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Abstract

Backbone dihedral angles ϕ and ψ are the main structural descriptors of pro-

teins and peptides. The distribution of these angles has been investigated over

decades as they are essential for the validation and refinement of experimental

measurements, as well as for structure prediction and design methods. The de-

pendence of these distributions, not only on the nature of each amino acid but

also on that of the closest neighbors, has been the subject of numerous studies.

Although neighbor-dependent distributions are nowadays generally accepted as

a good model, there is still some controversy about the combined effects of left

and right neighbors. We have investigated this question using rigorous methods

based on recently-developed statistical techniques. Our results unambiguously

demonstrate that the influence of left and right neighbors cannot be considered

independently. Consequently, three-residue fragments should be considered as

the minimal building blocks to investigate polypeptide sequence-structure rela-

tionships.
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1. Introduction

Proteins and peptides are essential molecules in all living organisms. Their

numerous functions are closely related to their structural and dynamic proper-

ties. The main variables to investigate these properties are the backbone ϕ and ψ

dihedral angles of each of the amino acid residues along the sequence (Brändén5

and Tooze, 1998; Liljas et al., 2009) (see Figure 1 for an illustration). The

allowed values of this pair of angles and its statistical distribution have been

studied over half a century, since the seminal work by (Ramachandran et al.,

1963; Ramachandran and Sasisekharan, 1968). Several applications have mo-

tivated the detailed analysis of ϕ and ψ angles in polypeptide chains, such as10

the validation and refinement of structures determined from biophysical tech-

niques (Morris et al., 1992; Lovell et al., 2003) and the development of models

or scoring functions for protein structure prediction and design (Gibrat et al.,

1991; Kang et al., 1993; Betancourt and Skolnick, 2004; Boomsma et al., 2008;

Rata et al., 2010; Ting et al., 2010). The study of local structural preferences of15

polypeptides is also essential for the investigation of denatured states of globu-

lar proteins (Smith et al., 1996b; Jha et al., 2005a) and intrinsically disordered

proteins (IDPs) (Shen et al., 2018; Estaña et al., 2019).

Each amino acid type has a particular distribution of the ϕ and ψ angles

(Swindells et al., 1995; Serrano, 1995; Deane et al., 1999; Hovmöller et al., 2002;20

Anderson et al., 2005). These distributions are relatively similar for all natural

amino acids, with the exception of glycine and proline. While glycine lacks a

side chain, thus providing enhanced conformational variability, proline has a

cyclic side chain, which severely restricts the accessible ϕ and ψ values (Ho and

Brasseur, 2005). Some early work assumed that the distribution depends only25

on the amino acid type, independently of the context, which is usually referred

to as Flory’s isolated-pair hypothesis (Flory, 1969; Zimmerman et al., 1977).

Despite its simplicity, Flory’s isolated-pair hypothesis has been very useful to

interpret Small Angle Scattering data reporting on the overall size of disor-

dered and denatured proteins (Kohn et al., 2004). However, the availability of30
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Figure 1: (a) Illustration of a three-residue fragment indicating the ϕ and ψ angles of the

central residue. Only heavy atoms are represented, and the R corresponds to each amino acid

side chain. (b) Distributions of the ϕ-ψ angles for an alanine residue with different neighbors.

residue-specific information provided my Nuclear Magnetic Resonance (NMR)

measurements, such as residual/scalar couplings and chemical shifts, evidenced

that the conformational preferences of individual amino acid residues is influ-

enced by their nearest neighbors (Braun et al., 1994; Penkett et al., 1997). A

wide variety of short peptides have been used in order to rationalize and quan-35

tify the effects exerted by the nearest neighbors (Dames et al., 2006; Oh et al.,

2012a,b; Jung et al., 2014; Toal et al., 2015; Schweitzer-Stenner and Toal, 2018).

The ensemble of these studies identified aromatic and β-branched amino acids

as having the strongest influence on the structure of their neighbors due to their

steric hindrance (Penkett et al., 1997; Jung et al., 2014), although the role of sol-40

vation has been also pointed out by some authors (Avbelj and Baldwin, 2004).

Nearest neighbor effects were found particularly significant in several cases of

repeated amino acids along the sequence (Milorey et al., 2021b,a).

Various theoretical/computational approaches, building on experimentally-

determined protein structures, have also been developed to investigate sequence-45

3



dependent structural preferences and to integrate them within predictive meth-

ods (Kabat and Wu, 1973; Gibrat et al., 1987; Betancourt and Skolnick, 2004;

Boomsma et al., 2008; Rata et al., 2010; Ting et al., 2010). In addition, the

inability of simple single-residue-based coil models to recapitulate NMR data

supports the influence of the sequence context in defining conformational en-50

sembles of disordered and denatured proteins (Smith et al., 1996a; Pappu et al.,

2000; Jha et al., 2005a,b; Bernadó et al., 2005; Huang et al., 2013; Estaña et al.,

2019). Finally mention that molecular dynamics simulations of simple tripep-

tides showed that the nearest neighbors influence the relative population be-

tween the regions of the Ramachandran space and the transitions rates between55

them (Zaman et al., 2003). Overall, these experimental and computational

studies provide strong evidence for the effect of the nearest neighbors in defin-

ing the conformational preferences of a given amino acid residue. However, from

a statistical perspective, no inference method (i.e., hypothesis testing methods,

as described below) has yet been applied to formally test Flory’s isolated pair60

hypothesis.

