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PELL’S EQUATION, SUM-OF-SQUARES AND EQUILIBRIUM

MEASURES OF A COMPACT SET

JEAN B. LASSERRE

Abstract. We first interpret Pell’s equation satisfied by Chebyshev polyno-
mials for each degree t, as a certain Positivstellensatz, which then yields for
each integer t, what we call a generalized Pell’s equation, satisfied by recip-
rocals of Christoffel functions of “degree” 2t, associated with the equilibrium
measure µ of the interval [−1, 1] and the measure (1 − x2)dµ. We next ex-
tend this point of view to arbitrary compact basic semi-algebraic set S ⊂ Rn

and obtain a generalized Pell’s equation (by analogy with the interval [−1, 1]).
Under some conditions, for each t the equation is satisfied by reciprocals of
Christoffel functions of “degree” 2t associated with (i) the equilibrium measure
µ of S and (ii), measures gdµ for an appropriate set of generators g of S. These
equations depend on the particular choice of generators that define the set S.
In addition to the interval [−1, 1], we show that for t = 1, 2, 3, the equations
are indeed also satisfied for the equilibrium measures of the 2D-simplex, the
2D-Euclidean unit ball and unit box. Interestingly, this view point connects
orthogonal polynomials, Christoffel functions and equilibrium measures on one
side, with sum-of-squares, convex optimization and certificates of positivity in
real algebraic geometry on another side.

1. Introduction

One goal of this paper is to introduce what we call a generalized Pell’s equation
which, under certains conditions, is satisfied by reciprocals of Christoffel functions
associated with (i) the equilibrium measure λS of a compact basic semi-algebraic
set S ⊂ R

n, and (ii) associated measures gdλS , g ∈ G, for an appropriate set G
of generators of S. Moreover, checking whether a chosen set G of generators is
appropriate, can be done by solving a sequence of convex optimization problems.

Another goal is to reveal via the path to obtain the result, strong links between
orthogonal polynomials, Christoffel functions and equilibrium measures on one side,
and certificates of positivity in real algebraic geometry, optimization and sum-of-
squares, as well as a duality result on convex cones by Nesterov, on the other side.

1.1. Initial and motivating example. The starting point is Pell’s equation sat-
isfied by Chebyshev polynomials. Pell’s equation1 is a topic in algebraic number
theory and for more details (not needed here) the interested reader is referred to

J.B. Lasserre is supported by the AI Interdisciplinary Institute ANITI funding through the
french program “Investing for the Future PI3A” under the grant agreement number ANR-19-
PI3A-0004. This research is also part of the programme DesCartes and is supported by the
National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research
Excellence and Technological Enterprise (CREATE) programme.

1A multivariate polynomial F ∈ Z[x] is called a multi-variable Fermat-Pell polynomial if there
exist polynomials C,H ∈ Z[x] such that C2 − F H2 = 1 or C2 − F H2 = −1 for all x. Then the
triple (C,H,F ) is a multi-variable solution to Pell’s equation; see [8].
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e.g. [8, 14]. When looking at this equation with special glasses, we can interpret
this equation as a Putinar’s certificate of positivity on the interval [−1, 1], for the
constant polynomial equal to 1. Then with g(x) = 1− x2, the reciprocal of the two
Christoffel functions Λµ

t and Λg·µ
t respectively associated with the equilibrium mea-

sure dµ = dx/π
√
1− x2 and the measure g · µ := gdµ, satisfy the same equation,

for every t. Equivalently, for every integer t, the two polynomials 1/(2t+1)Λµ
t and

(1− x2)/(2t+ 1)Λg·µ
t form a partition of unity of [−1, 1].

More precisely: In R[x], let (Tn)n∈N ⊂ R[x] (resp. (Un)n∈N ⊂ R[x]) be the
Chebyshev polynomials of the first kind (resp. of the second kind). Then

(1.1) Tn(x)
2 + (1− x2)Un−1(x)

2 = 1 , n = 1, . . . .

In other words, for every integer n ≥ 1, the triple (Tn, (x
2 − 1), Un−1) is a solution

to the polynomial Pell’s equation [8].

Next, let dµ(x) = dx/π
√
1− x2, x 7→ g(x) = 1 − x2, and denote by g · µ the

measure g dµ =
√
1− x2dx/π. The family (T̂n)n∈N (resp. (Ûn)n∈N) with

T̂0 = T0 ; T̂n =
√
2Tn , n ≥ 1 ; Ûn =

√
2Un , ∀n ∈ N ,

is orthonormal w.r.t. µ (resp. g · µ). Then (1.1) yields

T̂n(x)
2 + (1 − x2) Ûn−1(x)

2 = 2 , n = 1, . . .

and consequently, summing up yields

(1.2) T̂ 2
0 +

t∑

n=1

T̂n(x)
2

︸ ︷︷ ︸

Λµ
t (x)

−1

+(1− x2)

t−1∑

n=0

Ûn(x)
2

︸ ︷︷ ︸

Λg·µ
t−1

(x)−1

= 2t+ 1 , t = 0, 1, . . .

That is:

(1.3) Λµ
t (x)

−1 + (1− x2) Λg·µ
t−1(x)

−1 = 2t+ 1 , t = 0, 1, . . . ,

where Λµ
t (resp. Λg·µ

t ) is the Christoffel function of “degree” 2t associated with µ
(resp. g · µ).

So for each integer t, the triple ((Λµ
t )

−1, (x2 − 1), (Λg·µ
t−1)

−1) satisfies what we

call a generalized polynomial Pell’s equation; indeed (i) (Λµ
t )

−1 ∈ Z[x] is a sum
of t + 1 squares (in short, an SOS) and not a single square, and (ii) after scaling,
(Λµ)−1

t /(2t + 1) 6∈ Z[x] (and similarly for (Λg·µ
t−1)

−1). Also observe that the scaled

polynomials 1
2t+1 (Λ

µ
t )

−1 and 1
2t+1g · (Λg·µ

t−1)
−1 form a partition of unity for the

interval [−1, 1].
The measure µ is called the equilibrium measure associated with the interval

[−1, 1]. Next, it turns out that (1.3) is in fact a particular case of [11, Theorem
17.7] which, rephrased later in the polynomial context by the author in [6, Lemma
4], states that every polynomial p ∈ R[x] (here the constant polynomial p = 2t +
1) in the interior of a certain convex cone, has a distinguished representation in
terms of certain SOS. Namely, such SOS are reciprocals of Christoffel functions
associated with some rather “intriguing” linear functional φp ∈ R[x]∗ associated
with p. However in [6, Lemma 4] we did not provide any clue on what is the link
between p and φp. So when S = [−1, 1], (1.3) tells us that this intriguing linear
functional φp associated with constant polynomials p, is in fact proportional to the

(Chebyshev) equilibrium measure dx/π
√
1− x2 of the interval [−1, 1].
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So the message of this introductory example is that we can view the polynomial
Pell’s equation (1.1) as well as its generalization (1.3), as algebraic Putinar certifi-
cates of increasing degree t = 1, 2, . . ., that the constant polynomials (p = 1 for
(1.1) and p = 2t+ 1 for (1.3)) are positive on the interval [−1, 1].

