
HAL Id: hal-03834006
https://laas.hal.science/hal-03834006

Submitted on 28 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Methodology to Construct Digital Twin Models
for Spacecraft Operations Using Fault and Behaviour

Trees
Nikolena Christofi, Xavier Pucel

To cite this version:
Nikolena Christofi, Xavier Pucel. A Novel Methodology to Construct Digital Twin Models for Space-
craft Operations Using Fault and Behaviour Trees. ACM/IEEE 25th International Conference on
Model Driven Engineering Languages and Systems (MODELS 22), Oct 2022, Montréal, Canada.
�10.1145/3550356.3561550�. �hal-03834006�

https://laas.hal.science/hal-03834006
https://hal.archives-ouvertes.fr


A Novel Methodology to Construct Digital Twin Models for
Spacecraft Operations Using Fault and Behaviour Trees

Nikolena Christofi

IRT Saint Exupéry, LAAS-CNRS, INSA Toulouse, Airbus

Defence & Space, Federal University of Toulouse

Toulouse, France

nikolena.christofi@irt-saintexupery.com

Xavier Pucel

DTIS-ONERA, ANITI,

Federal University of Toulouse

Toulouse, France

xavier.pucel@onera.fr

ABSTRACT
Successful satellite data reception requires the nominal operation of

the ground stations in charge of their health monitoring as much as

the spacecrafts themselves. Although the concept of Model-Based

Diagnosis (MBD) in the field of autonomous systems –such as satel-

lites, has long been researched and developed, that is not the case

for their ground systems. Both satellites and ground stations oper-

ate autonomously. The latter however, are not equipped with the

advanced Fault Detection, Isolation and Recovery (FDIR) capabili-

ties one finds today on-board all orbiting spacecrafts. The aim of

the study presented in this paper is the improvement of ground

stations’ operational diagnostics by providing the operators with

ad-hock, Operations-Dedicated Models (ODMs). The latter serve as

a basis for the construction of the system’s Digital Twin (DT) mod-

els. These models allow the operators react more quickly and more

precisely to alarms raised by the station. By helping the operators

identify the malfunction and correct it in the quickest delays, they

can avoid loosing the next satellite telemetry (TM) data, thus saving

precious time and costs. This would increase both the availability

and maintainability of the system. In a larger framework, ODMs

are ideally concurrently built and connected with the engineering

and safety models of the system, in a sort of virtual continuous

improvement loop. While the utter purpose of ODMs is their us-

age as the system’s DTs during operations, they also contribute to

the stations’ architecture and robustness continuous improvement,

through increasing its fault detection and mitigation capabilities.
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1 INTRODUCTION
In the era of digital communications, models are becoming preva-

lent for the development of complex systems, especially when time

and safety are critical. Nevertheless, the use of models is not ex-

tended to the field of operations. When operating a satellite system,

operators need to detect and isolate –or even mitigate, any occurred

fault in a very limited time-frame. However, satellite operators have
no exhaustive knowledge of the system architecture, nor its under-

lying design. They are only expected to monitor the health state

of the system and detect any deviations (called symptoms) of it
components in the so-called housekeeping data.

Operators’ troubleshooting tasks vary depending the health sta-

tus of the system at each given moment, as indicated by the regis-

tered data. Per contra, if a symptom –or a combination of symptoms,

is unknown i.e. system designers did not foresee its occurrence,

operators are expected to diagnose the system, in order to eliminate

the fault, and restore functions to their nominal state (or the least

harmful possible). Thus, if the anomaly is not included inside the

symptoms’ database (no troubleshooting procedures associated),

the operators must take individual action.

These actions are usually based on the operators’ knowledge and

experience. If this knowledge were to be combined with knowledge

of the system itself (architectural and behavioural, as well as func-

tional and dysfunctional), operational diagnosis could be improved

significantly. For this reason the authors propose the creation of

an Operations-Dedicated Model (ODM) [5], representing a Digital

Twin of the Operations and Maintenance system tasks, for Fault

Detection and Diagnosis (FDD).

With the ODM’s integration inside a monitoring tool, the op-

erators will be provided a dedicated User Interface (UI) to help

them identify anomalies more efficiently (in less time, and with less

effort). This will allow them to restore the system more quickly

–than currently, where no operations-model is available to them.

