N do
3: T ← (V,E);
4: xrand ← Sample(i); i← i+ 1;
5: T ← Extend(T, xrand);
6: solnew ← CheckForSolution(T );
7: if solnew found then
8: U ← GetUncertainties(solnew);
9: {valid, xcollide} ← TubesCC(solnew, U);

10: if valid then
11: sol← solnew;
12: else
13: T ← RobustExtend(T, xcollide);
14: end if
15: end if
16: end while
17: return sol

3) Sensitivity-Aware shortcut (SAshortcut): In order to
improve the sensitivity-based cost function, a local optimiza-
tion is performed using a simple variant of the ’shortcut’
smoothing algorithm [15], called SAshortcut and described
in Algorithm 3. The reason for this variant, as already
mentioned in Sec.III-A.2, is that the sensitivity of a trajectory
portion is not invariant but instead depends on the previous
portions since the start of the motion.

The algorithm first randomly samples two states along the
trajectory (line 3). Then, it computes the Kinospline between
the two samples (line 6) and verifies that it is collision-free
(line 7). Unlike the classical shortcut, where only the cost



of the old and the new portions are compared, the whole
trajectory must be reconsidered in order to incrementally
compute the sensitivity and the related uncertainty ”U”
using the GetSensi procedure (line 8-9). Finally, if the new
solution has a lower sensitivity cost (line 10), then a robust
collision checking using the uncertainty tubes is performed
before updating the trajectory portion in case of success (line
11-12).

Algorithm 3 SAshortcut [solSARRT∗ ]
1: {solΠ, costΠ} ← {solSARRT∗ , GetSensi(solSARRT∗)} ;
2: while i < N do
3: {x1, x2} ← SampleOnTraj(solΠ);
4: πstart ← solΠ(xinit, x1);
5: πend ← solΠ(x2, xgoal);
6: π ← Steer(x1, x2);
7: if CollisionFree(π) then
8: solnew ← πstart + π + πend;
9: {costnew, U} ← GetSensi(solnew);

10: if CostBetterThan(costnew, costΠ) then
11: if TubesCC(solnew, U) then
12: {solΠ, costΠ} ← {solnew, costnew} ;
13: end if
14: end if
15: end if
16: i← i+ 1;
17: end while
18: return solΠ

IV. SIMULATION RESULTS

To evaluate the effectiveness of our approach, we consid-
ered the model of a 3D quadrotor as described in [15]. The
control inputs are the squared rotor speeds of the quadrotor
u = [ω2

1 ω
2
2 ω

2
3 ω

2
4 ]. We consider p = [kf kτ gx gy] as the

uncertain parameters of our model where kf and kτ are
coefficients associated with the dynamics of the propellers,

U-shape 2-Waylow 2-Wayhigh 3D

Time SST∗ (s) 77529 123347 129765 178461
Time SARRT∗

(s)
695

± 225
2841
± 187

3597
± 233

2678
± 183

Time
SAshortcut (s)

553
± 184

390
± 190

849
± 91

607
± 227

SAMP time
gain (%) 98,4 97,4 96,6 98.3

Cost SST∗ 0.317 0.292 5.127 0.510

Cost SAMP
0.325

± 0.002
0.297

± 0.003
5,283

± 0.073
0.519

± 0.018
Sub-optimality
of SAMP (%) 2,37 1,58 3,03 1,89

TABLE I
AVERAGE VALUES OF COSTS AND COMPUTING TIMES FOR THE

DIFFERENT METHODS IN SEVERAL ENVIRONMENTS. STANDARD

DEVIATIONS ARE PROVIDED FOR THE SAMP RESULTS ONLY AS THE

SST∗ RESULTS DO NOT CONTAIN ENOUGH RUNS.

Fig. 4. Three trajectories (red, green, blue) produced by SARRT∗ (top),
and the three trajectories resulting from SAMP (middle), with the evolution
of their respective sensitivity (bottom). The dashed black trajectory (top,
middle) and the dashed purple cost (bottom) correspond to the sensitivity-
optimal reference found by SST∗.

and gx and gy are the location of the centers of mass in
the x-axis and y-axis of the quadrotor body frame, which
may be uncertain due to the presence of on-board sensors
for example. The values of this vector considered in the
simulations are either δplow = [10%, 10%, 5cm, 5cm] or
δphigh = [25% 25% 10cm 10cm], where the first two
components are a percentage of their associated nominal
values. Note that δphigh represents the maximum bounds that
can be considered for our pair system/controller. Finally, the
tracking controller considered in this work is the so-called
Lee (or geometric) controller [16].

