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Abstract: In this article, the problem of modeling and computing the optimal collision avoidance
maneuvers for multiple short-term encounters is presented. Several metrics defining the overall collision
risk are analyzed. These include imposing lower bounds on the miss-distance or the Mahalanobis
distance at each corresponding time of closest approach (TCA) or upper-bounds on the orbital collision
probability. The avoidance maneuvers are modeled as impulsive ones in a single direction of the local
frame and for a priori fixed dates for operational motivations. Station-keeping constraints are also
imposed via linear inequalities on the relative states at each TCA. The specific nature of the imposed
constraints is dictated by a practical framework provided by the French Space Agency (CNES). This
results in formulating the maneuver design problem as an optimization problem with linear objective
and nonconvex quadratic constraints. Different algorithms are presented to solve this problem. Finally,
the relative efficiency of the proposed approaches is evaluated and analyzed on two realistic conjunctions
built from data extracted from the CNES database and on academic examples of higher complexity.

Keywords: Collision Avoidance Maneuver, Multiple Short-term Encounters, Impulsive Maneuvers,
Quadratically Constrained Nonconvex Optimization

1. INTRODUCTION

Nowadays the risk of orbital collision for controlled satellites,
especially in low orbits, needs to be assessed and mitigated by
space agencies and owners/operators (O/O) of the field. When
the predicted risk is too high according to mission requirements,
a collision avoidance strategy usually consists in one or several
evasive maneuvers. These are planned by taking into account
both fuel consumption minimization (for preserving the life-
time of the satellite) and other operational constraints, like
station-keeping by the time the threat is gone. More demand-
ing operational constraints like disjunctive thrusts, minimum
elapsed time between two thrusts, saturation constraints, etc.,
are often necessary when low-thrust (or electric) propulsion is
used.

In this study, the collision avoidance problem between one
active low-thrust satellite involved in short-term encounters
with several uncontrolled objects, is considered. The active
satellite, also called primary p, is initially set on a reference
orbit. The other involved objects, called secondaries s j, with
j = 1, . . . ,N, are assumed to be uncontrolled space debris.
The use of low-thrust propulsion is modeled, like in the work
of Hennes et al. (2016), by a sequence of impulsive thrusts
on specifically imposed thrust ranges over which the thrust
magnitude is spread. Furthermore, due to the lack of precision
in measurements, the quantification of the collision risk is also
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a difficult task and different risk assessment indicators include,
for each pair (p,s j): (1) the miss-distance at the Time of Closest
Approach (TCA); (2) the Mahalanobis miss-distance at TCA;
(3) the short-term or (4) maximum collision probability (see
for instance Fernández-Mellado and Vasile (2021) and Sec. 2
for details).

Hence, in this context, the collision avoidance problem is for-
mulated as a constrained optimization problem: it consists in
computing a fixed-time fuel optimal, finite sequence of impul-
sive maneuvers performed by the active spacecraft such that
(one of) the risk reduction criteria above, as well as saturation
and operational constraints, are met.

Even in this simplified and restricted theoretical framework,
there are relatively few existing works like those of Duncan
et al. (2011); Kotz et al. (2012), which are based on defining
a penalty function as the sum between the objective function
and a penalty parameter multiplied by a measure of violation
of the constraints. The resulting non-constrained optimization
problem is solved either with derivative-free methods or by
evolutionary optimization methods.

In this work, we revisit and analyze several reformulations
of the Collision Avoidance Maneuver (CAM) design problem,
when considering short-term encounters, in a specific practical
framework provided by the French Space Agency (CNES). By
extending and adapting the methods of Slater et al. (2006),
Bombardelli and Hernando-Ayuso (2015) and Armellin (2021),
the formulation of nonconvex Quadratically Constrained Linear
Programming (QCLP) problems is proposed in Section 2.



These are known to be NP-hard (Vavasis (1995)) as soon as
more than one quadratic constraint is present, with few algo-
rithms existing in the literature ((Floudas and Visweswaran,
1995, Sec. 8)). We focus in Section 3 on two distinct classes
of numerical approaches composed each of two different meth-
ods. The first two methods rely on SemiDefinite Programming
(SDP) as a common basis, with the first one exploiting recent
results in semi-algebraic optimization, while the second one
rather uses a randomization step. The second class consists of
branch and bound (B&B) algorithms with set-based arithmetic
(boxes or ellipsoids). On the one hand, the more sofisticated
and mature approach of the IBEX software 1 is considered,
which uses contractors (based on a filtering concept borrowed
to constraint programming). On the other hand, a prototype
experimental algorithm inspired by the ellipsoid method is in-
vestigated.

While lacking exhaustiveness, our choice of numerical ap-
proaches has a twofold motivation: firstly, we are interested in
providing a stand-alone algorithm that can be directly included
in existing CNES software tools; secondly, we considered both
general well-established routines that converge towards global
optimality and more ad-hoc procedures that are efficient on
practical CNES examples. Therefore, in Section 4, we compare
and evaluate these different approaches on realistic space and
academic examples, using IBEX as the reference method be-
cause of its greater maturity.