The authors propose a methodology for the creation of ODMs using

the formalism of Behaviour Trees (BTs), taking as input system de-

sign information, found inside Fault Trees (FTs). The system health-

monitoring data received at each satellite passage and lessons learnt

from operating and maintaining the system i.e. Return of Experi-

ence (RoE), are used to feed the Digital Twin model.
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FTs are produced from system Reliability, Availability and Safety

(RAMS) analyses, or Model-Based Safety Assessment (MBSA) mod-

els. They thus incorporate dysfunctional system information, but

also, indirectly, functional information, since they use as input Sys-

tems Engineering (SE) data –including SE models. In the latter case

we refer to Model-Based Systems Engineering (MBSE). For this

reason FTs constitute a good source of information for the creation

of a model dedicated to operational diagnosis. We use a Satellite

Ground Station (GS) architecture to demonstrate our proposal.

The structure of the paper is as follows. Related work on current

operational diagnosis approaches and BTs is provided in Section 2.

Section 3 contemplates the usage of the ODM as the system’s DT.

Section 4 describes the proposedmethod; basic terms are formulated

and methodological steps are provided in detail. The method is

illustrated with a use case example. Finally, Section 5 discusses the

proposed method’s limitations and Section 6 draws conclusions.

2 LITERATURE REVIEW
Recently the practise of integrating experimental design in sys-

tem modelling is being explored. Virtual design in combination

with operational data consist the future of the SE practise [15].

Originally introduced as a means to break information silos and

reduce verification and validation (V&V) costs, by allowing design

improvement cycles early on the system development –and not at

the integration and testing phase, MBSE is being widely adopted

by large agencies and organisations around the world, for a variety

of aerospace applications. Notable examples are NASA’s Europa

Clipper [3] and Mars 2020 [12] missions. The enabling of MBSE

in combination with the development of Industry 4.0 inspired the

development of the DT concept and technology. The past few years

DTs are becoming an indispensable part of model-based systems

development. An example being the largest aircraft constructors,

Airbus and Boeing, who are both working towards developing DTs

for their most recent aircraft [8].

A Digital Twin (DT) is a virtual representation of a physical

product, asset, process, system, or service that allows us to under-

stand, predict, and optimise their performance for better business

outcomes [17]. It is essentially a digital version of a system which

can also be used for V&V activities. A DT provides an accurate

representation of a system’s physical structure, logical behavior,

physics analytics, its functionality e.g. data processing and commu-

nication interfaces [19]. It is used throughout a system’s life cycle

for evaluating keymetrics and compliances [16]. In the past few

years, the use of DTs in a variety of industrial operations is being

explored exhaustively. Nevertheless, and as stated [17], “there is

still a need to identify its value in industrial operations mainly in

production, predictive maintenance, and after-sales services”.

The field of Model-Based Diagnosis (MBD) is an auspicious can-

didate for combining with DTs. The greatest challenges still faced

in the MBD world are related to system modelling i.e. how to better

and more realistically represent the system in question. Within the

context of Discrete Event Systems (DES), FDD has made signifi-

cant advancements in the last decades [4] [13]. The most popular

solutions consist of Finite State Automata (FSA) [21] [18] [20] or

Petri Nets (PNs) [2] [11] variations. With PNs lately dominating

the MBD world, they still present major drawbacks and unresolved

issues regarding the representation of complex systems, hence their

rare application in real-world problems.

More specifically, in petri-nets or automata-based methods (PNs

transitions are similar to event firings in FSA), only the start and fin-

ish of each simulated event is considered in the modelling, resulting

to neglecting the variable dynamics that take place in between [9].

For this and other reasons –explained below, the authors have inves-

tigated other possible solutions, resulting to the choice of Behaviour

Trees (BTs).

BTs belong to the DES family. They were first invented as a tool

to build modular Artificial Intelligence (AI) in computer games. A

known alternative to Finite State Machines (FSMs), BTs are meant

to provide better modularity, scalability, extendibility, adaptability

and reuse of code [6], and to be easier to understand for humans,

thus allowing incremental functionality design and efficient testing.

The choice of BTs for the ODM construction was inspired by

the fact that BTs can easily provide a detailed view of the system’s

current state –in different decomposition levels. This is an indis-

pensable information for the system’s operators. More specifically,

BTs represent (and implement) a way to control the execution of

a set of concurrent processes. Each concurrent process is repre-

sented by a leaf node (action; behaviour/function to be executed).

Parent nodes (Sequence, Fallback/Selector, Parallel) specify which

children nodes must be visited, and in which order. BTs define how

the behaviour evolves when one (or all) of its children behaviour

succeeds or fails.

