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Abstract

Several recent works on non-atomic routing games suggest that the performance degradation of
selfish routing with respect to optimal routing is overall low and far from worst-case scenarios. In
this work, we study the performance degradation induced by the lack of coordination in an atomic
routing game over parallel links in which there are two types of links. The latency function of
”cheap” links is of the form c1ϕ(x), whereas the latency function of ”expensive” links is of the form
c2ϕ(x), where c2 > c1. We obtain an explicit characterization of the optimal and equilibrium flow
configurations, and establish sufficient conditions on the latency function ϕ(x) under which the worst
traffic conditions occur when all users have the same traffic demand and the total traffic demand is
such that ”expensive” link are marginally used by selfish routing. We also obtain some partial results
on the worst network configuration for the inefficiency of selfish routing. All in all, our results suggest
that the worst-case scenario for the inefficiency of selfish routing corresponds to very specific traffic
conditions and to highly asymmetric network configurations, and thus that the Price of Anarchy is
probably an overly pessimistic performance measure for non-cooperative routing games, as advocated
in the above-mentioned works.

1 Introduction

1.1 Motivation

In networks based on a centralized routing scheme, a central node computes the least-cost path between
source and destination nodes by using some global knowledge of the network and then distributes the
resulting routes to other nodes so that they can forward user traffic. The main advantage of such an
approach is that it can enforce an optimal routing policy minimizing the overall cost (e.g., the overall
mean packet-delay) of all users. However, it is broadly admitted that a centralized routing scheme cannot
be used in large networks due to scalability, robustness and complexity reasons. An alternative approach
is to let each network user selfishly decide on which path to route its traffic demand according to its own
interest. Although more robust and scalable, this decentralized scheme may lead to a loss in performance
as the individual optimizations performed by many interacting self-interested users does not necessarily
converge to an optimal routing policy.

Noncooperative routing games provide the natural framework to study the performance degradation
in the above decentralized routing scheme. These games are mathematical models of the equilibrium
flow configuration resulting from the routing decisions made by selfish, uncoordinated network users.
One usually distinguishes two types of such games. Atomic routing games refer to games in which there
are finitely many users, and the resulting flow configuration is known as the Nash equilibrium [22].
It corresponds to a routing policy in which no user can decrease its own routing cost by deviating
from its strategy unilaterally. In contrast, non-atomic routing games refer to games in which there is a
continuum of users, each one controlling a negligible amount of traffic, and the resulting flow configuration
corresponds to the so-called Wardrop equilibrium [31], according to which the traffic demand of each user
is forwarded along a minimum-cost path. For both types of games, the equilibrium flow configuration
does not always correspond to that of a globally optimal routing policy. In game theory terminology,
such an optimal policy is usually referred to as a social optimum as it minimizes the sum of all user costs.

A vast body of literature has been devoted to the study of the inefficiency of selfish routing under
a variety of traffic models. The most popular measure of the inefficiency of equilibria is the Price of
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Anarchy (PoA) which was introduced by Koutsoupias and Papadimitriou [20] and is defined as the per-
formance ratio between the overall cost of an optimal routing policy and that of the worst Nash/Wardrop
equilibrium (that is, an equilibrium with the largest social cost). As discussed in Section 1.3, it has been
shown that the PoA of some selfish routing games can be arbitrarily large. Several recent works aim-
ing at understanding when is selfish routing bad suggest however that the PoA is an overly pessimistic
measure and that non-cooperative routing achieves near-optimal performance in most realistic settings.
Nevertheless, most of these works have been carried out for non-atomic routing games, which are usually
much simpler to analyze thanks to the assumption of a continuum of players.