Notations: Op×m and Im denote respectively the null matrix of
dimensions p×m, the identity matrix of dimension m. Nn

d :=
{α ∈ Nn : |α| ≤ d}, where |α| = ∑i αi and α = is a multi-
index. Indeed, yα = yα1

1 · · ·yαn
n with |α| ≤ d and for α ∈Nn

d . For
a symmetric real matrix S ∈ Rn×n, the notation S � 0 (S � 0)
stands for the negative (positive) semi-definiteness of S while
u� v means the component-wise inequality for the two vectors
u and v of identical dimensions. For the random vector ξ , E(ξ )
is its expectation. Finally, dae is the nearest integer greater
than or equal to a. Finally, ∂ f is the subdifferential (set of
subgradients) of the function f .

2. A GENERIC CAM DESIGN PROBLEM FORMULATED
AS A LINEAR OPTIMIZATION PROBLEM WITH

NON-CONVEX QUADRATIC CONSTRAINTS

The objective of this section is to propose a generic framework
for CAM design taking into account station-keeping require-
ments, a variety of operational constraints and a great diversity
of possible missions.

However, for the sake of practicality, we closely follow CNES
operational procedures and insight, which lead to a specific
CAM problem, defined as follows. Besides the low-thrust spe-
cific operational constraints mentioned in the introduction, we
consider station-keeping requirements and also the necessity to
reduce the impact of CAMs on mission service by forbidding
attitude changes in the avoidance phase. Specifically, the pri-
mary is actuated by one or more impulsive CAMs that must take
place over user-predefined time ranges ∆i, with i = 1, · · · ,n.
It is assumed that only the central date t i ∈ ∆i is allowed per
maneuver in order to be able to perform an a posteriori spread
of the thrust over the time ranges for an equivalent low-thrust
propulsion. It is also assumed that only one identical thrust
direction for all ∆i is possible. More precisely, the thrust vector
1 http://www.ibex-lib.org

is defined at t i by ∆V T
i = ∆viβ

T
l , where ∆vi is the magnitude

of the impulse and βl is the l-th vector of the canonical basis
in the local frame, where the index l is set to 1, 2 or 3 for all
i = 1, · · · ,n and ∆vi ≥ 0. The magnitude of the thrusts is also
bounded as ∆vi ≤ ∆vi.

Furthermore, the relative motion of each secondary object s j,
with j = 1, . . . ,N, is described by a transition matrix obtained
by a linearization of the Keplerian dynamics around the mean
ballistic orbit of the primary (cf. Yamanaka and Ankersen
(2002)):

xr j(t|x
0
r j
) = Φ

j
r(t, t0)x

0
r j
, (1)

where x0
r j

denotes the initial relative state of the j-th object wrt.

the primary and the transition matrix Φ
j
r is given by blocks as

follows

Φ
j
r(t, t0) :=

(
Φ

j
r11
(t, t0) Φ

j
r12
(t, t0)

Φ
j
r21
(t, t0) Φ

j
r22
(t, t0)

)
.

Denoting x̃r j the relative state of the j-th object with respect
to the primary (after a maneuver), one has, after n impulsive
maneuvers in the βl direction, applied respectively at t i with a
magnitude ∆vi:

x̃r j(t|t0) = xr j(t|t0)+
n

∑
i=1

Φ
l j
r (t, t

i)∆vi

= Φ
j
r(t, t0)x

0
r j
+

n

∑
i=1

Φ
l j
r (t, t

i)∆vi,
(2)

where Φ
l j
r (t, t i) is the 3+ l-th column of the matrix Φ

j
r(t, t i).

From Equation (2), it is straightforward to derive the relation
between the uncontrolled (position rr j and velocity vr j ) and
controlled (position r̃r j and velocity ṽr j ) relative states for each
encounter at t j

TCA:

r̃r j(t
j
TCA) = rr j(t

j
TCA)+

n

∑
i=1

Φ
l j
r12
(t j

TCA, t
i)∆vi, (3)

ṽr j(t
j
TCA) = vr j(t

j
TCA)+

n

∑
i=1

Φ
l j
r22
(t j

TCA, t
i)∆vi. (4)

Equations (3) and (4) allow for the estimation of the miss
distance, the Mahalanobis distance as well as the collision
probability at each t j

TCA to be used as metrics for the CAM
triggering.