More precisely, a Behaviour Tree (BT) is a tuple ⟨B, root, children⟩
where B is a set of behaviours, root ∈ B is the root behaviour, and

children : B → B∗ is a function which associates each behaviour

with an ordered (and possibly empty) list of children behaviours.

In a BT, each behaviour has exactly one parent –except the root

behaviour, which has no parent.

In the next section we further justify our choice of BTs as the lan-

guage semantics for building the ODM. Moreover, we explain why

BTs also meet the DTs requirements; where 𝐷𝑇 = 𝑂𝐷𝑀𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 +
(𝑅𝑜𝐸). More information is provided below.

3 ODM EXPLOITATION AS DIGITAL TWIN
Figure 1 portrays the interactions between the system architects

and safety experts, the ODM design team and the operators, with

the ODM and the ODM DT. The left side boxes represent pre-

system-deployment interactions. The right side boxes illustrate

post-system-deployment activities.

As illustrated in Figure 1, ODMs serve a double purpose. On

the one hand, since they are concurrently created with the SE

& SA/RAMS models, they can provide feedback to the designers,

specific to the system’s health monitoring and FDIR aspects. This

allows the improvement of the system’s structural and behavioural

design.

On the other hand, following the system deployment, the ODM

can immediately be used as a prototype for the system’s DT. That

is because BTs are executable. The ODM can facilitate the design

of test scenarios, distribute diagnosis objectives across the various

activities, and ensure that operators are given realistic tasks. The

DT model is then periodically updated with any new information

supplied by the received system operational data.
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Figure 1: Overview of the proposed methodology for the construction and usage of an operations-dedicated model, used as
the base to construct a digital twin monitoring model of the system, with the integration of operational data feedback © N.
Christofi.

Eventually, the DT model will be used by operators for FDD

purposes. For this an additional intuitive User Interface (UI) is

needed, for the operators to be able to execute and exploit the

models. This is possible by integrating the DT inside monitoring

tools equipped with UI capabilities. BT libraries already provide

similar tools, such as Groot for the BehaviourTree.CPP library [10].

What is more, operational feedback can eventually contribute to

the amelioration of the original system, by initiating modifications

to the existing architecture while providing compelling information

for future systems’ design.

Regarding our BT implementation to construct the ODMs, we

use the PyTrees (python implementation of BTs) library [7]. We

found PyTrees relatively easy and intuitive to code with –in com-

parison to the C-based library alternative we tested, namely Be-

haviourTree.CPP [10]. This way any engineer/scientist can build

a BT model, with no particular programming background or de-

veloper skills. In the subsection below follows a more elaborated

Operate system

and mitigate faults

Operate system

in degraded mode

Operate system

in nominal mode

Detect fault Control system

Figure 2: The BT for system operation with fault detection
and mitigation; children are ordered from left to right © N.
Christofi.

description of BTs, including a definition of its basic constituting

elements.

To establish ODM’s operational diagnosis capabilities, its lan-

guage semantics must enable themodelling of FDD related elements.

That is, the system’s fault detection, automatic diagnosis and recov-

ery features, as well as its fault mitigation mechanisms. Moreover,

these semantics must allow associating health indicators to system

elements. To that end, we extended the PyTrees library with three

entirely new types of nodes, so as to enhance ODMs’ system moni-

toring features. Regarding health indicators, we have have so far

enriched the status of each BT behaviour (other than the standard

“Success”, “Failure” and “Running”) with associated alarms. A visual

tool demonstrating the feasibility of our approach has also been

implemented.

In the following section we present basic BT definitions, as well

as our contribution as regards to the extension of the BT library to

meet the ODM needs. For that we provide a detailed description of

each newly defined node. We then outline the associated developed

methodology for the ODM creation from system dysfunctional

models.

4 METHODOLOGICAL DESCRIPTION FOR
THE ODM CREATION

Throughout system development, ODMs must gather all system

monitoring relevant information, for performing automatic diag-

nosis and hinting to a single failure candidate. During system op-

erations, ODMs must be easily readable and usable by operators,

so as to aid them in their troubleshooting tasks. BT semantics can

fulfill both these causes, due to the facility in which one can model

complex system behaviours, as well as the intuitiveness of their

construction and format. Below we provide basic definitions on

BTs as well as the definitions we have introduced within the lan-

guage semantics, to better suit the requirements for the building

and exploitation of ODMs.
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4.1 ODM Semantics Description: BTs
Figure 2 illustrates a BT, in which the root behaviour is named

“Operate system and mitigate faults”. Its children are named “Op-

erate system in nominal mode” and “Operate system in degraded

mode”. The former has children behaviours, while the latter is a

leaf behaviour. Each behaviour is composed of its children.