Let XC = [x y z θ ϕψ] ∈ R6 be the configuration of the
quadrotor. We therefore define XK = [XC ẊC ẌC ] ∈ R18

as the kinodynamic state considered for motion planning.
The performances of the SAMP algorithm were evaluated

in three different environments, also considering different
parametric uncertainties. For the 2D environments (U-shape
and 2-Way) we forced the drone to evolve on a plane
by producing Kinosplines only between samples in it and
by not allowing displacements along Z. The sensitivity-
optimal trajectories used as references to evaluate SAMP
were computed using an SST∗ as implemented in OMPL
[17], by specifying a goal state Xgoal, and allowing a tight
goal region around it for all the components of XK .



Table I gathers the average computing times of SST∗ and
of the two core procedures of SAMP (SARRT∗, SAshortcut),
as well as the average final cost found by SST∗ and SAMP.
The mean values associated with SST∗ were obtained over
3 runs (due to the very high computing time) while those
associated with SAMP are averaged over 10 runs.

1) 2D U-Shape Environment: Fig.4 shows how SAMP is
able to produce solutions that mimic the optimal one found
by the SST∗ in the so called U-shape environment consid-
ering the δplow parametric uncertainty vector. Furthermore,
according to the results shown in Table.I and in Fig.4, SAMP
produces solutions with sensitivity costs close to the optimal
reference found by SST∗. Also note the huge time saving of
the SAMP method compared to the SST∗.

Finally, we note that the average computing time of
SARRT∗ in this case is low compared to the other envi-
ronments. This is mainly due to the fact that in this case the
time-optimal trajectory is far from the obstacles and therefore
few re-connections via the SARRT∗’s RobustExtend method
are performed when extending the tree.

2) 2D 2-way Environments: This environment referred to
Fig.1 where the two sets of uncertainties δplow and δphigh

are considered.
As shown in Fig.1, in the presence of small uncertainties

SAMP produces a trajectory allowing to use the narrow
passage. However, while considering large uncertainties,
the time optimal trajectory which goes through the narrow
passage cannot be taken as a collision is found by considering
the uncertainty tube as shown in red in the Fig.1. Neverthe-
less, SAMP is able to find the fastest trajectory apart from
those passing through this passage.

In both cases the average cost of the solutions produced
by SAMP is close to that found by SST∗ as shown in
Table I, where 2-Waylow refers to the presence of small
uncertainties and 2-Wayhigh to the presence of large un-
certainties. The average computing time of the SST∗ is
equivalent in both cases as it is performed on exactly the
same environment. However, note that the average computing
time of the SARRT∗ is longer than in the U-shape case
because the time-optimal trajectories must pass through a
location where many collisions may occur. Moreover, in the
2-Wayhigh case the SARRT∗’s computing time is longer
than in the 2-Waylow. This is because more iterations are
needed before considering a neighborhood deprived of nodes
passing through the narrow corridor. Finally, we see that the
SAshortcut computing time remains of the same order of
magnitude for both cases as that of the U-shape, and again
SAMP produces a solution much faster than SST∗.

3) 3D Environment: The uncertainty set considered in
this full 3D environment is δplow. As shown in Fig.5, once
again SAMP produces trajectories that mimic the optimal
obtained by the SST∗. It is interesting to note the impact of
the SAshortcut procedure on the Z component in addition
to the impact on the X Y components already seen in the
previous 2D environments. The average computing time of
the shortcut is similar to other environments according to
Table I. Again, the SAMP method produces a near-optimal

Fig. 5. Trajectories produced by SARRT∗ (green), SAMP (red), and SST∗

(dashed black) in a 3D environment (top). A profile view along the YZ plane
is given (middle) as well as the evolution of the sensitivity (red) and the
optimal one found by the SST∗ (dashed blue) (bottom) during the execution
of SAMP.

trajectory much faster than conventional optimal planners.