In contrast to the above mentioned works, the present paper studies the efficiency of selfish routing
in atomic routing games. Owing to the complexity of the analysis, we restrict ourselves to a topology
of parallel links, as introduced in the seminal paper of Orda, Rom and Shimkin [24]. Given a strictly
increasing and convex function ϕ(x) and two cost parameters c1 and c2 such that c1 < c2, we further
assume that there are two types of links: ”cheap” links whose cost is a function of the flow on the link
of the form c1ϕ(x), and ”expensive” links whose cost function is of the form c2ϕ(x). We also assume a
finite number of users, each one splitting its traffic demand over the parallel links so as to minimize its
own routing cost, which is the sum of the costs incurred over all the links it uses. As the cost of a link is
a non-decreasing function of the traffic flow on that link, the optimal strategy of a user depends on how
the other users split their traffic demands. In this context, a Nash equilibrium is a flow configuration on
the links in which no user can benefit from a unilateral deviation of its own routing strategy.

For the above atomic routing game, we assume that the number of links of each type as well as their
cost parameters are fixed, and study the efficiency of selfish routing as a function of the traffic demands
of users. Our goal is to understand under which traffic conditions the worst inefficiency of selfish routing
is obtained for a fixed network configuration. As a measure of efficiency, we adopt the ratio of the social
costs obtained at the Nash equilibrium and under a socially optimal solution. This ratio is at least one,
when selfish routing is optimal, and is upper bounded by the PoA of the game. The worst value of this
ratio (over all possible vectors of traffic demands) corresponds to the Inefficiency of the routing game, a
concept introduced in [16] for load-balancing games. As opposed to the PoA, the Inefficiency depends
on the network configuration. By calculating the worst possible value of the Inefficiency over all network
configurations, one retrieves the PoA.

1.2 Contributions

The main contributions in this work are the following:

• For an arbitrary network configuration, we characterize the traffic conditions associated with the
Inefficiency, i.e., the traffic conditions under which the ratio of social costs is maximum. Specifi-
cally, we establish sufficient conditions on the latency function ϕ(x) under which the worst traffic
conditions occur when all users have the same traffic demand and when the total traffic in the
network is such that ”expensive” links are marginally used at Nash equilibrium.

• We show that these sufficient conditions are in particular satisfied by ϕ(x) = (1 + x)m for m ≥ 2
and ϕ(x) = eνx for ν > 0. These latency functions are used throughout the paper for illustration
purposes. The former belongs to the class of polynomial latency functions commonly used in
transportation research to model travel times in road networks [30]. The latter is reminiscent of
exponential growth models used to model many physical phenomena and corresponds to situations
in which the rate at which the delay over a link increases is proportional to its value, that is,
ϕ′(x) = ν ϕ(x).

• We provide an explicit characterization of the optimal and equilibrium flow configurations on the
links. In particular, we show that under the worst traffic conditions the ratio of the flows obtained
under the decentralized and centralized schemes is maximum for the ”cheap” links, whereas it is
minimum for the ”expensive” links. The latter result holds true under weaker conditions on the
latency function ϕ(x), which are satisfied in particular by ϕ(x) = 1 + xm and ϕ(x) = 1/(1 − x)m

for m ≥ 2.

• We show that the Inefficiency depends only on the ratio of the number of links of each type and
on the ratio c1

c2
of their costs (but not directly on the total number of links nor on their costs). We

prove that it implies that the worst value of the Inefficiency is obtained when there is only one
”cheap” link and the rest of the links are ”expensive”.
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• For ϕ(x) = eνx, we provide a lower-bound on the PoA. Besides, we conjecture from numerical
experiments that the PoA is obtained when the cost parameter of the ”expensive” links c2 is
infinitely larger than that of ”cheap” links c1. Assuming that this conjecture holds, we obtain an
upper-bound on the PoA. This is in contrast to the situation for ϕ(x) = (1 + x)m for which we
observe that the Inefficiency is not monotone as a function of the ratio c1

c2
.