1.2. Contribution. The goal of this paper is (i) to define a framework that extends
the above point of view to the broader context of compact basic semi-algebraic
sets, (ii) to provide conditions under which a multivariate analogue of (1.3) holds,
and (iii) to show that indeed (1.3) holds for t = 1, 2, 3 for the 2D-Euclidean ball
and the 2D-simplex. As we next see, Equation (1.3) is particularly interesting as
it links statistics, orthogonal polynomials and equilibrium measures on one side,
with convex optimization and duality, sum-of-squares and algebraic certificates of
positivity, on another side.

More precisely, with gj ∈ R[x], j = 1, . . .m, let

(1.4) S := {x ∈ R
n : gj(x) ≥ 0 , j = 1, . . . ,m } ,

be compact with nonempty interior. Our contribution is to investigate an appro-
priate multivariate analogue for S in (1.4) and its equilibrium measure, of the SOS

characterization (1.3) for the Chebyshev measure dx/π
√
1− x2 on [−1, 1]. Given

g ∈ R[x], let tg := ⌈deg(g)/2⌉, and let s(t) :=
(
n+t
n

)
. With g0 = 1, introduce

G := {g0, g1, . . . , gm} and for every t ∈ N, let Gt := {g ∈ G : tg ≤ t} (when
g ∈ R[x]2 for all g ∈ G then Gt = G for all t ≥ 1). For two polynomials g, h ∈ R[x],
we sometimes use the notation g · h for their usual product, when needed to avoid
ambiguity. Given a Borel measure φ on S, denote by g · µ, g ∈ G, the measure gdµ
on S. Then define the sets

Q(G) := {
∑

g∈G

σg g ; σg ∈ Σ[x] }(1.5)

Qt(G) := {
∑

g∈G

σg g ; σg ∈ Σ[x] ; deg(σg g) ≤ 2t } , t ∈ N ,(1.6)

respectively called the quadratic module and 2t-truncated quadratic module asso-
ciated with {g1, . . . , gm} ⊂ R[x]. (Σ[x] ⊂ R[x] is convex cone of sum-of-squares
polynomials (SOS in short).)

(i) We first show that if a Borel probability measure φ on S (with well-defined

Christoffel functions Λg·φ
t , g ∈ G, t ∈ N) satisfies

(1.7)
1

∑

g∈Gt
s(t− tg)

∑

g∈Gt

g · (Λg·φ
t−tg )

−1 = 1 , ∀ t ≥ t0 ,

for some t0 ∈ N, and (S, g · φ) satisfies the Bernstein-Markov property for every
g ∈ G, then necessarily φ is the equilibrium measure λS of S (as defined in e.g.
[1]). Notice that (1.7) is the perfect multivariate analogue of the univariate (1.3)

for S = [−1, 1] and its equilibrium measure φ = dx/π
√
1− x2; therefore we propose

to name (1.7) a generalized Pell’s equation as it is the analogue of (1.3) for several

polynomials g, and the solutions (1/Λg·φ
t )g∈G are sums-of-squares (and not a single

square as in the multivariate Pell’s equation [8].)
(ii) We next provide an if and only if condition on S and its representation

(1.4) so that indeed, for every t ≥ t0, there exists a distinguished linear functional
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φ∗
2t ∈ R[x]∗2t, positive on Qt(G), which satisfies

(1.8)
∑

g∈Gt

g · (Λg·φ∗

2t

t )−1 =
∑

g∈Gt

s(t− tg) ,

an analogue of (1.7) with Christoffel functions Λ
g·φ∗

2t

t associated with φ∗
2t. Interest-

ingly, this condition which states that

(1.9) 1 ∈ int(Qt(G)) , ∀t ∈ N ,

is a question of real algebraic geometry related to a (degree-t truncated) quadratic
module associated with a set G of generators of S. Among all possible sets of
generators for a given compact semi-algebraic set S, (1.9) permits to detect a set
G of distinguished generators.

(iii) Next, if condition (1.9) is satisfied then for every fixed t, the moment vector
φ∗

2t associated with the linear functional φ∗
2t in (ii), is the unique optimal solution

of a convex optimization problem (with a “log det” criterion) which can be solved
efficiently via off-the-shelf softwares like e.g. CVX [3] or Julia [2]. In fact, (1.8)
is an algebraic “certificate” that condition (1.9) holds, and even more, (1.8) and
(1.9) are equivalent. Of course, the larger t is, the larger is the size of the resulting
convex optimization problem to solve.

Moreover, every accumulation point φ∗ = (φ∗
α)α∈Nn of the sequence of moment-

vectors (φ∗
2t)t∈N associated with the linear functional φ∗

2t, is represented by a Borel
measure φ on S. Then φ satisfies (1.7) if and only if the whole sequence (φ∗

2t)t∈N

converges to φ∗ and the convergence is finite. That is, there exists t0 ∈ N such
that for every t ≥ t0, φ is a representing measure of φ∗

2t. Equivalently, for every
t ≥ t0, φ

∗
2(t+1) is an extension of φ∗

2t. In addition, if the measure φ is such that

(S, g · φ) satisfies the Bernstein-Markov property for all g ∈ G, then necessarily φ
is the equilibrium measure λS of S.

Interestingly, this hierarchy of convex optimization problems provides a practical
numerical scheme (at least for moderate values of t) to check whether the (unique)
optimal solution φ∗

2(t+1) is an extension of φ∗
2t, for an arbitrary fixed t ∈ N, which

should eventually happen if (1.7) has ever to hold for the limit measure φ associated
with the sequence (φ∗

2t)t∈N.
If φ∗

2(t+1) is an extension of φ∗
2t for some t, then it is a good indication that

indeed (1.7) may hold with φ∗
2t being moments of φ (up to degree 2t). On the other

hand, if φ∗
2(t+1) is not an extension of φ∗

2t then it may be because (i) there is no

limit measure φ that satisfies (1.7), or (ii) one must wait for a larger t (t ≥ t0) to
see a possible “extension”, or (iii) perhaps {g1, . . . , gm} is not an appropriate set of
generators of S. However, in that case it remains to check whether the measure φ
is still the equilibrium measure of S, and if not, to detect its distinguishing feature.

(iv) Finally, in support that (i)-(iii) may be valid for sets S other than [−1, 1], we
show that for t = 1, 2, 3, (1.7) holds for S being the 2D-Euclidean unit ball and unit
box, as well as for the 2D-simplex and their equilibrium measures λS proportional

to dxdy/
√

1− x2 − y2, dxdy/
√

(1− x2)(1− y2), and dxdy/
√

x y (1− x− y), re-
spectively.