An additional question arises when investigating nearest neighbor depen-

dence: is the influence of left and right neighbors interdependent? This is an

important issue as it determines whether the influence exerted by both neighbors

can be studied separately. Contradictory answers have been given to this ques-65

tion. For instance, Griffiths-Jones et al. (1998) postulated that electrostatic in-

teractions between the left and right neighbors significantly affect the conforma-

tion of the central residue. Betancourt and Skolnick (2004) directly considered

three-residue fragments for the analysis of neighbor dependence, thus implicitly

assuming that left and right neighbors cannot be dissociated for this analysis.70

Results by Huang et al. (2013) also suggested that left and right residues have to

be simultaneously taken into account in order to appropriately estimate NMR

residual dipolar couplings (RDCs) measured in IDPs. Conversely, independence

of adjacent residues has been asserted by other authors, although only descrip-

tive or statistically vague methods have been applied in this regard. Rata et al.75

(2010) stated independence after visual comparison of two density estimations,
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and Shen et al. (2018) based their analysis on an amino acid clustering approach,

valid only under the independence hypothesis.

We have implemented statistical hypothesis testing methods (Lehmann and

Romano, 2005) to investigate the interdependence between nearest neighbor80

effects on backbone dihedral angles. These statistical tests make it possible

to: (i) reject Flory’s isolated-pair hypothesis by finding significant differences

between dihedral angle distributions when both neighbors are or not taken into

account (Section 2.1), and (ii) prove the interdependence of neighbor effects,

which is the main contribution of this work, by assessing the independence of two85

categorical variables (Sections 2.2-2.4). Details on the implemented statistical

tests are provided in Section 4.2.

Data for our analyses were extracted from a non-redundant set of

experimentally-determined high-resolution protein structures. We constructed

two datasets from three-residue fragments (called tripeptides from now on) de-90

pending on the structural context: considering all tripeptides in all structures,

and considering only fragments from coil regions (i.e. tripeptides not contained

in α-helices or β-strands). In the following, we will refer to these datasets as

All and Coil, respectively. We would like to clarify here that although it is well

known that statistical models to investigate disordered or unfolded proteins are95

in general more accurate when they are built from restricted structural datasets

that do not contain secondary structure elements (Swindells et al., 1995; Smith

et al., 1996a; Jha et al., 2005a), we decided to perform the statistical tests

for restricted and unrestricted datasets with the aim of analyzing differences.

Details about the tripeptide datasets are provided in Section 4.1.100

The software and the data used in this work are freely available (see detail

in section “Software and data availability” at the end of the manuscript).
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2. Results and discussion

2.1. Left and right neighbors significantly affect dihedral angle distributions

First, we evaluated Flory’s isolated-pair hypothesis. To do this, we per-105

formed a recently-developed two-sample goodness-of-fit test (González-Delgado

et al., 2021), defined to assess the equality of two probability distributions sup-

ported on the two-dimensional flat torus (which is the space corresponding to

two angles, ϕ and ψ). This test is based on the Wasserstein distance, which

is a suitable metric to compare distributions on non-euclidean spaces (Villani,110

2008). Details about the method are provided in Section 4.2.1. We found highly

significant differences (at significance level α = 0.05) between dihedral angle dis-

tributions when both neighbors are or are not taken into account. Results are

represented through p-values, which quantify the plausibility of the observed

data assuming that Flory’s hypothesis is true. Hence, small p-values provide115

strong quantitative evidence against this hypothesis. Results were consistent

for the All and Coil datasets, and similar for all amino acid types, including

glycine and proline. This is shown in Table 1, where a p-value is presented for

each central amino acid type. Note that p-values for the All and Coil datasets

should not be compared, because in general rejection strength is higher when120

more information is available (as in the All dataset). However, within-dataset

p-value comparisons are reasonable, since the sample sizes are comparable. For

instance, for the All database, the effect of neighbors on the (ϕ, ψ) distribu-

tion is higher for alanine than for asparagine. Overall, these analyses represent

statistically strong evidence to reject Flory’s isolated-pair hypothesis and con-125

firm the results of many previous studies mentioned in Section 1 that show the

importance of nearest neighbor effects.

2.2. Influence of the left and right neighbors are statistically interdependent

Next, we assessed the significance of combined effects exerted by the near-

est neighbors. From formulations developed in previous studies (Rata et al.,130

2010; Ting et al., 2010), we can derive that assessing the independence of left
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Dataset Ala Arg Asn Asp Cys Gln

All 0.00603 0.00582 0.01316 0.01284 0.00351 0.01071

Coil 0.01809 0.01746 0.01880 0.01926 0.00390 0.01530

Glu Gly His Ile Leu Lys Met

0.00852 0.01570 0.00522 0.00456 0.00426 0.00872 0.00168

0.01704 0.02016 0.00580 0.01368 0.01704 0.01962 0.00210

Phe Pro Ser Thr Trp Tyr Val

0.00756 0.01425 0.01589 0.01393 0.01500 0.00648 0.00540

0.01260 0.01250 0.02043 0.01990 0.00030 0.01080 0.01620

Table 1: Amino-acid-specific p-values for each statistical test of the Flory’s isolated-pair hy-

pothesis performed for the All and Coil datasets. All p-values are highly significant at level