2.1 Miss distance metric formulation

Assuming a rectilinear uniform relative motion around t j
TCA of

directional unit vector:

e j =
ṽr j(t

j
TCA)

‖ṽr j(t
j
TCA)‖

, (5)

the new miss-distance dnew
j is given by the norm of the pro-

jection ∆r j
min of the vector r̃r j(t

j
TCA) on the encounter B-plane

orthogonal to e j. Formally, this reads:

∆r j
min = (I3− e jeT

j )r̃r j(t
j
TCA), (6)

where I3− e jeT
j is the (symmetric and idempotent) projection

matrix on the j-th B-plane. One obtains:

dnew2

j = rr j(t
j
TCA)

T (I3− e jeT
j )rr j(t

j
TCA)

+2rr j(t
j
TCA)

T (I3− e jeT
j )Φ̃

l j
r12

∆v
+∆vT

Φ̃
l jT
r12

(I3− e jeT
j )Φ̃

l j
r12

∆v,

(7)



where ∆vT contains the magnitudes of the n impulses:
∆vT = [ ∆v1, ∆v2, · · · , ∆vn ] ,

and similarly, Φ̃
l j
r12 is given by the concatenation of the columns

Φl
r12
(t j

TCA, t
i) for i = 1, · · · ,n.

Hence, dnew2

j is a convex quadratic form:

dnew2

j := ∆vT Q j∆v+2qT
j ∆v+ p j, (8)

where Q j,q j, p j are identified from Equation (7). Note that
the matrices Q j are semidefinite positive ones and imposing
a prescribed minimal miss distance threshold

√
d j after the

CAMs, at each t j
TCA, defines a concave domain:

∆vT Q j∆v+2qT
j ∆v+ p j ≥ d j, j = 1, · · · ,N. (9)

It turns out that the choice of the metric characterizing the
collision (miss distance, Mahalanobis distance, 2D probability,
maximum probability) has no direct influence on the nature
of the obtained problem, since in all cases, the same class
of problems is obtained in fine, when considering the same
assumptions used in the multiple short-term encounters frame-
work (see also Armellin (2021) for further details on different
metrics) defined by CNES.

2.2 Linear constraints: Station-keeping and control bounds
requirements

The after-CAMs station-keeping requirements impose the pri-
mary to remain in a box defined with respect to the reference
bounds on the relative positions for each direction in a local
frame at each t j

TCA. This generates a set of linear inequalities on
the decision variables (the inequality sign is meant component-
wise):

u j
r − rr j(t

j
TCA)� Φ̃

l j
r12

∆v� u j
r − rr j(t

j
TCA), j = 1, · · · ,N, (10)

for user set bounds u j
r and u j

r . Similarly, another set of linear
inequalities on the decision variables is added due to bounds on
the magnitude of the impulsive thrusts:

0n×1 � ∆v� ∆v. (11)
Finally, our goal is to minimize the impact of the CAMs on the
satellite lifetime and so, the minimum-fuel multi-risk collision
avoidance problem is formulated as a non-convex quadratically
constrained optimization problem with a linear objective:

min
∆v∈Rn

cT
∆v

s.t.
∆vT Q j∆v+qT

j ∆v+ p j ≥ d j, j = 1, · · · ,N,
A∆v � b,

∆v � 0n×1

(12)

where cT = [ 1, 1, · · · , 1 ] ∈ Rn, and Q j, q j, p j, A and b
are identified from Equations (9), (10), (11). The optimization
problem (12) consists in minimizing a linear function on a do-
main given by the intersection between the polyhedron defined
by the linear inequalities and the non-convex domain defined
by the exterior of a union of (possibly degenerate) ellipsoids.
The feasible domain of this optimization problem is therefore
non-convex (and possibly non-connected in some cases).

3. NUMERICAL ALGORITHMS

As already mentioned, Problem (12) is a special case of non-
convex QCLP problems, for which two classes of algorithms
(based either on SDP or B&B with set-valued arithmetic) are

to be summarized and then compared on numerical examples
in the next section. Starting with the first category, note that
Problem (12) is a polynomial optimization problem of the form:

f ∗ = inf
x∈Rn

f (x),

s.t. g`(x)≥ 0, `= 1, . . . ,r,
(13)

where f and g` are multivariate polynomials (or affine func-
tions). Let K denote the feasible set of (13).

3.1 A moment-SOS hierarchy of SDP relaxations

Lasserre’s hierarchy (Lasserre (2015)) is a well-known method
to approximate the optimal value of such problems based on
semidefinite programming (SDP). From a computational view-
point, a hierarchy of SDP problems is solved, which provides
lower bounds that are convergent to the optimal value of the
original problem. However, for large scale problems, the size of
the involved SDP may be prohibitive, as well as the numerical
extraction of the corresponding optimizers. In (Lasserre, 2015,
Section 5.1), it is shown that:

f ∗ = inf
ν∈M(K)+

∫
K

f dν

s.t. ν(K) = 1,
(14)

where M(K)+ is the space of finite nonnegative Borel measures
on K. The Problem (14) is a linear programming problem in
an infinite-dimensional space and as such, it is difficult to get
a direct solution in terms of the decision variable ν which
is an unknown measure. However, this unknown measure ν

may be represented by the infinite sequence of its moments

yα =
∫

K
xα dν , ∀ α ∈ Nn

d and the Problem (14) may be recast
as:

f ∗ = inf
y

 ∑
α∈Nn

d

fα yα : ∃ ν ∈M(K)+ s.t. y0 = 1

 .