Definition 4.1 (Behaviour status). The set of possible statuses for
behaviours is the finite set S = {Idle, Running, Success, Failed}.

At each instant in the execution of a BT, the state of the BT

is a function 𝑠𝑡𝑎𝑡𝑒 : B → S, which associates a status to each

behaviour in the tree.

A behaviour whose status is not Running can be started by its

parent, and its status then becomes Running. A Running behaviour

can be interrupted by its parent; its status then becomes Idle. A

Running behaviour can also autonomously change its status to

Success or Failed.

Leaf behaviours are used to represent the actual activities im-

plemented by the system, under the form of concurrent processes.

Their execution is orchestrated by their parent behaviours, which

are usually picked among a set of predefined composite behaviours.

We use four predefined types of composite behaviours: Seqence,

Fallback and ParallelAll.

Definition 4.2 (Sequence behaviour). When a Sequence behaviour
starts, it starts its first child. When the currently running child

succeeds, the Sequence behaviour starts its next child, or succeeds

if it is the last child. If any child behaviour fails, the Sequence be-

haviour fails at the same instant. In this paper Sequence behaviours

are drawn with gray signal shapes .

Definition 4.3 (Fallback behaviour). When a Fallback behaviour

starts, it starts its first child. When the currently running child

fails, the Fallback behaviour starts its next child, or fails if it is the

last child. If any child behaviour succeeds, the Fallback behaviour

succeeds at the same instant. In this paper Fallback behaviours are

drawn with gray octagon shapes .

Sequence and Fallback behaviours have at most one running

child at each instant.

Definition 4.4 (Inverter behaviour). An Inverter behaviour has
exactly one child. It starts its child when it starts, and is running

when its child is running; succeeds when its child fails, and fails

when its child succeeds. We represent Inverters by triangle arrow

decorations .

Definition 4.5 (ParallelAll behaviour). When a ParallelAll be-
haviour starts, it starts all its children in parallel. It succeeds if

and only if all its children have succeeded. If one child fails, Par-

allelAll behaviour fails and interrupts the rest of the children. In

current literature ParallelAll behaviours are simply called Parallel.
We chose to modify its standard name for distinction reasons with

the supplementary parallel behaviour we introduced, as defined

shortly below. In this paper, ParallelAll behaviours are represented

by gray ∧-shaped trapezia .

In addition to the standard composite behaviours presented

above, we introduced three new BT behaviours, related to semantic

translations from FTs and to fault diagnosis. They are respectively

called ParallelAny and Fault Detection and Fault Avoidance

behaviours.

Definition 4.6 (ParallelAny behaviour). When a ParallelAny be-

haviour starts, it starts all its children in parallel. It fails once all its

children have failed. If one child succeeds, ParallelAny behaviour

succeeds and interrupts the rest of the children. We represent Par-

allelAny behaviours by ∨-shaped gray trapezia .

Definition 4.7 (Fault detection behaviour). A Detect behaviour is
an atomic behaviour dedicated to detecting a fault. In this behaviour,

Success means that it has detected the fault. Otherwise, it stays in

the running mode and never fails. Fault detection behaviours are

represented by diamonds .

Finally, our methodology uses a type of behaviour that can be ei-

ther atomic or composite, but their semantic is defined with respect

to a specific fault event.

Definition 4.8 (Fault avoidance behaviour). A Fault avoidance
behaviour is a behaviour that should fail when the fault event

occurs, and never succeed. It can be atomic or composite. In this

paper, all behaviours whose names start with “Avoid” are Fault

avoidance behaviours.

Fault avoidance behaviours are always associated with a fault

event from a FT. They do not always make sense from an opera-

tional point of view, and are mostly an artifact used as a temporary

translation between the FT and the ODM. Note that in a composite

Fault avoidance behaviour, its children must be compatible with

the Fault avoidance specification, otherwise the BT is invalid, and

its semantic hence undefined.

In Figure 2, the semantics of the BT are as follows. The top-

most behaviour is a Fallback, i.e. it tries to run its first child, and

in case of failure, falls back to its next child. In this instance, the

first behaviour executed is “Operate system in nominal mode”. The

nominal mode is implemented by a ParallelAll behaviour, that runs

the inverted “Detect fault” and “Control system” behaviours in

parallel.