2. Main result

2.1. Notation and definitions. Let R[x] denote the ring of real polynomials in
the variables x = (x1, . . . , xn) and R[x]t ⊂ R[x] be its subset of polynomials of total
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degree at most t. Let Nn
t := {α ∈ Nn : |α| ≤ t} (where |α| = ∑

i αi) with cardinal

s(t) =
(
n+t
n

)
. Let vt(x) = (xα)α∈Nn

t
be the vector of monomials up to degree t,

and let Σ[x]t ⊂ R[x]2t be the convex cone of polynomials of total degree at most 2t
which are sum-of-squares (in short SOS).

For a real symmetric matrix A = AT the notation A � 0 (resp. A ≻ 0) stands
for A is positive semidefinite (p.s.d.) (resp. positive definite (p.d.)). The support
of a Borel measure µ on Rn is the smallest closed set A such that µ(Rn \ A) = 0,
and such a set A is unique. A Borel measure µ supported on a compact set S ⊂
Rn satisfies the Bernstein-Markov property if there exists a sequence of positive
numbers (Mn)n∈N such that for all n and p ∈ R[x]n,

(2.1) sup
x∈S

|p(x)| ≤ Mn ·
(∫

S

p2 dµ

)1/2

, and lim
n→∞

log(Mn)/n = 0 .

Riesz functional, moment and localizing matrix. With a real sequence φ = (φα)α∈Nn

(in bold) is associated the Riesz linear functional φ ∈ R[x]∗ (not in bold) defined
by

p (=
∑

α

pαx
α) 7→ φ(p) = 〈φ, p〉 =

∑

α

pα φα , ∀p ∈ R[x] ,

and the moment matrix Mt(φ) with rows and columns indexed by Nn
t (hence of

size s(t) :=
(
n+t
t

)
), and with entries

Mt(φ)(α,β) := φ(xα+β) = φα+β , α,β ∈ N
n
t .

Similarly given g ∈ R[x] ( x 7→ ∑

γ gγx
γ), define the new sequence

g · φ := (
∑

γ

gγ φα+γ)α∈Nn ,

and the localizing matrix associated with φ and g,

Mt(g · φ)(α,β) :=
∑

γ

gγ φα+β+γ , α,β ∈ N
n
t .

Equivalently, Mt(g · φ) is the moment matrix associated with the new sequence
g · φ. The Riesz linear functional g · φ associated with the sequence g · φ satisfies

g · φ(p) = φ(g · p) , ∀p ∈ R[x] .

In particular, for any real symmetric s(t)× s(t) matrix Q

(2.2) φ(g(x)vt(x)
TQvt(x)) = g · φ(vt(x)

TQvt(x)) = 〈Q,Mt(g · φ)〉 .

A real sequence φ = (φα)α∈Nn has a representing mesure if its associated linear
functional φ is a Borel measure on Rn. In this case Mt(φ) � 0 for all t; the converse
is not true in general. In addition, if φ is supported on the set {x ∈ Rn : g(x) ≥ 0 }
then necessarily Mt(g · φ) � 0 for all t.
Christoffel function. Let φ ∈ R[x]∗ be a Riesz functional (not necessarily with a
representing measure) such that Mt(φ) ≻ 0. As for Borel measures, we may also
define the (degree-t) Christoffel function

x 7→ Λφ
t (x)

−1 := vt(x)
TMt(φ)

−1vt(x) , ∀x ∈ R
n ,
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associated with φ. Alternatively, if (Pα)α∈Nn ⊂ R[x] is a family of polynomials
which are orthonormal with respect to φ, then

(2.3) Λφ
t (x)

−1 =
∑

α∈Nn
t

Pα(x)
2 , ∀x ∈ R

n .

Similarly, if Mt(g · φ) ≻ 0, we may also define the (degree-t) Christoffel function

x 7→ Λg·φ
t (x)−1 := vt(x)

TMt(g · φ)−1vt(x) , ∀x ∈ R
n ,

associated with the Riesz functional g · φ.
All the above definitions also hold for finite sequences φ2t = (φα)α∈Nn

2t
and as-

sociated Riesz linear functional φ2t ∈ R[x]∗2t. Indeed when t is fixed, Λφ
t and Mt(φ)

only depend on the degree 2t-truncation φ2t of the infinite sequence φ. Then the

notation Mt(φ) or Mt(φ2t) (and similarly Λφ2t

t or Λφ
t ) can be used interchange-

ably. Finally, a sequence φ2(t+1) is an extension of φ2t if (φ2(t+1))α = (φ2t)α for
all α ∈ Nn

2t, i.e., if φ2t is the restriction of φ2(t+1) to all moments up to degree 2t.
Equilibrium measure. The notion of equilibrium measure associated to a given set,
originates from logarithmic potential theory (working in C in the univariate case)
and some generalizations have been obtained in the multivariate case via pluripoten-
tial theory in Cn to minimize some energy functional. In particular if S ⊂ Rn ⊂ Cn

is compact then the equilibrium measure (let us denote it by λS) is equivalent to
Lebesgue measure on compact subsets of int(S). It has an even explicit expres-
sion if S is convex and symmetric about the origin; see e.g. Bedford and Taylor
[1, Theorem 1.1] and [1, Theorem 1.2]. Moreover if µ is a Borel measure on S
and (S, µ) has the Bernstein-Markov property (2.1) then the sequence of measures

dνt = dµ(x)
s(t)Λµ

t (x)
, t ∈ N, converges to λS for the weak-⋆ topology and therefore in

particular:

(2.4) lim
t→∞

∫

S

xα dνt = lim
t→∞

∫

S

xα dµ(x)

s(t)Λµ
t (x)

=

∫

S

xα dλS , ∀α ∈ N
n

(see e.g. [10, Theorem 4.4.4]). In addition, if a compact S ⊂ Rn is regular2 then
(S, λS) has the Bernstein-Markov property; see [10, p. 59].

2.2. A preliminary result. For simplicity of exposition, we will consider sets S
in (1.4) for which the quadratic polynomial x 7→ R − ‖x‖2 belongs to Q1(G); in

particular, S is contained in the Euclidean ball of radius
√
R for some R > 0, and

the quadratic module Q(G) is Archimedean; see e.g. [5]. Let λS be the equilibrium
measure of S (as described in e.g. [1]) and recall that g0 = 1 (so that g0 ·λS = λS).

Assumption 2.1. The set S in (1.4) is compact with nonempty interior. Moreover,
there exists R > 0 such that the quadratic polynomial x 7→ θ(x) := R− ‖x‖2 is an
element of Q1(G). In other words, h ∈ Q1(G) is an “algebraic certificate” that S
in (1.4) is compact.