Thanks to strong results obtained in the framework of the (real)
K-moment problem (i.e. constructing the sequences (yα) that
are moment sequences of a nonnegative measure ν with its
support contained in set K) for a compact basic semi-algebraic
set K (see (Lasserre, 2015, Section 2.7.2 and Section 2.7.3)
for technical details), a hierarchy of semidefinite relaxations of
Problem (13) may be defined as the following:

f ∗d = inf
y

Ly(cT x)

s.t.
Md(y) � 0

Md−ςl (g`y) � 0, `= 1, · · · ,r
y0 = 1,

(15)

where g0 = 1, ς` = d(deg(g`))/2e, ` = 0, · · · ,r, d ≥ d0 =
max{d(deg( f ))/2e, max

`=0,··· ,r
ς`}. Ly is the Riesz linear func-

tional, Md(y) is the moment matrix and Md−ς`
(g`y) is the local-

izing matrix with respect to y and g` (Lasserre, 2015, Section
2.7). Obviously, f ∗d ≤ f ∗ and f ∗d ≤ f ∗d+1 for all d since the set
of constraints for order d + 1 is included in the one for d. One
of the main features of this hierarchy of relaxations lies in the
finite convergence (a finite order d exists s.t. f ∗d = f ∗) of the
hierarchy of semidefinite relaxations (15) under some classical
conditions in nonlinear programming (strict complementarity
condition, constraint qualification sufficient conditions, second-
order sufficient condition of optimality). Under these condi-
tions, this finite convergence result and a certificate of global
optimality are mainly entailed by Putinar’s Positivstellensatz
and a technical assumption on the polynomials defining the



set K, which is fulfilled in our case due to the compactness
of K. The algorithm based on the moments hierarchy is now
summarized below.

Algorithm 1 A HIERARCHY OF SDP RELAXATIONS
Require: Cost function c, set K defined by quadratic and linear constraints g`,
`= 1, · · · ,r, maximum order of the relaxation d̄.

Ensure: Optimal cost f ∗ and global minimizer x∗ of Problem (13) or lower
bound f ∗d of f ∗.

. Solution of SDP problem associated to relaxation of order d
Solve the SDP Problem (15) to get f ∗d and y∗d if it exists;
if y∗d does not exist then

f ∗d is only a lower bound of the optimum: f ∗d ≤ f ∗;
else if d < d̄ then

d← d +1;
Goto 1;

end if
. Global optimality test

if rank(Md−ς (y∗d)) = rank(Md(y∗d)) = k with ς = max
`

ς` then

f ∗d = f ∗ and ∃ at least rank(Md(y∗d)) = k global minimizers y∗ that may be
extracted.

end if
if (rank(Md−ς (y∗d)) 6= rank(Md(y∗d))) and (d < d̄) then

d← d +1;
Goto 1;

else
Stop. f ∗d̄ is only a lower bound of the optimum: f ∗d ≤ f ∗.

end if

3.2 Semidefinite relaxation and randomization approach

A straightforward convex relaxation of the Problem (12) may
also be derived by adding decision variables allowing to lin-
earize the problem as follows (Luo et al. (2010)). Let X denote
a n×n symmetric matrix, then the Problem (12) can be written
as:

min
x,X

cT x

s.t.

trace(Q jX)+qT
j x+ p j ≥ 0, j = 1, · · · ,N,

Ax � b,
x � 0,

X− xxT = 0.

(16)

The last equality constraint X−xxT , in which the non convexity
of the problem is aggregated, is now replaced with a convex
constraint X− xxT � 0n×n leading to the SDP relaxation:

f ∗sdp = min
x,X

cT x

s.t.

trace(Q jX)+qT
j x+ p j ≥ 0, j = 1, · · · ,N,

Ax � b,
x � 0,[

1 xT

x X

]
� 0,

(17)
after using a Schur complement argument on the last constraint.
This derivation may be considered as a particular instance of a
lifting technique. Note also that (17) is the Lagrangian bidual
of the nonconvex original problem. In addition, the relaxation
(17) is exactly the relaxation (15) of (13) for d = 1. As a
convex relaxation, the Problem (17) provides in general only a
lower bound of the optimal solution of the genuine nonconvex
Problem (12). Moreover, an optimal pair (X∗, x̄∗) solution of
(17) may not be feasible for the Problem (16) and x∗ cannot
be used in general as a solution of (12). However, a simple
stochastic interpretation of the pair (X∗, x̄∗) will help in finding

a systematic way to generate samples in the feasible set of
(12). Then, the best sampled feasible point provides a good
approximation x∗srr of the optimal solution of (12). Indeed, for
an optimal pair (X∗, x̄∗) solution of (17), the matrix X − x̄x̄T

is a covariance matrix. Then, by defining the random vector
ξ distributed as the normal vector ξ ∼ N (µ = x̄∗,Σ = X∗−
x̄∗x̄∗T ), it is simple to show that (µ,Σ) is a pair solution of the
following stochastic programming problem.

min
µ,Σ

E(ξ ) = cT
µ

s.t.