When a fault is detected, the “Detect fault” succeeds, so its in-

verter fails, and thus thewhole nominal mode behaviour fails, which

interrupts the “Control system” behaviour. Similarly, if the “Con-

trol system” fails for some internal reason, the nominal mode fails

and interrupts the “Detect fault” behaviour as a result. When the

nominal mode fails, the root Fallback behaviour starts the “Operate

system in degraded mode” behaviour.

4.2 ODM creation
As mentioned earlier, we use FTs as an input source for ODM con-

struction. FTs are the produced result of Fault Tree Analysis (FTA).

FTA performs a top-down (deductive) analysis, expressed by the

FT, which proceeds through successively more detailed (i.e. lower)

levels of the system design, until the probability of occurrence of

undesirable event –viz. Feared Event (FE), can be predicted in the

context of its environment and operation [14] [1]. The undesired

event constitutes the top event –or Feared event (FE), of a Fault
Tree (FT) diagram, and represents a complete failure of a product

or process. FEs are characterised by their importance of impact to

the system itself and its environment (e.g. nature, operators, pas-

sengers). The FT segments leading to a FE define all of the things
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that could go wrong (faults) to cause the FE e.g. loss of telemetry

(TM) image data.

Our methodology for obtaining an ODM from a FT is composed

of two steps:
1. Translate each FT into a BT (BT-v.1). This step is automated;

the purpose is to provide a first draft which accounts for all

the faults that can affect the system.

2. Elicit all BTs into a single BT (BT-v.2), in which each be-

haviour represents an actual activity in operations. This step

is done manually by a person with modelling skills, but more

importantly operational experience.

During the first step, the FT is transformed into a BT as follows.

Definition 4.9 (Fault tree transform FT2BT). The transform of a

FT into a BT is implemented by the function FT2BT defined on FT

nodes as follows.

I. If 𝐹𝑇𝑁 is a basic event named “Fault event 𝑋 ”, then:

FT2BT (FTN ) is an atomic fault avoidance behaviour named

“Avoid fault event 𝑋 ”.

II. If 𝐹𝑇𝑁 is an AND gate labelled “Fault event𝑋 ” with children

nodes 𝐹𝑇𝑁1, 𝐹𝑇𝑁2, . . . , then FT2BT (FTN ) is a ParallelAny
behaviour named “Avoid fault event 𝑋 ”, with children be-

haviours FT2BT (FT1), FT2BT (FT2), . . . .
III. If 𝐹𝑇𝑁 is an OR gate labelled “Fault event 𝑋 ” with chil-

dren nodes 𝐹𝑇1, 𝐹𝑇2, . . . , then FT2BT (FTN ) is a ParallelAll
behaviour named “Avoid fault event 𝑋 ”, with children be-

haviours FT2BT (FT1), FT2BT (FT2), . . . .

During the second step, firstly, Fault avoidance behaviours are
elicited to “Operate”-type behaviours. That is because BT-v.2 repre-
sents an executable system model. Then, critical Fault avoidance
behaviours are elicited to a parent Sequence “Operate without criti-
cal faults” behaviour, with children an Inverted Fault detection i.e.

“Detect critical faults” behaviour, and an “Operate with degraded
faults” behaviour.

4.3 Example
In this subsection we illustrate our methodological approach pro-

posal with the help of a simplified Ground Station (GS) use case.

For the needs of the paper, we only demonstrate a small part of the

dysfunctional analysis that took place in order to produce the FT

shown in Figure 3. The Radio-frequency (RF) subsystem of the GS

system was chosen for the methodology application demonstration.

The case study contemplates the FE of loss of satellite TM data

due to a malfunction of the RF subsystem. Here we consider the RF

subsystem as isolated from the rest of the GS system. The faults

consisting the FT of Figure 3 represent only critical single faults.

That is because the information source for the analysis was solely

the Return of Experience (RoE) from GS operators. Hence only OR

gates are included in the FT: the represented fault events are single

(single event occurrence leads to the higher level fault expression),

and not combinatory (a combination of faults leads to the higher

level fault). The latter would need an AND gate for their expression.

Only critical faults were of interest for the specific study.

In Figure 3 we can see that the loss of data due to the RF sub-

system malfunction could be caused by a critical (i) RF chain, (ii)

Eb/N0 gain, or (iii) Antenna failure. Human error is out of context

for this study. Failure (i) could be caused by a critical (i.a) cabling,

(i.b) Antenna reception, or (i.c) frequency converter failure. Critical

failure of the RF subsystem cables could be caused by a mechanical

failure due to overloaded stress on the cables, or by physical degra-

dation of the cables due to unforeseen environmental conditions

and animals.