Theorem 2.2. With S as in (1.4), let Assumption 2.1 hold. Let φ = (φα)α∈Nn

(with φ0 = 1) be such that Mt(g · φ) ≻ 0 for all t ∈ N and all g ∈ G, so that

the Christoffel functions Λg·φ
t are all well defined (recall that φ ∈ R[x]∗ is the Riesz

2A compact S ⊂ Rn is regular if the extremal Siciak function x 7→ VS(x) :=

supp∈R[x]{
log |p(x)|
deg(p)

: ‖p‖S ≤ 1, deg(p) > 0} is continuous everywhere on Rn. The same defi-

nition also extends to Cn; see [10, Definition 4.4.2, p. 53].
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linear functional associated with the moment sequence φ). In addition, suppose that
there exists t0 ∈ N such that

(2.5)
∑

g∈Gt

s(t− tg) =
∑

g∈Gt

g · (Λg·φ
t−tg )

−1 , ∀t ≥ t0 .

Then φ is a Borel measure on S and the unique representing measure of φ.
Moreover, if (S, g ·φ) satisfies the Bernstein-Markov property for every g ∈ G, then

φ = λS and therefore the Christoffel polynomials (Λg·λS

t )−1
g∈Gt

satisfy the generalized
Pell’s equations:

(2.6)
∑

g∈Gt

s(t− tg) =
∑

g∈Gt

g · (Λg·λS

t−tg )
−1 , ∀t ≥ t0 .

Proof. In view of Assumption 2.1, the quadratic module Q(G) is Archimedean.
Next, as Mt(g · φ) ≻ 0 for all t ∈ N and all g ∈ G, then by Putinar’s Positivstel-
lensatz [13], φ has a unique representing measure on S; that is, the Riesz linear
functional φ associated with φ is a Borel measure on S. Next, write (2.5) as

(2.7) 1 =
∑

g∈Gt

g ·
(Λg·φ

t−tg )
−1

s(t− tg)
· s(t− tg)
∑

g∈G s(t− tg)
, ∀t ≥ t0 ,

and let α ∈ Nn be fixed arbitrary. As (S, g · φ) satisfies the Bernstein-Markov
property for every g ∈ G, then by [10, Theorem 4.4.4],

lim
t→∞

∫

S

xα (Λg·φ
t )−1

s(t)
g dφ =

∫

S

xα dλS , ∀g ∈ G ,

where λS is the equilibrium measure of S; see [1, 10]. Hence multiplying (2.7) by
xα and integrating w.r.t. φ yields

∫

S

xαdφ =
∑

g∈Gt

s(t− tg)
∑

g∈Gt
s(t− tg)

·
∫

S

xα · (Λg·φ
t−tg )

−1

s(t− tg)
g dφ , ∀t ≥ t0 .

Each term of the product in the above sum of the right-hand-side has a limit as
t grows. Moreover Gt = G for t sufficiently large. Therefore taking limit as t
increases yields

∫

S

xαdφ =
∑

g∈G

lim
t→∞

s(t− tg)
∑

g∈G s(t− tg)
· lim
t→∞

∫

S

xα · (Λg·φ
t−tg )

−1

s(t− tg)
g dφ

=

∫

S

xα dλS ·
∑

g∈G

lim
t→∞

∑

g∈G

s(t− tg)
∑

g∈G s(t− tg)

=

∫

S

xα dλS ·
∑

g∈G

(#G)−1 =

∫

S

xα dλS .

As α ∈ Nn was arbitrary and S is compact, then necessarily φ = λS . �

The prototype example is S = [−1, 1] = { x : g(x) ≥ 0 } with x 7→ g(x) = 1− x2.
Then indeed (1.3) is exactly (2.6), and by analogy with the Chebyshev univariate
case, we propose to call Equation (2.6) a generalized Pell’s (polynomial) equation

of degree 2t. It is satisfied by the polynomials (g · (Λg·λS

t−tg )
−1)g∈Gt

, all of degree less

than 2t. If true for all t, then (S, λS) satisfies the generalized Pell’s equations for
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all degrees.

Of course, to be valid (2.6) requires conditions on S and its representation (1.4)
by the polynomials g ∈ G. For instance, if S is the 2D-Euclidean unit ball with
g = 1 − ‖x‖2, (in which case Gt = G1 for all t ≥ 1), then λS = dx/(π

√

1− ‖x‖2)
and we can show that (2.6) holds for t = 1, 2, 3.

If S is the 2D-simplex {x : x1, x2 ≥ 0;x1+x2 ≤ 1}, then λS = dx/(π
√

x1 · x2 · (1 − x1 − x2)
and we can show that (2.6) holds for t = 1, 2, 3, for the quadratic generators in
G = {g0, g1, g2, g3} with g1(x) = x1 · (1 − x1 − x2), g2(x) = x2 · (1− x1 − x2), and
g3(x) = x1 · x2.

Corollary 2.3. Let φ be the Borel measure on S in Theorem 2.2, and for each
g ∈ G, let (P g·φ

α )α∈Nn be a family of polynomials, orthonormal with respect to the
measure g · φ. Then for every t ≥ t0 + 1:

∑

g∈Gt

∑

|α|=t−tg

g · (P g·φ
α )2 =

∑

g∈Gt

s(t− tg)−
∑

g∈Gt

s(t− tg − 1)(2.8)

=
∑

g∈Gt

(
n− 1 + t− tg

n− 1

)

.

Proof. Recalling (2.3), for each g ∈ Gt with t ≥ t0 + 1:

(Λg·φ
t−tg)

−1 =
∑

α∈Nn
t−tg

(P g·φ
α )2 =

∑

|α|<t−tg

(P g·φ
α )2 +

∑

|α|=t−tg

(P g·φ
α )2

= (Λg·φ
t−tg−1)

−1 +
∑

|α|=t−tg

(P g·φ
α )2 ,

which combined with (2.5) yields (2.8). �

Observe that (2.8) which states a property between orthonormal polynomials
with g · φ, g ∈ G, is a multivariate analogue of (1.1).

In Theorem 2.2 we have taken for granted existence of a linear functional φ such
that its moment sequence φ satisfies (2.5). The next issue is:

Given a compact set S as in (1.4), can we provide such a moment sequence φ?
At least, can we define a numerical scheme which provides finite sequences (φ2t)t∈N

which “converge” to such a desirable φ as t grows?
As we next see, this issue essentially translates to the following simple issue

in real algebraic geometry. Do we have 1 ∈ int(Qt(G)) for every t ∈ N? If the
answer is yes then indeed such a φ exists. But then φ will satisfy (2.5) only if the
convergence is finite. Moreover the conditions can be checked by solving a sequence
of convex optimization problems described in the next section.