E(g j(ξ )) ≥ 0, j = 1, · · · ,N,
E(Aξ ) = Aµ � b,

E(ξ ) = µ � 0,
Σ � 0.

(18)

where E(·) is the expectation operator. Loosely speaking, ξ is
an "average" solution of (12) over the Gaussian distribution,
meaning that the expected value of the objective is minimized
and the constraints are satisfied in expectation. This interpre-
tation provides a procedure to build a representative sampling
of the feasible set of (13). It consists in drawing L samples
ξ̂ (i) from the truncated (0 � ξ̂ (i) � ∆v̄) Gaussian distribution
ξ ∼N (µ,Σ). If the sample ξ̂ (i) does not satisfy the constraints
in (12), project it onto the feasible set K as ξ̄ (i). This procedure
is now detailed in the Algorithm 2 given below.

Algorithm 2 SRR(c,Q j,q j, p j,A,B)
Require: Cost vector c, matrices Q j , j = 1, · · · ,N, A, vectors q j , j = 1, · · · ,N,

b, points p j , j = 1, · · · ,N.
Ensure: Approximation x∗srr of the optimal solution of Problem (13).

Solve of SDP relaxation (17) to get x̄∗ et X∗ ;
. Feasibility test of the solution of the relaxation
if x̄∗ ∈K then

x∗← x̄∗ ; Stop ;
else

Draw L samples ξ̂ (i), i = 1, · · · ,L from the multivariate Gaussian
N (x̄∗,X∗− x∗x∗

T
) tuncated in the set {0� x� ∆v̄} ;

. Feasibility test of the samples
for i← 1 to L do

if ξ̂ (i) ∈K then
x(i)← ξ̂ (i) ;

else
for j← 1 to N do

Compute val( j) =
[

ξ̂ (i)+0.5∗Qi ∗qi

]T
∗Q−1

j ∗ (
qT

j Q−1
j q j

4
−

p j)
−1 ∗

[
ξ̂ (i)+0.5∗Qi ∗qi

]
;

end for
valmin← min

j=1,··· ,N
val ; jmin← arg

[
min

j=1,··· ,N
val
]

;

if valmin < 1 then
ξ̄ (i)= ((ξ̂ (i)+0.5∗Q jmin ∗q jmin)/

√
valmin)−0.5∗Q jmin ∗q jmin

;
end if
. Feasibility test of the scaled sample ξ̄ (i) in K
if ξ̄ (i) ∈K then

x(i)← ξ̄ (i) ;
end if

end if
end for
x∗srr ← arg

[
min

i
cT x(i)

]
;

end if



3.3 B&B algorithms with set-based arithmetic

An alternative classical approach to problem (12) is based on
subsequent subdivision of an initial search domain (defined in
the space of decision variables and including the initial feasible
domain), via B&B algorithms. At each iteration, one discards
subdomains found to be infeasible or subdomains whose min-
imum attained objective value (by any of its feasible points) is
greater than the current best objective value found so far by the
algorithm. The subdivision process stops for a subdomain when
the difference between a lower bound and an upper bound of the
objective function over the subregion is less than a given toler-
ance. The list of remaining subdomains contains all the optimal
solutions. The main challenge lies in obtaining good lower and
upper bounds of the objective function in a given subregion.
A solution consists in representing the domains by boxes (axes-
aligned interval tensors in Rn) and evaluating the involved func-
tions by interval analysis (see Fernández and Boglárka (2022)
for a recent review of interval branch-and-bound based methods
for global optimization).

IBEX Software. For instance, Ninin (2015) describes Ibex
implementation with constraint propagation techniques suitable
for constrained global optimization problems. To accelerate
convergence, contractors are used at each iteration to prune the
width of boxes. Inspired by the filtering concept in constraint
programming, the goal of a contractor is to eliminate unfeasible
parts of a domain. For instance, some contractors of IBEX
(which are used by default) are based on linear relaxation:
given a system of linear inequalities, a box is contracted to
the hull of the polytope (the set of feasible points); non-linear
constraints are automatically linearized by Taylor or affine
arithmetic. Also, constraint propagation algorithm HC4 and
shaving contractors (which aim at elliminating a slice of a
box by calling a contractor on it) are used by default. Ninin
(2015) mentions that the performance of the default optimizer
is comparable to the global optimizer BARON, while also
performing all the operations in a set-based arithmetic, which
ensures that no solution is lost. As it will be shown in Section 4,
this performance claim is confirmed on the tests specific to our
problem.

Ellipsoid-based B&B. Since our specific problem is the
QCLP-type, a natural set-based extension of interval algorithms
is to represent the underlying subdomains by ellipsoids. Start-
ing from an ellipsoid containing the initial feasible domain, the
idea is to generate a sequence of ellipsoids of smaller volumes
by employing cutting planes, like in the classical ellipsoid al-
gorithm of Yudin and Nemirovski (see Bland et al. (1981) for a
detailed historical and technical description).