α = 0.05 after correction for multiple testing.

and right neighbor influences is mathematically equivalent to evaluating the in-

dependence of the left and right amino acid identities given a central residue

in a defined conformation (ϕ,ψ). In practice, this can be assessed via a χ2

(chi-square) test of independence per central amino acid residue and value of135

(ϕ,ψ). To do so, we discretized the Ramachandran space and carried out one

test per subdivision (see Section 4.2.2 for details). Then, the results of all tests

across the discretization grid were summarized by a p-value, which quantifies

the plausibility of the observed data assuming independence for each amino-acid

type. Hence, p-values close to zero provide strong statistical evidence for the140

interdependence of the influence of the left and right nearest neighbors. The

obtained p-values were lower than 10−10 for all amino acid types, from both

All and Coil datasets. This implies the interdependence of the left and right

nearest neighbors in determining the (ϕ, ψ) angles of the central residue. Note

that the difference between the scale of the p-values in Sections 2.1 and 2.2 is145

due to methodological differences and not to the nature of the contrasted hy-

potheses. Indeed, p-values in Section 2.1 were computed by simulating the null

distribution of the test statistic, and therefore cannot be lower than 1/Nsim,

where Nsim is the number of simulations (Phipson and Smyth, 2010), whereas
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the null distribution of the χ2 statistic is exact, and consequently p-values can150

take any value in (0, 1).

2.3. The physicochemical properties of the nearest neighbors affect the magni-

tude of the interdependence

We assessed whether properties such as the polarity and the size of the

neighbors affect the strength of the interdependence. Note that some previous155

studies on nearest neighbor effects (not dealing with interdependence) divided

amino acid types into only two classes (Penkett et al., 1997): those involving

aromatic and beta-branched side chains (FHITVWY) and the others, with the

exception of glycine and proline. The large size of our databases enabled a finer

classification. Consequently, we chose six representative amino acids for each of160

the following groups:

• Polar (P): Arg, Lys, Asp, Glu, Asn, Gln.

• Hydrophobic (H): Ala, Ile, Leu, Met, Phe, Val.

• Small (S): Ala, Ser, Thr, Asp, Asn, Cys.

• Large (L): Phe, Tyr, Trp, Arg, Ile, Lys.165

To facilitate the comparison between these categories, we defined a score

measuring the strength of the interdependence effect for a given neighbor setting

(a fixed group for the left residue and one for the right residue). This score

corresponds to the Area Under the Curve (AUC) of the empirical cumulative

distribution function of p-values (see Section 4.2.3 for details). When comparing170

two different neighbors settings, a higher AUC means p-values being closer to

zero and thus a higher interdependence.

Figure 2 shows radar plots with AUC values for possible combinations of

neighbors depending on their polarity (left plot) and size (right plot), and av-

eraged for all amino acid types at the central position. General trends can be175

observed from this representation: (i) Interdependence is stronger when both
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Figure 2: Radar plots showing the interdependence score (AUC) between neighbors with

different physicochemical properties: (left) polarity/hydrophobicity, (right) size. P, H, L and

S stand for polar, hydrophobic, large and small, respectively.

neighbors are polar. This can be justified by the presence of attractive or repul-

sive electrostatic interactions between them, which may constrain the confor-

mational space for the central residue, and that strongly depend on the specific

pair of neighbors (Milorey et al., 2021b). Adjacent charged amino acids can180

also modify the solvation energy and perturb the central residue (Avbelj and

Baldwin, 2004). (ii) Interdependence is weaker when both neighbors are large.

This observation is less intuitive. A possible explanation would be that when

both neighbors are large (regardless of their type), the conformational space

of the central residue is more constrained (Cho et al., 2007), and thus, other185

effects due to the nature of each neighbor are less visible. The contrary occurs

when at least one of the neighbors is small, as the central residue exhibits a less

constrained conformational space.

Nevertheless, exceptions to these above-described general trends emerged

when the strength of the interdependence was analyzed individually for each190

amino acid. Case-by-case results comparing the four settings for each central

residue are shown in Figures 3 (for polarity) and 4 (for size). The AUC values

for each group were also compared with the “free” setting, for which no physic-

ochemical properties are imposed to neighbors (i.e. considering all possible

neighbors). They illustrate the very diverse degrees of interdependence depend-195

ing on the central amino acid and the properties of the nearest neighbors, which

highlights the need to take into account (at least) three-residue fragments to
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Figure 3: For each central amino acid type, comparison of the interdependence score (AUC)

between the four possible polarity combinations for neighbors (where P stands for polar and

H for hydrophobic). In gray, the same score when no physicochemical properties are imposed.

Polar and hydrophobic central residues correspond to red and green plots respectively. Blue

plots correspond to central residues not belonging to any of both categories.
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Figure 4: For each central amino acid type, comparison of the interdependence score (AUC)

between the four possible size combinations for neighbors (where L stands for large and S for

small). In gray, the same score when no physicochemical properties are imposed. Large and

small central residues correspond to red and green plots respectively. Blue plots correspond

to central residues not belonging to any of both categories.

11



locally describe backbone conformational preferences. Due to how the score has

been defined, one must not compare AUC values between different individual

plots, but only inside each plot. All the differences between AUC scores were200

statistically significant.