Failure (iii) could be caused by a critical failure of the Antenna

(iii.a) positioner (rotator of the Antenna parabola), (iii.b) cables,

(iii.c) cylinder (Antenna base body), or due to (iii.d) natural degra-

dation of the Antenna (environmental phenomena and wildlife).

The first step in our methodology is to transform the FT into a

BT, based on 4.9 - I, II & II. The result is shown in Figure 4.

Based on rule no.I, the FE “Loss of data cause RF at entry” be-

comes an Avoid type of behaviour. This results to the Root Paralle-

lAll behaviour “Avoid data loss due to critical RF failure”. Similarly,

the rest FT nodes –still based on rule no.I, are translated into re-

spective “Avoid” behaviours. Since all the gates present in the FT

of Figure 3 are OR gates, following rule no.III, the respective parent
BT nodes are represented by ParallelAll behaviours.

According to the second step of the method, BT-v.1 is elicited

to BT-v.2, as illustrated in Figure 5. Thus all “Avoid”, behaviours

become “Operate” behaviours. The Root behaviour is represented

by the Fallback node “Operate RF Subsystem (SS)”. Its children

consist of the ParallelAll behaviour “Operate RF SS without critical

faults” and the leaf behaviours “Operate RF SS in degraded mode”

and “Terminate RF SS’s Functions”. If the subsystem fails to operate

nominally, it tries to enter a degraded mode. There the subsystem

is still in operation but with degraded functions. If operating the

subsystem in degraded mode fails too, the subsystem executes a

fail-safe action and terminates all subsystem’s functions.

As instructed by the second step of the method, each ParallelAll

“Avoid critical faults” behaviour becomes an “Operate without critical
faults” Sequence behaviour with an Inverted “Detect critical faults”
and an “Operate system in degraded mode” behaviours as children.
That is because, if the system fails to detect critical faults, a “Success”

status will be sent to the parent node –because of the Inverter. This

will make the Sequence parent node tick the second child, where

the system will attempt to operate under non-nominal conditions.

We can call this a fail-safe design.

5 DISCUSSION
The first BT version was automatically created from the provided

FT. BT-v.1 did not include any supplementary system information,

as for example on how to avoid certain faults. In the second BT

version we can see that certain elements, which were included

neither in the FT nor BT-v.1, are useful for system operation and

specifically, fault mitigation.

BT-v.2 shows that by being able to detect a specific behaviour,

we can manage to operate the system even under non-nominal
conditions. For example, by adding additional sensors, redundant

components or further surveillance on the Antenna body, the risk

for its associated fault occurrence can be greatly reduced. The latter

contributes to increasing the GS’s Availability and Maintainability

features.

Surely, the method implementation on a real-life complex sys-

tem is necessary, to order to evaluate its scalability and facility
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Figure 3: Extracted Fault Tree for a Ground Station (GS) System regarding data loss of satellite telemetry (TM) data. Focus on
the RF Subsystem. Feared Event: Loss of TM data due to wrong RF at the GS TM receptor.

Avoid data loss due

to critical RF failure

Avoid critical

RF chain failure

Avoid critical RF

Antenna failure

Avoid critical
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ception failure

Avoid critical

cable degradation

Avoid critical

RF cables failure

(MECH stress)

Avoid critical

RF cables degra-

dation (ENVR)

Avoid critical

Antenna positioner

failure (PWR)

Avoid critical

Antenna HW

degradation (ENVR)

Avoid critical An-

tenna body failure

Avoid critical an-

tenna cables failure

Figure 4: First version of the BT, derived automatically from the FT depicted in Figure 3.

of application. In addition to that, it is imperative that operators

provide feedback on the methodology and the intuitiveness of ODM

exploitation.

6 CONCLUSION
In this paper the authors propose a novel methodological approach

on how to construct Operations-Dedicated Models from Fault Trees,

using the Behaviour Tree formalism. The method is illustrated with

a Ground Station use case example. The limitations of the pro-

posal are discussed, as well as future work opportunities. Finally,

the authors contemplate the methodology validation by planned

interactions with system operators and modellers, and extended

dissemination to DevOps experts, through conference presenta-

tions.
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Operate RF

Subsystem (SS)
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degraded RF chain

Operate RF SS
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Figure 5: Second version of the BT, derived from eliciting the first BT version (Figure 4); follows format of Figure 2.
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