More precisely, the minimization of a convex function f :Rn→
R, on an elliptic domain ε0 = {x∈Rn : (x−x0)

′P0(x−x0)≤ 1},
given a semidefinite positive matrix P0 ∈ Rn×n consists in the
convergent iteration (starting with k = 0) of the following two
steps:
– Calculate a sub-gradient hk ∈ ∂ f (xk) at the center xk of the

ellipsoid, which allows for identifying a cutting plane and
thus a half-space containing xk but no minimizer of f ;

– Calculate and return the ellipsoid εk+1 of minimal volume
containing the half-ellipsoid εk ∩{x ∈ Rn : hT

k (x− xk) ≤ 0}
which contains a minimizer of f .

This procedure, called in what follows ELLIPSOIDCUT can
be easily modified to reduce the volume of an ellipsoid wrt.

convex-constraints: when no reduction is possible, either the
center is feasible, or the ellipsoid is completely empty.

As expected, since our problem is not convex, a subdivision
strategy is necessary: an ellipsoid is bisected by a cutting plane
(as above) function of its longest axis. The resulting Algo-
rithm 3 keeps track of a list of ellipsoids which are guaranteed
to contain all the optimal solutions.

Algorithm 3 BRANCHANDBOUNDELLIPSOID

Require: Initial quadratic domain (x − o0)
′P0(x − o0) ≤ 1, Nonconvex

Quadratic constraints ELLIPSOIDSLIST, Linear constraints LINEARCON-
STRLIST, linear objective c, subdivision accuracy εVMin.

Ensure: Minimal cost cm, value om and list of ellipsoids containing all the
global optimizers Lkeep.

. Start with initial ellipsoid
L←∅; Push (L,(P0,o0)), cm←+∞

while L 6=∅ do
(P,o)←Pop(L)
if VOLUMEELLIPSOID(P)≤ εVMin then

Push(Lkeep,(P,o))
else

. Volume contractor wrt. linear constraints
(P,o)←ELLIPSOIDCUT((P,o),LINEARCONSTRLIST)
if (P,o) 6=∅ then

. Test center feasibility wrt. non-convex constraints
if ISFEASIBLE(o,ELLIPSOIDLIST) then

{Update current minimum}
if cm > cT o then

cm← cT o; om← o
end if
. Volume contractor wrt. objective
(P,o)←ELLIPSOIDCUT((P,o),c)
Push((P,o),L)

else
. Subdivide ellipsoid
(P1,o1,P2,o2)← BISECTELLIPSOID(P,o)
Push((P1,o1),(P2,o2),L)

end if
end if

end if
end while
return (cm,om)

4. NUMERICAL EXAMPLES

Prototype implementations of the three algorithms were ini-
tially 2 coded and tested in Matlab c© R2020b. For complete-
ness’ sake, we have also included results obtained with the
IBEX Optimization tool (with default parameters). Timings are
provided, but since this implementation is in C++, a perfor-
mance comparison is difficult to make.

First, in Section 4, two numerical examples with a limited
number of conjunctions (from 1 to 3) and two maneuvers
are built by using real space data. Even though the proposed
numerical examples are not based on real conjunction data,
two realistic operational situations are proposed by considering
an actual telecom satellite as a model for the definition of the
primary object.

Secondly, the efficiency and scalability of the algorithms are
tested on some random academic examples of nonconvex
quadratic problems (13). These tests still focus only on some
2 A more efficient implementation is available in CNES flight dynamics Java
library PATRIUS.



expected maximum realistic operational situations: up to 8 ma-
neuvers and less than 20 conjunctions. The details of the design
of this set of random examples are given in Subsection 4.2.

4.1 Two realistic examples with 2 maneuvers

This section describes the common framework used for build-
ing two realistic encounter geometries presented in the follow-
ing subsections. Specific details pertaining to a given test case,
e.g. TCAs, maneuvers times or station-keeping constraints, are
given in later subsections. The full orbital elements set of the
model for the primary object is given in Table 1.

Semi-major axis a = 7158 km
Inclination i = 86.4 deg.

Argument of Perigee ω = 0 deg.
RAAN Ω = 0 deg.

Eccentricity e = 0.00145
True Anomaly ν0 = 90 deg.

Table 1. Orbital parameters of the primary object.

In order to set up the orbits of the secondaries, the orbit of the
primary is propagated from the epoch to the TCA correspond-
ing to the associated conjunction. The relative positions and
velocities at this TCA are added to the position and velocity
of this propagated orbit, creating the cartesian orbit of the as-
sociated secondary. The relative positions and velocities in the
NTW frame (as it is defined in (Vallado, 2001, Section 3.3.3))
are given in Table 2 for the three secondaries considered in
the following. This table contains additional data consisting in
the miss-distance for each possible conjunction, the semi-major
axis and inclination of each secondary. Even if the algorithms

CDM 1 CDM 2 CDM 3

Rel. pos. (m)

 −7.9
35
80

  −16.8
−1.8

41

  0.9
−35.2
−3


Rel. vel. (m/s)

 5.7
−12552.6

5489

  -38
-14910.8
−785.5

  0.6
−0.5
5.8


Miss dist. (m) 87 44 35

a (km) 7120 7147 6902
i (deg.) 98.4 98.4 97.5

Table 2. Data for the secondaries orbits.

are not limited to two maneuvers, we chose to stick to two
maneuvers, allowing a simple graphical illustration in the ∆v1,
∆v2 plane of both the feasible domain and the optimal solution.
For each numerical example, the two impulsive maneuvers are
given along one single direction of the local NTW frame as
detailed in Section 2. For each example, the parameters of the
three algorithms are the same: εvol. = 0.0001 for the ellipsoidal
B. and B. algorithm, 5000 draws for the SDR method and
relaxation of order 2 for the moment relaxation approach.