Our analyses performed on the Coil dataset showed that, for 14 out of the

20 amino acids, interdependence is stronger when both neighbors are polar than

when they are both hydrophobic. With respect to size effect, for 16 out of 20

central residues interdependence was found stronger when both neighbors were205

small than when they were large. No relationship was found between amino acids

not following both general trends. However, more detailed analyses showed that

amino acids that did not follow the general trend were among those for which

the amount of data was more limited. This may suggest that with additional

data, the general trend would probably be more widely satisfied. With respect210

to mixed neighbors settings, no clear general trend was found among all central

amino acids. In all cases, all the corresponding AUC scores were significantly

different to the “free” setting ones, showing that both polarity and size do affect

interdependence also when neighbors have mixed properties. Moreover, all plots

in Figures 3 and 4 were strongly asymmetrical with respect to the vertical axis,215

which evidences that polarity and size effects have a non-negligible directional

component.

2.4. Combined neighbor effects are stronger in coil regions

We implemented two approaches to quantitatively assess whether neighbor

interdependence is influenced by the structural origin of the datasets. The first220

approach lies in comparing the computed p-value distributions for each dataset

(All and Coil). Here, a distribution of p-values is associated to each central

amino acid (one test is performed at each point of its discretized Ramachan-

dran space, see Section 4.2.2 for details). Moreover, sample sizes are fixed for

both datasets and thus p-values for All and Coil are now quantitatively com-225

parable. Consequently, we can compare each pair of distributions and evaluate

whether the interdependence of neighbors is stronger in one of the two datasets.
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Three representative examples of this comparison are shown in Figure 5(a,c,e)

for alanine, glutamic acid and leucine as central residues. p-value density es-

timates show that the independence hypothesis is more significantly rejected230

(i.e. interdependence is stronger) for the Coil dataset (Kolmogorov-Smirnov

test states highly significant discrepancies). Note that the scales in Figure 5

vary between the three amino acids in order to better reflect the different be-

haviour of All and Coil distributions. Comparisons between different plots are

not really relevant.235

The second approach simulates the proportion of statistically non-significant

tests for both datasets (the lower this proportion, the more interdependent the

left and right neighbors). This is explained in detail in Section 4.2.2. Fig-

ure 5(b,d,f) exemplifies this approach using the same central residues. These

figures show that the simulated distribution corresponding to the Coil dataset is240

significantly closer to zero than that of the All dataset, substantiating our afore-

mentioned conclusion. This observation contradicts the statements of Rata et al.

(2010), who suggested that the correlated effects of left and right neighbors were

weak, especially in coil regions. Nevertheless, their statements about the lack

of interdependence were based on vague statistical analyses compared to the245

rigorous statistical approach presented above.

3. Conclusions

We have investigated local sequence effects on the distribution of the ϕ-

ψ angles, which are the main descriptors of polypeptide conformations, using

rigorous statistical methods on datasets built form experimentally-determined250

high-resolution protein structures. Results of our analyses corroborate the large

amount of experimental and computational studies describing the influence of

the nearest neighbors, thus providing additional evidence for the rejection of

Flory’s isolated-pair hypothesis, even in disordered regions. Furthermore, our

results unambiguously demonstrate coupled effects of the left and right neigh-255

bors, which cannot be considered independently of each other. This observation
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Figure 5: (a,c,e) Distribution of (-log10-scaled) p-values for the independence hypothesis tests

performed on the All (red) and Coil (blue) datasets, for a fixed central residue. Dashed line

indicates a level of significance of 0.05. (b,d,f) Distribution of the proportion of non-significant

tests for a fixed central residue for the All and Coil datasets.

clarifies questions still open on this subject, and represents a fundamental step

to understand sequence-structure relationships in peptides and proteins.

These results also have several direct implications for methodological de-

velopments in the context of molecular modeling and protein design. The260
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most obvious one concerns sampling algorithms that use ϕ-ψ distributions to

model flexible regions in proteins, such as loops or intrinsically disordered re-

gions (Bernadó et al., 2005; Ozenne et al., 2012; Estaña et al., 2019; Barozet

et al., 2021). More accurate conformational ensemble models will be obtained

when explicitly considering coupled neighbor dependencies. The parameteri-265

zation of the constants associated with backbone torsion angles in force-fields

used for molecular dynamics simulations, and more particularly in the case of

coarse-grained models, would also benefit from protocols that consider the local

sequence context (i.e. going beyond residue-specific parameterization). Regard-

ing structure prediction algorithms applied to globular proteins, although mod-270

ern machine-learning-based algorithms mostly exploit evolutionary-conserved

pairwise residue contacts, the incorporation of local structural constraints and

preferences are crucial to obtain accurate solutions (Jumper et al., 2021). Thus,

our observations suggest that the performance of these algorithms could be

improved by explicitly considering triplets of consecutive amino acids for the275

conception of the neural network architecture.

This work focused on studying the interdependent effects of the nearest

neighbors along the sequence (i.e. residues i± 1). It would be very interesting

to extend the analysis to more distant neighbors (i ± n, with n = 2, 3, 4, . . . ).