2.3. A convex optimization problem and its dual. With tg := ⌈deg(g)/2⌉,
for every t ∈ N, consider the two convex optimization problems:

(2.9)
ρt = inf

φ2t

{ −
∑

g∈Gt

log det(Mt−tg(g · φ2t)) : φ2t(1) = 1 ;

s.t. Mt−tg(g · φ2t) � 0 , ∀g ∈ Gt } ,
.
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and:
(2.10)

ρ∗t = sup
Qg

{
∑

g∈Gt

log det(Qg) : Qg � 0 , ∀g ∈ Gt ;

s.t.
∑

g∈Gt

s(t− tg) =
∑

g∈Gt

g(x) · vt−tg (x)
TQgvt−tg (x) , x ∈ R

n } .
.

Problem (2.9) and (2.10) are convex optimization problems.

Theorem 2.4. With t ∈ N fixed, Problems (2.9) and (2.10) have same finite opti-
mal value ρt = ρ∗t if and only if 1 ∈ int(Qt(G)). Then both have a unique optimal
solution φ∗

2t ∈ Rs(2t) and (Q∗
g)g∈Gt

respectively, which satisfy Q∗
g = Mt−tg(g·φ∗

2t)
−1

for all g ∈ Gt. Therefore
∑

g∈Gt

s(t− tg) =
∑

g∈Gt

g(x)vt−tg (x)
TMt−tg(g · φ∗

2t)
−1vt−tg (x)

=
∑

g∈Gt

g(x) Λ
g·φ∗

2t

t−tg (x)−1 , ∀x ∈ R
n .(2.11)

Proof. For every fixed t, the convex cone Qt(G) is a particular case of the convex
cone K(q̄) investigated in Nesterov [11, p. 415, Section 2.2] when the functional
system {v(x)} in [11] is the set of monomials (xα)α∈Nn

2t
and the functions (q̄1, . . . , q̄l)

are our polynomials g in Gt. Then

K(q̄1, . . . q̄l)
∗ = Qt(G)∗ = {φ2t : Mt−tg(g · φ) � 0 , g ∈ Gt } .

By [11, Theorem 17.7]

p ∈ int(K(q̄1, . . . q̄l)) if and only if p =
∑

g∈Gt

g·vt−tg (x)
TMt−tg(g·φp)

−1vt−tg (x) ,

for some unique φp ∈ K(q̄1, . . . q̄l)
∗. In addition, letting Qg := Mt−tg(g · φp)

−1,
g ∈ Gt, the sequence (Qg)g∈Gt

is the unique solution of (2.10), with p instead of
∑

g∈Gt
s(t− tg) in the left-hand-side of the constraint. Therefore, by [11, Theorem

17.7] for the constant polynomial p = 1,

1 ∈ int(Qt(G)) ⇔ 1 =
∑

g∈Gt

g · vt−tg (x)
TMt−tg(g · φ)−1vt−tg (x) ,

for some distinguished φ ∈ Qt(G)∗. Then as 1 ∈ int(Qt(G)) for every t, letting p
be the constant polynomial

∑

g∈Gt
s(t− tg), one obtains

∑

g∈Gt

s(t− tg) =
∑

g∈Gt

g · vt−tg (x)
TMt−tg(g · φ∗

2t)
−1vt−tg (x) ,

for some unique φ∗
2t ∈ Qt(G)∗, and Q∗

g := Mt−tg (g · φ∗
2t)

−1, g ∈ Gt, is the unique

optimal solution of (2.10). Next, φ∗
2t is a feasible solution of (2.9), and

∑

g∈Gt

log det(Q∗
g) = −

∑

g∈Gt

log det(Mt−tg (g · φ∗
2t)) ≥ ρt .

We next prove weak duality, i.e., ρ∗t ≤ ρt, so that φ∗
2t (resp. (Q

∗
g)g∈Gt

) is the unique
optimal solution of (2.9) (resp. (2.10)) and ρt = ρ∗t . So let φ2t (resp. (Qg)g∈Gt

)
be an arbitrary feasible solution of (2.9) (resp. (2.10)). Then by Lemma 4.1, for
every g ∈ Gt,

s(t− tg) + log det(Mt−tg (g · φ2t)) + log det(Qg) ≤ 〈Mt−tg (g · φ2t),Qg〉 .
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In addition, as φ2t(1) = 1

∑

g∈Gt

s(t− tg) = φ2t(
∑

g∈Gt

s(t− tg)) =
∑

g∈Gt

φ2t(g(x)vt−tg (x)
TQgvt−tg (x))

=
∑

g∈Gt

g · φ2t(vt−tg (x)
TQgvt−tg (x))

=
∑

g∈Gt

〈Qg,Mt−tg (g · φ2t)〉 [by (2.2)]

≥
∑

g∈Gt

[s(t− tg) + log det(Mt−tg (g · φ2t)) + log det(Qg) ] ,

from which we deduce weak duality, that is,

∑

g∈Gt

log det(Qg) ≤ −
∑

g∈Gt

log det(Mt−tg (g · φ2t)) .

�

So as one can see, (2.11) is a multivariate analogue of (1.3). Crucial in Theorem
2.4 is the condition 1 ∈ int(Qt(G)) for all t. Below is a simple sufficient condition.

Lemma 2.5. Let S be as in (1.4) with G = {g0, g1, . . . , gm}, and let Assumption
2.1 hold. Then 1 ∈ int(Qt(G)) for every t.

For clarity of exposition the proof is postponed to Section 4.

Remark 2.6. Let n = 1 and S = [−1, 1] = {x ∈ R : g(x) ≥ 0} with x 7→ g(x) =
1 − x2. Then G = {g}, the unique optimal solution φ∗

2t of (2.9) is the vector of

moments up to degree 2t of the Chebyshev measure dx/π
√
1− x2 on [−1, 1], and

(2.11) is exactly (1.3).

Lemma 2.7. Let g ∈ R[x] of even degree be fixed, G := {g}, and suppose that
there are two polynomials of even degree p ∈ int(Σt), and q ∈ int(Σt−tg ) such that
p+ g q = 1. Then there exists a linear functional φ ∈ R[x]∗2t with φ ∈ int(Qt(G)∗)
such that

(2.12) 1 = vt(x)
TΛφ

t (x)
−1 vt(x) + g(x)vt−tg (x)

TΛg·φ
t−tg (x)

−1 vt(x) , ∀x ∈ R
n .

In particular with g ∈ R[x] fixed: If there exist polynomials (Ci, Hi)i∈I ⊂ Z[x] that
solve Pell’s polynomial equation C2

i + g H2
i = 1, i ∈ I, and if

∑

i∈I C
2
i ∈ int(Σ[x]t),

∑

i∈I H
2
i ∈ int(Σ[x]t−tg ), then (2.12) holds for some φ ∈ int(Qt(G)∗).