Test case 1: two impulsive maneuvers in the T direction and 1
TCA. The first example is essentially designed to be a proof-
of-concept example for the different algorithms proposed.
Therefore, only one risk (a single secondary) corresponding to
CDM 2 in Table 2 is considered with a TCA given at t0 + 24 h..
The two maneuvers are respectively set to TCA minus 1 orbit
(t0+22.33 h.) and TCA minus 0.5 orbit (t0+23.16 h.) and are
in the Tangential direction (T) with a limit in magnitude of 15
m/s for each thrust. The station-keeping box on the positions

and velocities of the primary is defined in the RTN (Radial,
Transverse and Normal) or Gaussian coordinate system (see
(Vallado, 2001, Section 3.3.3)) by the vector [ 5 6 5 ] km for
the positions and [ 10 10 10 ] m/s for the velocities.

∆v1 (m/s) ∆v2 (m/s) CPU time (s) Obj. (m/s)

IBEX 0.0285 0 1 0.0285
Elli. B. & B. 0.0333 0.0002 1.26 0.0335

SRR 0.0285 0 6.5 0.0285
Moment relax. 0.0285 0 3.3 0.0285

Table 3. Results of the different algorithms for Example 1.

Figure 1. Polytopic feasible region (light green with black edges), one
quadratic constraint (yellow ellipse), optimal solution (red point) and
feasible solutions (blue points).

(a) (b)

(c) (d)
Table 4. (a) and (b) Miss distance (m.) around TCA for SRR
algorithm and BB algorithm (c) and (d) Relative positions and
velocities trajectories from MAP reference in QSW frame for

SRR and BB maneuvers.

The obtained results are summarized in Table 3 while Figure 1
exhibits the geometry of the nonconvex quadratic optimization
problem in the decision variables plane as well as the behavior
of the SRR algorithm. It is easily seen in Table 3 that all
algorithms perform well in finding the global optimal solution
in a reasonable timing except for the ellispoidal B&B algorithm
which gives, though very quickly, a worst quality approxima-
tion of the optimal solution. This could be fixed by choosing
a more accurate precision parameter εvol. (0.000001 would be



sufficient here) at the expense of a slight rise of the CPU time.
It is worth noticing that the relative trajectories presented in
Figure 4 comply with the restrictions in all cases even if the
deviation from the reference is more important in the case of
the approximate optimal solution given by the ellipsoidal B&B
algorithm.

Test case 2: Two impulsive maneuvers in the N direction and
3 TCAs. For this second example, a sequence of three short-
term close approaches between the primary and three secon-
daries (characterized by the 3 CDMs provided by CNES and
given in Table 2) are defined. The three TCAs are respectively
set at t0 + 24 h., t0+25.5 h. and t0+34 h.. The two maneuvers
are respectively set to TCA1 minus 1.5 orbit (t0+21.58 h.)
and TCA1 minus 1 orbit (t0+22.39 h.) and are in the Normal
direction (N) with a limit in magnitude of 15 m/s for each thrust.
The station-keeping box on the positions and velocities of the
primary is defined in the RTN by the vector [ 1 5 6 ] km for the
positions and [ 10 10 10 ] m/s for the velocities. The obtained
results are summarized in Table 5, while Figure 2 exhibits the
geometry of the nonconvex quadratic optimization problem in
the decision variables plane as well as the behavior of the SRR
algorithm. Identical conclusions may be drawn from the read-

∆v1 (m/s) ∆v2 (m/s) CPU time (s) Obj. (m/s)

IBEX 0.2455 0.2255 1 0.4710
Elli. B. & C. 0.2469 0.2323 13.8 0.4792

SRR 0.2455 0.2259 1.97 0.4714
Moment relax. 0.2455 0.2255 4.11 0.4710

Table 5. Results of the different algorithms for Example 2.

ing of Table 5 with an additional difficulty for the ellipsoidal
B&B algorithm when the number of nonconvex quadratic con-
straints increases. This feature will be more prominent when
dealing with academic examples with a more important number
of decision variables and nonconvex constraints. In this partic-
ular case, the worst quality approximaton of B&B algorithm
does not have a significant impact on the relative trajectories.

Figure 2. Polytopic feasible region (light green), three quadratic constraints
(yellow, green and purple), optimal solution (red) and feasible solutions
(blue).