Unfortunately, the amount of experimental data currently available does not280

allow such an analysis. With the increase of available data from experimental

techniques and/or high quality models generated by simulation or structural pre-

diction methods, such an analysis seems feasible in the near future. It should be

noted, however, that non-trivial mathematical challenges would also arise in ad-

dressing this question, which would require new methodological developments.285

4. Methods

4.1. Data collection

A database of three-residue fragments (tripeptides) was built from a curated

database of experimentally-determined high-resolution protein structures. More
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precisely, we used protein domains from the SCOPe 2.07 release (Chandonia290

et al., 2018). In order to remove highly-redundant sequences, we used the 95%

sequence-identity-filtered subset of these domains. In addition to structures de-

termined by X-ray crystallography (with a resolution below 3Å), SCOPe also

contains structures from NMR experiments. For each input file from NMR

experiments containing more than one model, a distance filter was applied to295

corresponding tripeptides in each model to avoid repetitions in the database.

A tripeptide structure was considered sufficiently different from another one al-

ready extracted from the same file, and was thus added to the database, if it

met at least one of the two following criteria: the RMSD on ϕ and ψ angles

was above 0.2 radians, or one of the dihedral angles differed by more than 0.6300

radians. In total, 6,740,433 tripeptide structures were extracted. Tripeptides

were classified by sequence (i.e. 8,000 tripeptide classes) and the backbone dihe-

dral angles were collected in a dataset called All, since no additional structural

criteria were considered for filtering.

A structurally filtered dataset, called Coil, was generated by removing305

tripeptides contained in α-helices or β-strands. For this, DSSP (Kabsch and

Sander, 1983; Touw et al., 2014) was employed to assign secondary structure

labels to each amino acid residue in the structures extracted from the SCOPe

database. A tripeptide was included in the filtered subset if none of its three

residues had a DSSP code of H or E. Note that π-helices or 3-10-helices, which310

are relatively rare in our database, were not filtered out because they are

usually small and can be observed inserted into coil regions. The secondary

structure filtering reduced the number of tripeptide structures to 3,141,877,

which is less than half the size of the All dataset.

For the analyses in this work, for both All and Coil datasets, we considered315

only tripeptides involving peptide bonds in trans conformation, which corre-

sponds to the vast majority of the instances. Therefore, tripeptides involving

at least one peptide bond in cis conformation were removed. We treated the

cases of glycine and proline separately. We excluded from the datasets tripep-

tide sequences for which the number of available structures was very low, and320
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thus not statistically interpretable. The number of required structures depends

on each test, and is detailed in Sections 4.2.1 and 4.2.2.

It should be noted that, in order to collect enough data for the analyses,

we were less restrictive in the construction of the datasets compared to previ-

ous studies (e.g. Rata et al. (2010); Ting et al. (2010)). Nevertheless, this is325

acceptable in our case since our aim is not to develop a (differentiable) statisti-

cal potential, but to perform statistical tests, and because our implementation

of these tests is reasonably resilient to noise. For the sake of rigor, we gen-

erated more restrictive (supposedly higher-quality) datasets considering only

structures determined by X-ray crystallography with a resolution below 2Å.330

We performed the same analyses using these datasets, but considering only

tripeptides for which the amount of data allowed a correct implementation of

the statistical tests. Overall, the analyses (restricted to a small number or

tripeptides sufficiently represented in the so filtered datasets) led to the same

conclusions regarding the rejection of the Flory’s isolated-pair hypothesis and335

the interdependent effects of left and right neighbors. These results are not

presented here.

4.2. Statistical methodology

4.2.1. Rejecting Flory’s isolated-pair hypothesis

For a given central amino acid residue C, the associated dihedral angles

(ϕ, ψ) describing its conformation follow a certain distribution FC , which is

supported on the 2-dimensional flat torus T2. If left and right neighbors are

taken into account, this distribution may also depend on their identities, L and

R, respectively, it is noted as GL,R
C , and it is also supported on T2. This can be

rewritten as follows:

(ϕ, ψ |C)⇝ FC (ϕ, ψ |C,L,R)⇝ GL,R
C , (1)

where, for each value of C, L and R, (ϕ, ψ |C) and (ϕ, ψ |C,L,R) are two-

dimensional random variables following the above-mentioned distributions. In

order to evaluate the dependence of the backbone dihedral angles corresponding
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to residue C on the identity of its nearest neighbors, the following statistical

test has to be performed:

H0 : FC = GL,R
C ∀C,L,R amino acids. (2)

This corresponds to a goodness-of-fit (GoF) test between two continuous dis-340

tributions on T2. This test has to be implemented for each combination of

all possibles C, L and R. Note that it suffices to reject the null hypothesis

FC = GL,R
C for one single tripeptide C,L,R in order to reject (2). The statisti-

cal analysis of protein conformations was the motivation of the recent work by

González-Delgado et al. (2021) to explore the definition of two-sample goodness-345

of-fit tests for measures on T2. In that paper, two approaches were proved

efficient both on synthetic data and experimental protein conformation data.