1.3 Related work

We first review relevant works on nonatomic routing games. The analysis of the efficiency of Wardrop
equilibria has a long history which dates back to 1920 and the well-known Pigou’s example which shows
that the outcome of a selfish routing game can be inferior to a centrally designed outcome [25]. It was
shown in 1968 by Dietrich Braess that adding resources to a transportation network can sometimes
hurt performance at equilibrium, a phenomemon now known as the famous Braess’s paradox [5]. More
recently, Roughgarden and Tardos have shown that the value of the PoA of nonatomic congestion games
with affine costs is bounded above by 4/3, and that this bound is tight [27]. This shows that selfish
routing is always efficient for such routing games. However, it was shown in [26] that the PoA for
networks with latency functions that are polynomials with nonnegative coefficients and degree at most

d is asymptotically Θ
(

d
log(d)

)
as d → ∞, indicating that selfish routing can be very inefficient in such

games. Similarly, it was shown in [19] that the PoA of nonatomic load-balancing games over parallel
servers corresponds to the number of servers (see also [1, 4]). Other relevant works on the PoA of
nonatomic routing games are [28, 14, 12, 13].

On the empirical side, several recent works studied the efficiency of Wardrop equilibria in real networks
and observed that the performance degradation with respect to optimal routing is overall low in spite
of large theoretical values of the PoA. For instance, Monnot et al. analyze data of commuting students
in Singapore and conclude that routing choices are near optimal [21] (see also [18] for a similar study).
On a more theoretical side, the authors in [9, 10, 8] prove that Wardrop equilibria are efficient when the
network is lightly or highly congested. The authors in [32] extend the results of [8] to a more general
setting and show that selfish routing is efficient when the total traffic demand gets very large. In [11],
Cominetti et al. study the efficiency of Wardrop equilibria as a function of the total traffic demand in
the network. As an efficiency metric, they focus as we do on the ratio of social costs obtained under the
equilibrium and optimal routing strategies. For affine link costs, they show that this ratio has a finite
number of local maxima, which are achieved where the set of active links changes. In summary, all the
above works suggest that the PoA is an overly pessimistic measure of the inefficiency of selfish routing
and that the performance degradation is often low and far from the worst-case scenarios.

Efficiency results for atomic routing games are much scarcer, as these games are much harder to
analyze. Most known results are only valid for topologies of parallel links, as introduced in [24], where
the existence and unicity of the Nash equilibrium are shown for a broad class of latency functions. Ayesta
et al. consider in [3] an atomic load-balancing game in whichK users selfishly route their jobs to a system
of S parallel M/G/1/PS servers and prove that in this case the PoA is of the order

√
K, independently

of the number S of servers as long as S ≥ 2. Other results on the PoA of selfish load balancing can be
found in [29, 2, 15, 7] (see also [17] for a recent survey).

A closely related work to ours is presented in [16], where the authors consider an atomic load-balancing
game with ”fast” and ”slow” servers, which are modeled as M/G/1/PS queues. The setting they consider
is thus similar to the one considered here, but restricted to the latency function ϕ(x) = 1/(1 − x) for
the parallel links representing the servers. They study the ratio of social costs as a function of the total
incoming traffic in the system and prove that this ratio attains its maximum when the ”slow” servers
are marginally used by the decentralized load-balancing scheme. Our work extends the results of [16].
Whereas the analysis in [16] heavily relies on the properties of the function ϕ(x) = 1/(1 − x), and in
particular on the fact that ϕ′(x) = ϕ(x)2, we establish sufficient technical conditions under which a
similar result holds and show that these conditions are in particular satisfied by the latency functions
ϕ(x) = eνx and ϕ(x) = (1 + x)m. We emphasize however that all our results hold for any other latency
function ϕ satisfying Assumptions 1-5 stated in Appendix A. Besides, we show in Section 4.1 that the
worst traffic conditions for the ratio of social costs are precisely those that maximize the ratio of the
equilibrium and optimal flows on the ”cheap” links, a result which does not appear in [16] and hold under
weaker conditions satisfied as well by other latency functions such as ϕ(x) = 1/(1−x)m or ϕ(x) = 1+xm.
Our work also complements the work in [11] which also studies the ratio of social costs as a function of
the total traffic demand in general network topologies, but for a nonatomic routing game and affine cost
functions on the links, whereas we consider an atomic routing game over parallel links and non-linear
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cost functions on the links.