Proof. Let G := {g} and let Qt(G) be as in (1.6). As p ∈ int(Σt), and q ∈
int(Σt−tg ), 1 = p+ g q ∈ int(Qt(G)) and by [6, Lemma 4], (2.12) holds. The second

statement is a direct consequence by taking p =
∑

i∈I C
2
i and q =

∑

i∈I H
2
i . �

So Lemma 2.7 states that if the triple (p, g, q) solve the generalized Pell’s equa-
tion p + g q = 1, with p ∈ int(Σt) and q ∈ int(Σt−tg ), then p (resp. q) is the

Christoffel polynomial (Λφ
t )

−1 (resp. (Λg·φ
t−tg )

−1) associated with some linear func-

tional φ ∈ R[x]∗2t such that φ ∈ int(Qt(G)∗).
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2.4. An asymptotic result.

Theorem 2.8. Under Assumption 2.1, let φ∗
2t be an optimal solution of (2.9),

t ∈ N, guaranteed to exist by Theorem 2.4. Then:
(i) The sequence (φ∗

2t)t∈N has accumulation points, and for each converging sub-
sequence (tk)k∈N, (φ∗

2tk)k∈N converges pointwise to the vector φ = (φα)α∈Nn of
moments of some probability measure φ on S, that is,

(2.13) lim
k→∞

(φ∗
2tk

)α = φα = φ(xα) =

∫

S

xα dφ , ∀α ∈ N
n .

(ii) A limit probability measure φ as in (i) satisfies (2.5) if and only if the whole
sequence (φ∗

2t)t∈N converges to φ and finite convergence takes place. That is, there
exists t0 such that for all t ≥ t0,

(2.14) (φ∗
2t)α = φα = φ(xα) =

∫

S

xα dφ , ∀α ∈ N
n ,

and so φ is a representing measure of φ∗
2t for all t ≥ t0. In addition, under the

condition of Theorem 2.2, φ is the equilibrium measure λS of S.

Proof. (i) As R − ‖x‖2 ∈ Q1(G), the set of feasible solutions of (2.9) is compact.
Indeed, let φ2t be feasible for (2.9). Then as φ2t(1) = 1, R ≥ φ2t(x

2
i ) for all

i = 1, . . . , n. Next in multiplying by xi (with i arbitrary), Rx2
i −x2

i · ‖x‖2 ∈ Q2(G)
and so

R2 ≥ Rφ2t(x
2
i ) ≥ φ2t(x

2
i · ‖x‖2) ≥ φ2t(x

4
i ) ⇒ R2 ≥ φ2t(x

4
i ) .

Iterating yields Rt ≥ φ2t(x
2t
i ) for every i = 1, . . . , n. Then by [5, Proposition 2.38,

p. 41] one obtains |(φ2t)α| ≤ max[1, Rt] for all α ∈ Nn
2t, and all φ2t ∈ Qt(G)∗. In

fact (and assuming R ≥ 1) we even have |(φ2t)α| ≤ R|α|/2, for all |α| ≤ 2t, and
all φ2t ∈ Qt(G)∗.

By completing with zeros, the finite sequence φ∗
2t is viewed as an infinite sequence

indexed by Nn. Then by a standard argument involving scaling and the σ(ℓ∞, ℓ1)
weak-⋆ topology, the sequence (φ∗

2t)t∈N has accumulation points and for each subse-
quence (tk)k∈N converging to some φ ∈ Nn, one obtains the pointwise convergence
limk→∞ (φ∗

2tk)α = φα, for every α ∈ N
n. Next, let d ∈ N and g ∈ G be fixed,

arbitrary. Observe that Md(φ
∗
2tk

) � 0 as a principal submatrix of Mtk(φ
∗
2tk

) � 0,
and similarly Md(g ·φ∗

2tk
) � 0 as a principal submatrix of Mtk(g ·φ∗

2tk
) � 0 (when

k is sufficiently large so that Gtk = G). Therefore by the above pointwise conver-
gence, Md(g · φ∗

2tk) → Md(g · φ) � 0 as k increases. As Q(G) is Archimedean,
then by Putinar’s Positivstellensatz [13], φ is a Borel probability measure on S (as
φ∗
2tk

(1) = 1 for all k).
(ii) Let φ be as in (i) and suppose that φ satisfies (2.5). Then for each t ≥ t0,

the vector φ2t = (φα)α∈Nn
2t

is an optimal solution of (2.9), and by uniqueness,
φ2t = φ∗

2t. That is, φ is a representing measure for φ∗
2t for all t ≥ t0. But this

implies that φ
∗
2(t+1) is an extension of φ∗

2t for all t ≥ t0, and therefore the whole
sequence converges to φ, and the convergence is finite.

Conversely, if finite convergence takes place, that is, if φ∗
2(t+1) is an extension of

φ∗
2t for all t ≥ t0, then φ in (i) is the unique accumulation point and its associated

measure φ satisfies (2.5).
Finally, if (S, g · φ) satisfies the Bernstein-Markov property for all g ∈ G, then

by Theorem 2.2, φ = λS , which concludes the proof. �
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Remark 2.9. Theorem 2.8 provides a simple test to detect whether the set G of
generators of S is a good one, and if so, a numerical scheme to compute moments
of the equilibrium measure λS of S. Indeed if (2.14) has to hold for the equilibrium
measure λS, then necessarily, the unique optimal solution φ∗

2(t+1) of (2.9) for t+1

must be an extension of the unique optimal solution φ
∗
2t of (2.9) for t, whenever t

is sufficiently large. So for instance, if one observes that φ∗
2 is an extension of φ∗

1

after solving (2.9) for t = 1 and t = 2, then it already provides a good indication
that finite convergence may indeed take place.

3. Examples on some particular sets S

We know that Theorem 2.8 holds for the equilibriummeasure λS = 1[−1,1](x)
dx

π
√
1−x2

of the interval S = [−1, 1]. Next, we first show how (2.14) holds at least for t =
1, 2, 3 in the bivariate case with S being the Euclidean unit box and unit ball, or the
canonical simplex, indeed φ∗

2, φ
∗
4, and φ∗

6, are moment vectors up to degree 2 and 4

and 6, of the equilibriummeasures dxdy/2π
√

1− x2 − y2, dxdy/π2
√

(1 − x2)(1 − y2),

and dxdy/π
√

x · y · (1 − x− y), respectively.