The presented techniques use the p-Wasserstein distance as metric between dis-

tributions, which corresponds to the p-th root of the minimum transportation

cost between two probability laws. This metric takes the geometry of the un-350

derlying space into account, and therefore accounts for the periodicity of the

Ramachandran space. We refer to Peyré and Cuturi (2019) for an introduc-

tion to Optimal Transportation. Here, the first of the approaches presented by

González-Delgado et al. (2021) has been implemented, consisting on testing the

equality of the projected laws on the torus geodesics, which are circles T = R/Z.355

Due to the large sizes of the available protein conformation datasets, fur-

ther practical considerations had to be taken into account. The first one was

the occurrence of ties when projecting data on the torus to the marginal one-

dimensional space. As the test is built under the assumption of continuity of

distributions, ties can bias the statistic realizations and therefore the resulting360

p-values can distort the test results. To break ties, a uniform background noise

was added to the data. The second one is intrinsic to the mathematical proce-

dure and to the exacting null hypothesis (2). Indeed, when the number of data

points increases, the test becomes more sensitive to small discrepancies, and

rejects the equality of distributions when those differences may not be relevant365

for practical purposes. Several approaches can be considered to deal with this.
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Here, we decreased sampling resolution and searched for significant differences

at a coarser scale. If, for a given low resolution, hypothesis (2) is rejected,

the conclusion will be the same when all data points are taken into account.

When analyzing the corresponding results, note that p-values for this test are370

computed via a Monte Carlo simulation, so they are lower-bounded by 1/Nsim,

being Nsim the number of Monte Carlo iterations.

We carried out the GoF test assessing Flory’s hypothesis (2) considering

tripeptides having more than 200 conformations in the corresponding dataset.

For each tripeptide, we performed one test comparing the available sample375

drawn from GL,R
C (all the points for a given tripeptide) with an equally sized

subsample drawn from FC . This comparison was repeated for 10 subsamples,

leading to 10 p-values (p1, . . . , p10), and we used the minimum adjusted p-value

among these tests (p = 10min10i=1 pi) as a global p-value for each tripeptide.

These p-values were then adjusted for multiplicity (Bonferroni, 1936) across380

tripeptides having the same central residue, whose minimum is depicted in Ta-

ble 1, for each central amino acid type.

4.2.2. Assessing interdependence between left and right neighbors

We aimed at assessing whether the distribution of (ϕ, ψ), which depends on

the three amino acids L, R and C, can be separately inferred from the informa-

tion of L-C and C-R dipeptides, or the information on the tripeptide L-C-R is

unavoidably required. Ting et al. (2010) stated that, under the hypothesis

L and R independent given C and (ϕ, ψ), (indep)

the probability density of (ϕ, ψ) given the whole tripeptide, f(ϕ, ψ |L,C,R),

can be obtained from the information of the densities given by the left and right

dipeptides as

f(ϕ, ψ |L,C,R) = f(ϕ, ψ |L,C) f(ϕ, ψ |C,R)
S f(ϕ, ψ |C)

, (3)
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where S is a normalization constant. Moreover, Rata et al. (2010) proved the

reciprocal implication. We have thus the following equivalence:

L and R independent given C and (ϕ, ψ)

⇔ (4)

f(ϕ, ψ |L,C,R) = f(ϕ, ψ |L,C) f(ϕ, ψ |C,R)
S f(ϕ, ψ |C)

The proof of this equivalence is stated in the Appendix for completeness.

If Equation (3) is false, then, the probability density of (ϕ, ψ) of a cen-385

tral residue for a given tripeptide cannot be inferred from the information on

the corresponding dipeptides (at least via the functional form stated by Ting

et al. (2010)). According to the equivalence (4), disproving hypothesis (in-

dep) is enough to disprove (3). In order to test (indep), one can perform a

χ2 independence test between the categorical variables L and R for each fixed390

value of C and (ϕ, ψ). This requires a proper discretization of the space T2,

in order to obtain a set of values for (ϕ, ψ) that accurately represent the bi-

dimensional random variable and that allow the implementation of the statisti-

cal test. Generally, a finer or coarser discretization entails a more or less faithful

representation of the angular variable (ϕ, ψ), which ideally is continuous on T2.395

Consequently, an optimal discretization procedure will be the thinnest one al-

lowing contingency matrices of the maximum dimension and with a number of

points sufficiently large for the independence tests to be performed correctly.

We propose three different discretization methods, whose parameters should be

optimized. The three methods are based on:400

(D1) The choice of a representative set

R = {(ϕi, ψi)}i∈1,...,Nrep
⊂ T2 .

(D2) For each representative value (ϕi, ψi) ∈ R, the choice of the set of points

Ri = {(ϕij , ψij)}j∈1,...,Ji for which (ϕij , ψij) ≡ (ϕi, ψi) ∀ j ∈ 1, . . . , Ji,

where a ≡ b means that, in terms of the discretization, a and b belong to

the same space subdivision.
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The three proposed methods were built as follows and are illustrated in405

Figure (6):

(I) R is a homogeneous square grid and Ri are the points belonging to the

i-th cell.

(II) R is a homogeneous square grid and Ri are the points in the vertex-

centered ball BT2 ((ϕi, ψi), ri).410

(III) R is a subset of the dataset sampled uniformly and without replacement,

and the Ri are the points in the ball BT2 ((ϕi, ψi), ri).

For method I, the only parameter is the size a = 2π/
√
Nrep of the square

grid. It was chosen as the smallest value allowing maximum dimension contin-

gency matrices with a large enough number of points. Due to physicochemical415

constraints, the whole T2 space is not accessible, and thus we limited ourselves

to regions with non negligible density. To do so, a grid cell was kept only if

it contained a minimum number of data points (i.e. if Ji ≥ Nmin). For the

analyses presented here, we chose Nmin = 500 and Nrep = 30.