V. CONCLUSION

We have presented a method called SAMP for planning
control-aware trajectories robust to parametric uncertainties.
The proposed framework has been specifically designed to
handle global planning using sensitivity-based metrics from
[1], [2], [10] in a more efficient way than the classical asymp-
totically optimal sampling-based tree planners. Simulations
have shown that SAMP generates near-optimal trajectories
with significant time savings, and which can be robustly
executed by the considered robot for any value of the uncer-
tain parameters in a given range. However, this computing
time is still far from being applicable to real-time motion
planning. Future work will therefore focus on improving
computing time by considering learning techniques in order
to estimate the sensitivity cost and uncertainties associated
with a trajectory.



REFERENCES

[1] P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory
generation for minimum closed-loop state sensitivity,” in 2018 IEEE
Int. Conf. on Robotics and Automation, 2018, pp. 286—-293.

[2] P. Brault, Q. Delamare, and P. Robuffo Giordano, “Robust trajectory
planning with parametric uncertainties,” in 2021 IEEE International
Conference on Robotics and Automation, 2021, pp. 11 095–11 101.

[3] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-
trees: Feedback motion planning via sums-of-squares verification,” The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[4] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” The International Journal of Robotics
Research, vol. 36, no. 8, pp. 947–982, 2017.

[5] M. Tognon, E. Cataldi, H. T. Chavez, G. Antonelli, J. Cortés, , and
A. Franchi, “Control-aware motion planning for task-constrained aerial
manipulation,” IEEE Robotics and Automation Letters, vol. 3, no. 13,
pp. 2478–2484, 2018.

[6] S. Koenig and R. Simmons, “A robot navigation architecture based
on partially observable markov decision process models,” Kortenkamp
Al-ROBOTS, 1998.

[7] S. Candido and S. Hutchinson, “Minimum uncertainty robot path
planning using a pomdp approach,” in 2010 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2010, pp. 1408–1413.

[8] E. F. Camacho and C. B. Alba, Model predictive control. Springer
science & business media, 2013.

[9] B. Houska and M. E. Villanueva, “Robust optimization for mpc,” in
Handbook of model predictive control. Springer, 2019, pp. 413–443.

[10] P. Brault and P. Robuffo Giordano, “Temp,” submitted to the 2023
Int. Conf. on Robotics and Automation, http://rainbow-doc.irisa.fr/pdf/
ICRA 2022 CLS.pdf, 2023.

[11] R. Geraerts and M. Ovemars, “Creating high-quality paths for motion
planning,” The International journal of robotics research, vol. 26,
2007.

[12] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in 49th IEEE conference
on decision and control (CDC). IEEE, 2010, pp. 7681–7687.

[13] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” The International Journal of
Robotics Research, vol. 35, no. 5, pp. 528–564, 2016.

[14] A. Boeuf, J. Cortés, and T. Simeon, “Motion planning,” in Aerial
Robotic Manipulation. Springer, 2019, pp. 317–332.

[15] C. Bohm, P. Brault, Q. Delamare, P. Robuffo Giordano, and S. Weiss,
“Cop: Control & observability-aware planning,” in 2022 IEEE Int.
Conf. on Robotics and Automation, 2022.

[16] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se(3),” in 49th IEEE Conference on Decision
and Control (CDC), December 2010, p. 5420–5425.

[17] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

http://rainbow-doc.irisa.fr/pdf/ICRA_2022_CLS.pdf
http://rainbow-doc.irisa.fr/pdf/ICRA_2022_CLS.pdf

	INTRODUCTION
	SENSITIVITY-BASED METRIC
	SENSITIVITY-AWARE MOTION PLANNING
	General approach
	Sensitivity Computation
	Sensitivity-Aware Motion Planner (SAMP)

	Description of SAMP
	Steering Method
	Sensitivity-Aware RRT* (SARRT*)
	Sensitivity-Aware shortcut (SAshortcut)


	SIMULATION RESULTS
	2D U-Shape Environment
	2D 2-way Environments
	3D Environment


	CONCLUSION
	References