4.2 Other examples with n > 2

For a fixed number n of decision variables, N quadratic con-
straints are randomly generated in this n-dimensional space.
The N − 1 ellipsoid centers are drawn from a uniform distri-
bution on the interval [−2,2] while the last quadratic constraint
is an n-dimensional ball centered in 0 and of radius equal to
0.5. Finally, linear constraints 0 ≤ xi ≤ x̄i, for i = 1, · · · ,n with
x̄i uniformly distributed in the interval [1,3] are added to the
quadratic constraints. Similar to the previously presented tests,

(a) (b)

(c) (d)
Table 6. (a) and (b) Miss distance (m.) around TCA for SRR
algorithm and BB algorithm (c) and (d) Relative positions and
velocities trajectories from MAP reference in QSW frame for

SRR and BB maneuvers.

n corresponds to the number of maneuvers and respectively N
quantifies the number of conjunctions. Their maximum values
are set to 8 and respectively 17, with the goal of providing an in-
sight about the expected computational efficiency and accuracy
for some more involved operational examples.

Table 7 provides a synthetic overview of timings and accuracy
obtained with IBEX (C++ implementation, IbexOpt version
2.8, with default parameters). It follows that for these cases,
this approach is very efficient, while providing set enclosures
of the optimal value.

The results obtained with the other previously presented meth-
ods (prototyped and tested with Matlab c© R2020b and the
Mosek optimization toolbox (version 10) software for SDP
solving) are summarized in Tables 8, 9 and 10. While for low-
dimensional examples, the results are very similar, when the di-
mension increases, the reference software IBEX is clearly more
efficient. Among the prototype algorithms, the SRR method
provides the fastest results, at the expense of loosing theoretical
guarantees of optimality.

It is interesting to note that the B&B methods seem to perform
better on these particular instances. While being preliminary,
this study of computational feasibility for a practical CNES
problem reveals a potential lack of numerical efficiency for the
first class of SDP-based implementations. Similarly, it goes to
show that the interesting theoretical properties of the ellipsoid
method need to be further tuned in order to be as efficient
as the more mature interval boxes representation of set-based
numerics.

5. CONCLUSION

While several works already dealt with the optimal colli-
sion avoidance for one short-term encounter (Bombardelli and
Hernando-Ayuso (2015)), which can be solved by efficient
convex optimization methods, the case of multiple short-term



Case Solution features
# n N CPU (s) f ∗d f ∗IBEX

3D 3 17 0.05 0.5402 0.5414
4D 4 10 0.12 0.5 0.5
5D 5 10 0.23 1.42 1.4155
8D 8 2 0.22 3.1632 3.1697

Table 7. IBEX results for higher-dimensional examples.

Case Solution features
# n N L CPU (s) f ∗d f ∗SRR

3D 3 17 104 5.15 0.5402 0.5667
4D 4 10 105 4.03 0.5 0.5732
5D 5 10 105 4.8 1.142 1.7956
8D 8 2 106 11173 3.1623 5.77

Table 8. SRR results for higher-dimensional examples (L
corresponds to the number of random samples).

Case Solution features
# n N d CPU (s) f ∗d

3D 1 17 4 2.12 0.5402
4D 1 10 4 4.76 0.5
5D 1 10 4 17.64 1.142
8D 1 2 4 1633.5 3.1623

Table 9. Lasserre’s hierarchy results for higher-dimensional
examples (d corresponds to the relaxation degree) .

Case Solution features
# n N εVMin CPU (s) f ∗d f ∗ell

3D 3 17 0.004 10.52 0.5402 0.74
3D 3 17 0.0004 196.33 0.5402 0.59

4D 4 10 0.0004 5.45 0.5 0.61
4D 4 10 0.00004 171.6 0.5 0.54

5D 5 5 0.004 0.4 1.142 2.55
5D 5 5 0.0004 2.08 1.142 1.91
5D 5 5 0.00004 55.15 1.142 1.72

8D 8 2 0.0004 6181.3 3.16323 4.19
Table 10. Ellipsoid B&B results for higher-dimensional ex-
amples (εVMin is the volume threshold for processed elliposids).

encounters boils down to a difficult non-convex NP-hard opti-
mization problem. We formulated these problems by exploring
the practical simplifications provided by CNES and observed
that the indicator characterizing the collision (miss distance,
Mahalanobis distance, 2D probability, maximum probability)
has no direct influence on the QCLP nature of the problem
obtained. As soon as at least two encounters are considered,
the maneuver design is formulated as an optimization problem
with linear objective and nonconvex quadratic constraints. The
QCLP class of problems is then solved with several existing nu-
merical methods whose efficiency is analyzed on realistic space
examples and more academic and complex examples. These
preliminary numerical analysis clearly show that the IBEX im-
plementation is presently the most suitable and efficient tool
to tackle the specific academic and realistic space examples
dealt with in this article. Nevertheless, it is important to notice
that the maturity of the implementation of the alternative tools
based on SDP is not in any way comparable to the one of IBEX.
A precise analysis of the impact of this implementation would
definitely be an interesting future direction of research.
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