On the Euclidean unit box. With S := [−1, 1]2 and λS = dxdy/π2
√

1− x2)(1− y2).
With the univariate Chebyshev polynomials Tn of first kind and Un of second kind,
and letting G = {g1, g2, g3} with

g1(x, y) := (1− x2) ; g2(x, y) := (1− y2) ; g3(x, y) := (1− x2)(1− y2) ,

- (Pij(x, y) := T̂i(x)T̂j(y))i,j∈N form an orthonormal family with respect to dλS ,

- (P g1
ij (x, y) := Ûi(x)T̂j(y))i,j∈N form an orthonormal family with respect to

(1− x2)dλS ,

- (P g2
ij (x, y) := T̂i(x)Ûj(y))i,j∈N form an orthonormal family with respect to

(1− y2)dλS ,

- (P g3
ij (x, y) := Ûi(x)Ûj(y))i,j∈N form an orthonormal family with respect to

(1− x2)(1− y2)dλS .
Then

P10(x, y)
2 + P 2

01(x, y) + (1 − x2)P g1
00 (x, y)

2 + (1− y2)P g2
00 (x, y)

2 = 2 ,

from which we obtain:

(ΛλS

1 )−1 + g1 · (Λg1·λS

0 )−1 + g2 · (Λg2·λS

0 )−1 = 5 = s(1) + 2s(0) .

Next,

P20(x, y)
2 + P11(x, y)

2 + P02(x, y)
2 = 8x4 + 8y4 − 8x2 − 8y2 + 4x2y2 + 4

(1 − x2) ((P g1
10 )

2 + (P g1
10 )

2) = 8x2 − 8x4 + 4y2 − 4x2y2

(1− y2) ((P g2
10 )

2 + (P g1
10 )

2) = 8y2 − 8y4 + 4x2 − 4x2y2

(1− x2)(1− y2) (P g3
00 )

2 = 4− 4x2 − 4y2 + 4x2y2 .

Again after scaling (to get borthonormal polynomials) and summing up, one obtains

(ΛλS

2 )−1+g1 ·(Λg1·λS

1 )−1+g2 ·(Λg2·λS

1 )−1+g3 ·(Λg3·λS

0 )−1 = 13 = s(2)+2s(1)+s(0) .
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On the 2D-Euclidean ball. With λS = dxdy

2π
√

1−x2−y2
and µij :=

∫
xiyj dµ(x, y), for

all i, j ∈ N, one obtains:

M2(µ) =











1 0 0 1/3 0 1/3
0 1/3 0 0 0 0
0 0 1/3 0 0 0
1/3 0 0 1/5 0 1/15
0 0 0 0 1/15 0
1/3 0 0 1/15 0 1/5











.

Similarly, with g · µ = (1− x2 − y2) dx dy =
√

1− x2 − y2 dx dy/2π,

M1(g · µ) =





1/3 0 0
0 1/15 0
0 0 1/15



 ,

which yields

Λµ
1 (x, y)

−1 + (1− x2 − y2) · Λg·µ
0 (x, y)−1 = 3 + 1 = s(1) + s(0) ,

as well as

Λµ
2 (x, y)

−1 + (1− x2 − y2) · Λg·µ
1 (x, y)−1 = 9 = s(2) + s(1) ,

and similarly

Λµ
3 (x, y)

−1 + (1− x2 − y2) · Λg·µ
2 (x, y)−1 = 16 = s(3) + s(2) + s(1) ,

as predicted by Theorem 2.8.
On the simplex. Consider the canonical simplex S = {(x, y) ∈ R2 : x + y ≤
1 ; x , y ≥ 0 } with equilibrium measure reads:

λS =
1S(x, y)dx dy

2π
√
x
√
y
√
1− x− y

.

There are several ways to represent S and in particular, consider G = {g1, g2, g3}
with

(x, y) 7→ g1(x, y) := x · (1 − x− y) ; g2(x, y) := y · (1− x− y) ,

and (x, y) 7→ g3(x, y) := x · y. Do we have

ΛλS

t (x)−1 + g1 · Λg1·λS

t−1 (x)−1 + g2 · Λg2·λS

t−1 (x)−1 + g3 · Λg3·λS

t−1 (x, y)−1 = 1 ?

With t = 1, the moment matrix of λS reads:

M1(µ) =
1

15





15 5 5
5 3 1
5 1 3



 .

Next, we obtain
∫

S

x · (1−x−y) dλS =

∫

S

y · (1−x−y) dλS =
1

15
;

∫

S

xy · (1−x−y) dλS =
1

15
.
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Hence

Λµ
1 (x, y)

−1 = 15 (
2

5
− x− y + x2 + y2 + xy)

x · (1− x− y) Λν1
0 (x, y)−1 = 15 (x− x2 − xy)

y · (1− x− y) Λν2
0 (x, y)−1 = 15 (y − y2 − xy)

x · y Λν3
0 (x, y)−1 = 15 xy ,

and therefore

Λµ
1 (x, y)

−1 + x · (1− x− y) Λν1
0 (x, y)−1

+ y · (1 − x− y) Λν2
0 (x, y)−1 + x · yΛν3

0 (x, y)−1 = 6 = s(1) + 3 s(0) ,

as predicted by Theorem 2.8. Similarly,

M2(λS) =











1.0000 0.3333 0.3333 0.2000 0.0667 0.2000
0.3333 0.2000 0.0667 0.1429 0.0286 0.0286
0.3333 0.0667 0.2000 0.0286 0.0286 0.1429
0.2000 0.1429 0.0286 0.1111 0.0159 0.0095
0.0667 0.0286 0.0286 0.0159 0.0095 0.0159
0.2000 0.0286 0.1429 0.0095 0.0159 0.1111











and

M1(g1 · λS) =





0.0667 0.0286 0.0095
0.0286 0.0159 0.0032
0.0095 0.0032 0.0032



 ,

M1(g2 · λS) =





0.0667 0.0095 0.0286
0.0095 0.0032 0.0032
0.0286 0.0032 0.0159



 ,

M1(g3 · λS) =





0.0667 0.0286 0.0286
0.0286 0.0159 0.0095
0.0286 0.0095 0.0159



 .

Then this implies

(ΛλS

2 )−1 +

3∑

i=1

gi · (Λgi·λS

1 )−1 = 15 = s(2) + 3 s(1) .

In continuing with t = 3 we also obtain

(ΛλS

3 )−1 +

3∑

i=1

gi · (Λgi·λS

2 )−1 = 28 = s(3) + 3 s(2) .

Intersection of two ellipsoids. Here we consider S ⊂ R2, G = {g0, g1, g2}, with
g1(x, y) := 1− 2 x2 − 3 y2 ; g2(x, y) := 1− 3 x2 − 2 y2 .

so that S is the intersection of two ellipsoids. With t = 1, 2, 3, the respective
optimal solutions φ∗

2,φ
∗
4 and φ∗

6 of (2.9) are such that φ∗
4 seems to be an extension

of φ∗
2, and φ∗

6 seems to be an extension of φ∗
4, up to some numerical imprecision

due to the solver; indeed the norm of the difference between φ∗
4 and the restriction

of φ∗
6 is about 0.006, and for instance

φ
∗
2 = (1, 0, 0, 0.00999961, 0, 0.00999962) φ

∗
4 = (1, 0, 0, 0.0117564, 0, 0.01175, . . .) .