For methods II and III, the radius ri of each ball depends on (ϕi, ψi), and420

was determined in order to include a specific number Ji = J of points in the

ball, the same for all partitions. This allowed a discretization for which each

subdivision had the same number of data points, and thus for which all the tests

performed were comparable. In order to maintain a certain control on how (ϕ, ψ)

values are identified together, a maximum radius R was established and only425

balls with ri < R were kept. The number of points J at each ball was chosen

to guarantee contingency matrices with maximum dimension while providing a

thin and reliable discretization. For method III, the number of representative

points Nrep was also chosen according to the same considerations. Here, we

chose J = Nrep = 1000 and R = 0.1.430

It should be recalled that we do not need to perform tests over the whole T2

space. As the hypothesis (indep) is conditional to C and the continuous random
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(a) Method I. (b) Method II. (c) Method III.

Figure 6: The three proposed discretization methods.

variable (ϕ, ψ), it is equivalent to the hypothesis

L and R independent given C = c and (ϕ, ψ) = (ϕ0, ψ0)

for all amino-acids c and all ϕ0, ψ0 ∈ [−π, π].

Therefore, rejecting (indep) means rejecting the independence of L and R

for any fixed values of C and (ϕ, ψ). Consequently, implementing tests for a

subset of the discretized space will properly answer our question if a significant

result is retrieved.

The independence test was performed for the two aforementioned datasets,435

All and Coil, using the three proposed discretization methods, whose corre-

sponding parameters were chosen according to the previously specified consid-

erations. Given a central amino acid, one test was performed per point (ϕ0, ψ0)

of the chosen grid, associating a distribution of p-values to each central residue.

For methods II and III, sample sizes were fixed and therefore p-values can be440

quantitatively compared (as it is illustrated in Section 2.4). Note that results

follow the same general trend for all amino acid types (for the central residue

and the neighbors) and discretization methods. Note also that, unlike the test

described in Section 4.2.1, p-values are no longer lower-bounded and can take

any real positive value.445

As a large number of test was performed, a multiplicity adjustment was

implemented (Bonferroni, 1936). Finally, an overall p-value for each amino acid

was defined as the minimum adjusted p-value across the discretization.
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Simulation of non-rejecting tests: The intrinsic randomness of discretization

method III allows to simulate the proportion of non-rejecting tests for a given450

central amino acid. For s = 1, . . . , Nsim = 100, we sample a representative set

Rs, perform the independence test across Rs and compute the proportion p̃s

of p-values higher than a fixed threshold α = 0.05. The set of all p̃1, . . . , p̃Nsim

constitute a sample of the proportion of non-rejecting tests for the given amino

acid. As p-values are quantitatively comparable, so are the proportions p̃s.455

This corresponds to comparisons presented in Figure 5(b,d,f), between the two

datasets.

4.2.3. Polarity and size effect on interdependence: AUC score

In order to assess whether the nearest neighbors’ polarity and size have a

significant effect on their interdependence, we chose six representative amino-460

acids for each one of the groups defined in Section 2.3. The strategy was to

repeat the independence test for all central amino acid types, but restricting

the admissible settings of neighbors identities to those in these groups. For

polarity (resp. size) we computed (indep) p-values when left and right neighbors

belonged to the settings P-P, P-H, H-P and H-H (resp. L-L, L-S, S-L and S-S).465

However, reducing the number of classes that the categorical variables L and

R induces a power loss. In other words, if the information about the variables

whose independence we want to assess is trimmed-down, the test will have less

information to state any result with the same evidence. Nevertheless, relative

comparisons between two groups of p-values for the same number of classes are470

allowed, and statistically informative.

To facilitate a more direct comparison between settings, we defined a score

representing the strength of the interdependence of neighbors in a given config-

uration. For a given setting CL-X-CR, where CL, CR ∈ {P,H} (for polarity) or

CL, CR ∈ {L, S} (for size), let FCL,CR

Nrep
denote the empirical cumulative distribu-

tion function (ECDF) of the p-values retrieved after testing hypothesis (indep)

across a fixed discretization of size Nrep. Then, the Area Under the Curve
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(AUC) of FCL,CR

Nrep
is defined as

AUC(CL, CR) =

Nrep∑
i=1

(p(i+1) − p(i))F
CL,CR

Nrep
(p(i)), (5)

where p(i) is the i-th smallest p-value, for i = 1, . . . , Nrep, and p(Nrep+1) = 1. If

the AUC for a given setting is close to 1, then the corresponding p-values are

concentrated towards zero and, therefore, the statistical evidence that (indep)

has to be rejected is high.475

Appendix

Proof of (4)

Letting

1

S
=
P (L,C) P(C,R)

P(C) P(L,C,R)
, (6)

we have

P(φ,ψ |L,C,R) P(φ,ψ |C)
P(φ,ψ |L,C) P(φ,ψ |C,R)

=
P(φ,ψ, L,C,R) P(φ,ψ,C)

P(φ,ψ, L,C) P(φ,ψ,C,R)

P(L,C) P(C,R)

P(L,C,R) P(C)

=
P(L,R, φ, ψ ,C)

P(φ,ψ,C)

P(φ,ψ,C)

P(L,φ, ψ,C)

P(φ,ψ,C)

P(R,φ, ψ,C)

1

S

=
P(L,R |φ,ψ,C)

S P(L |φ,ψ,C) P(R |φ,ψ,C)
,

so that the conditional independence of L and R given C and (φ,ψ) is indeed

equivalent to (3).