1.4 Organization of the paper

We present the mathematical model of the atomic routing game considered in this paper in Section 2. In
Section 3, we establish some preliminary results and obtain the characterization of the equilibrium and
optimal flow configurations as solution of convex optimization problems. Our results on the worst-case
total traffic are established in Section 4. In Section 5, we investigate the worst network configuration for
the inefficiency of the decentralized routing scheme, that is, we study how the PoA is obtained from the
Inefficiency. In Section 6, we discuss some possible extensions of this work. Finally, the conclusions of
this work are drawn in Section 7.

2 Problem formulation

2.1 Non-cooperative routing game

As illustrated in Figure 1, we consider an atomic splittable routing game in which K users have to send
their traffic demands from a source node to a destination node. We let C = {1, . . . ,K} be the set of users
and denote by λu > 0 the traffic demand of user u ∈ C. We consider a decentralized routing scheme in
which each user freely decides how to split its traffic demand over the N parallel links joining the source
node and the destination node. We shall denote by xu,j the quantity of traffic sent by user u on link
j = 1, 2, . . . , N .

ts

λ1

λu

λK

xu,j

Figure 1: K users route their traffic demands over N parallel links.

The routing strategy of user u is represented by the vector xu = (xu,j)j=1,...,N . We shall denote
by Xu the set of feasible routing strategies for this user, that is, the set of vectors xu ≥ 0 such that∑

j xu,j = λu. A strategy profile is then a vector x = (xu)u∈C belonging to the product strategy space
X =

⊗
u∈C Xu. It describes the routing strategy used by each player and represents in a way the state of

the game. Given a state x ∈ X of the game, we denote by x−u the vector (x1, . . . ,xu−1,xu+1, . . . ,xK)
which describes the routing strategies of all other users than u.

We assume that the links are of two types. There are n1 ≥ 1 type-1 links and n2 = N−n1 ≥ 1 type-2
links. In the following, we let S1 = {1, . . . , n1} be the set of type-1 links and S2 = {n1 + 1, . . . , N} be
the set of type-2 links. A crucial assumption in our model is that the links have traffic-dependent cost
functions. More precisely, it is assumed that the cost per unit flow on link j ∈ Sk is of the form ckϕ(yj),
where yj =

∑
u∈C xu,j represents the total traffic on the link, ck is a cost parameter which depends on

the type of the link, and ϕ is a given cost function. In this work, we shall assume that c1 < c2 and refer
to type-1 links (resp. type-2 links) as ”cheap” links (resp. ”expensive” links).

Another key assumption is that users are self-interested agents seeking to minimize their own routing
cost. More precisely, in state x = (xu,x−u) of the game, user u chooses its routing strategy x∗

u so as to
solve the following optimization problem

minimize
x∗
u∈Xu

Tu(x
∗
u,x−u) =c1

∑

j∈S1

x∗u,j ϕ


x∗u,j +

∑

i ̸=u

xi,j


+ c2

∑

j∈S2

x∗u,j ϕ


x∗u,j +

∑

i̸=u

xi,j


 .

Note that the cost incurred by the routing agent u on a link j depends both on the amount of flow
x∗u,j that it routes to that link, but also on the total traffic

∑
i ̸=u xi,j sent by the other users on that link.

Thus the optimal strategy for user u depends on the routing strategies of the other players, which gives
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a non-cooperative routing game between the users. A Nash equilibrium (NE) of this game is a stable
state xne ∈ X of the game from which no user finds it beneficial to deviate unilaterally, that is

xne
u ∈ arg minz∈Xu

Tu
(
z,xne

−u

)
, ∀u ∈ C.

Throughout the paper, we shall only consider latency functions ϕ satisfying Assumptions 1-5 stated
in Appendix A. These assumptions are in particular satisfied by the functions ϕ(x) = eνx for ν > 0
and ϕ(x) = (1 + x)m for m ≥ 2 (see Remark 1 of Appendix A for other examples of latency functions
satisfying these assumptions). Under Assumption 1, the existence and uniqueness of the NE follow from
[24].