φ
∗
4 = (1, 0, 0, 0.0117564, 0, 0.01175, . . .) ; φ

∗
6 = (1, 0, 0, 0.011506, 0, 0.0111425, . . .) .
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However, as the solver is not very accurate, it is difficult to conclude whether or
not the differences between φ2,φ4 and φ6 are due to numerical inaccuracies.
The TV-screen. Let S := { (x, y) ∈ R2 : x4 + y4 ≤ 1 }. By solving numerically
(2.9)-(2.10) with t = 2 and t = 3, we find

Λ
φ∗

4

2 (x, y))−1 + (1 − x4 − y4) Λ
g·φ∗

4

0 (x, y)−1 = 6 + 1 = s(2) + s(0)

Λ
φ∗

6

3 (x, y)−1 + (1 − x4 − y4) Λ
g·φ∗

6

1 (x, y)−1 = 10 + 3 = s(3) + s(1)

respectively, as predicted by Theorem 2.4. However, we observed that φ∗
6 is not an

extension of φ∗
4.

The Gaussian case. Finally, in the same spirit but not in the preceding context
of a compact set S ⊂ Rn, we consider the case of Rn where by [6, Lemma 3]
any polynomial p ∈ int(Σ[x]t) is the Christoffel function of some linear functional
φp ∈ Σ[x]∗t . Let Σ ≻ 0 be a real symmetric n × n matrix, and associated with Σ,
let p be the quadratic polynomial

x 7→ p(x) := 1 + 〈x,Σ−1 x〉 , x ∈ R
n ,

which is in the interior of the convex cone Σ[x]1. Therefore, by [11] and [6, Lemma
3]

p(x) = v1(x)
TM1(φ)

−1v1(x) , ∀x ∈ R
n ,

for some unique φ ∈ Σ[x]∗1. It is straightforward to check that

p(x) = v1(x)
T

[
1 0
0 Σ

]−1

v1(x) , ∀x ∈ R
n ,

and

[
1 0
0 Σ

]−1

is the moment matrix of the Gaussian measure

dφp = (det(2πΣ))−1/2 exp(−xTΣ−1x/2)dx .

That is, φ is represented by the Gaussian measure φp and Λφ
1 is the Christoffel

function of degree 2 of the Gaussian measure φp.

Λ
φp

1 (x)−1 = (1,x)T
[

1 0
0 Σ

]−1

(1,x) = 1 + xTΣ−1x = p(x).

3.1. Discussion. There are several issues that are worth investigating. The first
one is to completely validate our result for t > 3, for the cases where S is the unit
box, the Euclidean unit ball, and the simplex. One possibility is to use Corollary
2.3 for each degree t, which only requires to show (2.8) (a property of orthonormal
polynomials associated with the measures (g · λS)g∈G) as we did on some of the
above examples.

Another issue is to investigate what is a distinguishing feature of the limit mea-
sure φ in Theorem 2.8 when φ does not satisfy the generalized Pell’s equation (1.7).
Could φ still be the equilibrium measure of S?

Finally, one would like to extend the present framework and characterize the
linear functional φp ∈ Qt(G)∗ in [6, Lemma 4], associated with a non constant
polynomial p ∈ int(Qt(G)). Then with arguments that mimic those used for the
constant polynomial p = 1, if p ∈ int(Qt(G)) for every t ∈ N, then a natural
candidate seems to be φp := λS/p, that is, φp is the measure with density 1/p with
respect to the equilibrium measure λS of S.
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4. Appendix

Lemma 4.1. Let Sn
+ be the convex cone of real n×n positive semidefinite matrices

Q (denoted Q � 0). Then

(4.1) n+ log det(M) + log det(Q) ≤ 〈M,Q〉 , ∀M ,Q ,∈ Sn
+ .

with equality if and only if Q = M−1.

Proof. Consider the concave function

f : Sn
+ → R ∪ {−∞} Q 7→ f(Q) = log det(Q) ,

and let f∗ be its (concave analogue) of Legendre-Fenchel conjugate, i.e.,

M 7→ f∗(M) := inf
Q∈Sn

+

〈M,Q〉 − f(Q) .

It turns out that

f∗(M) = n+ log det(M) = n+ f(M) , M ∈ Sn
+ .

Hence the concave analogue of Legendre-Fenchel inequality which states that

f∗(M) + f(Q) ≤ 〈M,Q〉 , ∀M ,Q ∈ Sn
+ ,

yields (4.1). �

Proof of Lemma 2.5. .

Proof. Recall that θ(x) = 1− ‖x‖2. By [9, Lemma 3.4]

(R+ 1)t = (1 + ‖x‖2)t
︸ ︷︷ ︸

∆

+θ(x)

t−1∑

j=0

(R + 1)j(1 + ‖x‖2)t−j−1

︸ ︷︷ ︸

Γ

.

Note that

∆(x) =
∑

α∈Nn
t

Θαx
2α = vt(x)

TG0vt(x) , ∀x ,

Γ(x) =
∑

α∈N
n
t−1

Γαx
2α = vt−1(x)

TG1vt−1(x) , ∀x ,

where G0,G1 are diagonal positive definite matrices (i.e. G0,G1 ≻ 0), and so
(R+ 1)t = ∆+ θ Γ. Next, let W be a real symmetric matrix such that

vt(x)
TWvt(x) =

∑

g∈Gt

g(x)vt−tg (x)It−tgvt−tg (x) ,

where It−tg is the s(t− tg)-identity matrix. As G0 ≻ 0 there exists δ > 0 such that
G0 − δW ≻ 0. But then

(R + 1)t = vt(x)
T (G0 − δW)vt(x) + δ

∑

g∈Gt

g(x)vt−tg (x)It−tgvt−tg (x)

+θ(x)vt−1(x)
TG1vt−1(x) .

Finally, as θ ∈ Q1(G) and deg(g) ≤ 2 for all g ∈ G1, write

θ(x) = v1(x)
TA0v1(x) +

∑

g0 6=g∈G1

g(x) ag
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with ag ≥ 0 and A0 � 0, to obtain

(R + 1)t = vt(x)
T (G0 − δW)vt(x) + δ

∑

g∈Gt\G1

g(x)vt−tg (x)It−tgvt−tg (x)

+
∑

g∈G1;g 6=g0

g(x) [δ vt−1(x)It−1vt−1(x) + ag vt−1(x)
TG1vt−1(x)] ,

+δ vt(x)Itvt(x) + v1(x)
TA0v1(x)vt−1(x)

TG1vt−1(x)
︸ ︷︷ ︸

vt(x)TVvt(x) ; V�0

,

and therefore (R+ 1)t ∈ int(Qt(G)). �
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