Software and data availability480

The code implementing the statistical tests described in this work as well as

the datasets are freely available:

• Software: https://gitlab.laas.fr/moma/STINA

• Data: https://moma.laas.fr/static/data/tripeptide angles data.tar
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O., Tunyasuvunakool, K., Bates, R., Źıdek, A., Potapenko, A., Bridgland,

A., Meyer, C., Kohl, S.A.A., Ballard, A., Cowie, A., Romera-Paredes, B.,

Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D.A., Clancy,

E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein,

S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis,565

D., 2021. Highly accurate protein structure prediction with alphafold. Nature

596, 583 – 589.

27



Jung, Y.S., Oh, K.I., Hwang, G.S., Cho, M., 2014. Neighboring residue effects in

terminally blocked dipeptides: Implications for residual secondary structures

in intrinsically unfolded/disordered proteins. Chirality 26, 443–452.570

Kabat, E.A., Wu, T.T., 1973. The influence of nearest-neighbor amino acids

on the conformation of the middle amino acid in proteins: Comparison of

predicted and experimental determination of β-sheets in concanavalin a. Proc.

Natl. Acad. Sci. U.S.A 70, 1473–1477.

Kabsch, W., Sander, C., 1983. Dictionary of protein secondary structure: Pat-575

tern recognition of hydrogen-bonded and geometrical features. Biopolymers

22, 2577–2637.

Kang, H.S., Kurochkina, N.A., Lee, B., 1993. Estimation and use of protein

backbone angle probabilities. J. Mol. Biol. 229, 448–460.

Kohn, J.E., Millett, I.S., Jacob, J., Zagrovic, B., Dillon, T.M., Cingel, N.,580

Dothager, R.S., Seifert, S., Thiyagarajan, P., Sosnick, T.R., Hasan, M.Z.,

Pande, V.S., Ruczinski, I., Doniach, S., Plaxco, K.W., 2004. Random-coil

behavior and the dimensions of chemically unfolded proteins. Proc. Natl.

Acad. Sci. U.S.A 101, 12491–12496.

Lehmann, E.L., Romano, J.P., 2005. Testing statistical hypotheses. volume 3.585

Springer, New York.

Liljas, A., Liljas, L., Piskur, J., Lindblom, G., Nissen, P., Kjeldgaard, M., 2009.

Textbook Of Structural Biology. World Scientific Publishing, Singapore.

Lovell, S.C., Davis, I.W., Arendall III, W.B., de Bakker, P.I.W., Word, J.M.,

Prisant, M.G., Richardson, J.S., Richardson, D.C., 2003. Structure validation590

by cα geometry: ϕ, ψ and cβ deviation. Proteins 50, 437–450.

Milorey, B., Schwalbe, H., O’Neill, N., Schweitzer-Stenner, R., 2021a. Repeating

aspartic acid residues prefer turn-like conformations in the unfolded state:

Implications for early protein folding. J. Phys. Chem. B 125, 11392–11407.

28



Milorey, B., Schweitzer-Stenner, R., Andrews, B., Schwalbe, H., Urbanc, B.,595

2021b. Short peptides as predictors for the structure of polyarginine sequences

in disordered proteins. Biophys. J. 120, 662–676.

Morris, A.L., MacArthur, M.W., Hutchinson, E.G., Thornton, J.M., 1992.

Stereochemical quality of protein structure coordinates. Proteins 12, 345–

364.600

Oh, K.I., Jung, Y.S., Hwang, G.S., Cho, M., 2012a. Conformational distribu-

tions of denatured and unstructured proteins are similar to those of 20 x 20

blocked dipeptides. J. Biomol. NMR 53, 25–41.

Oh, K.I., Lee, K.K., Park, E.K., Jung, Y., Hwang, G.S., Cho, M., 2012b. A

comprehensive library of blocked dipeptides reveals intrinsic backbone con-605

formational propensities of unfolded proteins. Proteins 80, 977–990.

Ozenne, V., Bauer, F., Salmon, L., Huang, J.r., Jensen, M.R., Segard, S.,

Bernadó, P., Charavay, C., Blackledge, M., 2012. Flexible-meccano: a tool

for the generation of explicit ensemble descriptions of intrinsically disordered

proteins and their associated experimental observables. Bioinformatics 28,610

1463–1470.

Pappu, R.V., Srinivasan, R., Rose, G.D., 2000. The flory isolated-pair hypothe-

sis is not valid for polypeptide chains: Implications for protein folding. Proc.

Natl. Acad. Sci. U.S.A 97, 12565–12570.

Penkett, C.J., Redfield, C., Dodd, I., Hubbard, J., McBay, D.L., Mossakowska,615

D.E., Smith, R.A., Dobson, C.M., Smith, L.J., 1997. NMR analysis of main-

chain conformational preferences in an unfolded fibronectin-binding protein.

J. Mol. Biol. 274, 152–159.
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