2.2 Inefficiency of the decentralized routing scheme

It is well-known in game theory that the outcome of a non-cooperative game between selfish players
can be inferior to a centrally designed outcome (see, e.g. Chapter 17 of [23]). In our setting, it means
that letting users optimize their own performances without any coordination may lead to a performance
degradation with respect to a centralized routing scheme which would optimize the global performance
of all users.

We adopt the point of view of a network operator who has a known network configuration. For the
model introduced above, a network configuration is defined as a vector of parameters p = (n, c), where
n = (n1, n2) specifies the numbers of ”cheap” and ”expensive” links, whereas c = (c1, c2) gives the
costs of the two types of links. The network operator does not know the traffic demands λ1, . . . , λK
of the users and does not control how they route their traffic demands into the network. We assume
a decentralized scheme in which each user minimizes its own routing cost, without coordination with
the others, as explained above. The objective is to evaluate, for the fixed network configuration p, the
performance degradation resulting from the absence of a central authority under the worst-case traffic
conditions.

In order to make things more formal, we introduce below some definitions. Consider a network
configuration p and a vector λ = (λ1, . . . , λK) of traffic demands. Let xne be the corresponding NE of
the routing game and define yne = (yne1 , yne2 , . . . , yneN ), where ynej =

∑
u∈C x

ne
u,j is the total flow on link j

at the NE. The global performance (or social cost) of the decentralized routing scheme with K players is
defined as the sum of the individual player’ costs at the NE

DK(λ,p) =
∑

u∈C
Tu(x

ne).

Introducing Fk(y) = ck y ϕ (y) for k = 1, 2, the social cost can be written as follows

DK(λ,p) = c1
∑

j∈S1

∑

u∈C
xneu,j ϕ

(∑

u∈C
xneu,j

)
+ c2

∑

j∈S2

∑

u∈C
xneu,j ϕ

(∑

u∈C
xneu,j

)

=
∑

j∈S1

F1(y
ne
j ) +

∑

j∈S2

F2(y
ne
j )

= F (yne),

where F (y) =
∑

j∈S1
F1(yj)+

∑
j∈S2

F2(yj) for all y ≥ 0. In this paper, our objective is to compare the
performance of the decentralized scheme with the optimal performance that could be achieved

F (y∗) = min



F (y) : y ≥ 0,

∑

j

yj = λ̄



 , (1)

where λ̄ =
∑

u∈C λu is the total traffic in the system. Note that F (y∗) is the performance achieved by an
optimal routing strategy minimizing the social cost, and that it corresponds to the cost obtained when
there is a single user controlling all the traffic in the system, i.e. such that λ1 = λ̄. The global cost of
this centralized routing scheme can be written as D1(λ̄,p), and we thus have F (y∗) = D1(λ̄,p).

In order to compare the two routing schemes, we shall use the concept of inefficiency introduced in
[16] in the context of server farms. The inefficiency of the decentralized scheme is defined as the ratio
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between the performance obtained by the NE and the global optimal solution under the worst possible
traffic conditions, that is

Inefficiency IK(p) = sup
λ

DK(λ,p)

D1(λ̄,p)
= sup

λ

F (yne)

F (y∗)
, (2)

where the supremum is taken over all vectors λ of traffic demands that the network may have to accom-
modate and λ̄ =

∑K
u=1 λu. We emphasize that the inefficiency depends on the network configuration p

but not on the traffic demands of the users. Its values are between 1 and ∞, a higher value indicating a
worse performance of decentralized routing compared to centralized routing.

Another widely used measure of how the efficiency of a system degrades due to selfish behavior of its
users is the so-called Price of Anarchy (PoA) [20], which, in our case, is related to the inefficiency as
follows

PoA(K,N) = sup
p
IK(p), (3)

where the supremum is taken over all parameter vectors p = (n, c) such that n1+n2 = N and 0 < c1 < c2.

3 Preliminary results

We first recall in Section 3.1 some results regarding the worst-case traffic conditions for the performance
of the decentralized routing scheme. We then provide simple relations for the characterization of the
centralized and decentralized routing solutions in Sections 3.2 and 3.3, respectively.

3.1 Worst traffic conditions for a fixed total traffic

If the total incoming traffic λ̄ is fixed, it is proven in [6] that the global cost DK(λ,p) achieves its
maximum for the symmetric game, that is

sup
λ
DK (λ,p) = DK

(
λ̄

K
1,p

)
, (4)

where 1 = (1, 1, . . . , 1), implying that

IK(p) = sup
λ̄>0

DK

(
λ̄
K 1,p

)

D1(λ̄,p)
. (5)

As a consequence, for the calculation of the inefficiency, we can restrict ourselves to the symmetric game.
This, coupled with the fact that in our setting the symmetric game is also a potential game, makes it
more tractable for the analytic computation of the NE routing solution. More precisely, it is shown in
[6] that the decentralized routing solution is the solution of a convex optimization problem, as stated in
Theorem 1 below.

Theorem 1. Let the vector y be the global optimum of the following convex optimization problem

minimize
y

2∑

k=1

∑

j∈Sk

Fk(yj) + (K − 1)

∫ yj

0

ck ϕ(z)dz

s.t. ∑N
j=1 yj = λ̄,

yj ≥ 0, j = 1, . . . , N.

The strategy profile x such that xu,j =
yj

K for all u ∈ C and j = 1, . . . , N is the NE of the symmetric
game.

3.2 Characterization of the centralized routing strategy

Under the centralized routing strategy, the vector y∗ of link flows is the optimal solution of problem (1).
For a type-k link j ∈ Sk, the KKT conditions then imply that y∗j > 0 if and only if the marginal cost

F ′
k(y

∗
j ) = ck

[
ϕ
(
y∗j
)
+ y∗j ϕ

′ (y∗j
)]
, (6)
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is minimal. Defining λ̄∗ as the unique solution of F ′
1(

λ̄∗

n1
) = F ′

2(0), that is,

c1

[
ϕ

(
λ̄∗

n1

)
+
λ̄∗

n1
ϕ′
(
λ̄∗

n1

)]
= c2, (7)

it follows from the assumption c1 < c2 that

• for λ̄ ≤ λ̄∗, the centralized routing strategy forwards all the traffic to the cheap links and they all
receive the same amount of traffic, that is, y∗k = λ̄

n1
for all k ∈ S1 and y∗j = 0 for all j ∈ S2,

• for λ̄ > λ̄∗, the centralized routing strategy is such that all links receive a positive amount of traffic
(that is, y∗l > 0 for all l = 1, . . . , N), and

c1 [ϕ (y
∗
k) + y∗k ϕ

′ (y∗k)] = c2
[
ϕ
(
y∗j
)
+ y∗j ϕ

′ (y∗j
)]
,∀k ∈ S1, ∀j ∈ S2. (8)

Note that in both cases two links of the same type receive exactly the same amount of traffic, that
is, y∗l = y∗m if l,m ∈ Sk for k = 1, 2. This implies that for λ̄ ≤ λ̄∗ the optimal social cost is simply

F (y∗) = n1F1

(
λ̄
n1

)
, whereas for λ̄ > λ̄∗, it can be written as F (y∗) = n1F1 (y

∗
1) + n2F2 (y

∗
N ).

3.3 Characterization of the decentralized routing strategy

Under the decentralized routing strategy, the vector yne of link flows is the optimal solution of the
optimization problem stated in Theorem 1. Defining λ̄ne as the unique solution of

c1

[
Kϕ

(
λ̄ne

n1

)
+
λ̄ne

n1
ϕ′
(
λ̄ne

n1

)]
= c2K, (9)

it follows from the KKT conditions and the assumption c1 < c2 that

• for λ̄ ≤ λ̄ne, the decentralized routing strategy forwards all the traffic to the cheap links only and
they all receive the same amount of traffic, that is, ynek = λ̄

n1
for all k ∈ S1 and ynej = 0 for all

j ∈ S2,

• for λ̄ > λ̄ne, in the decentralized routing strategy all links receive a positive amount of traffic (that
is ynel > 0 for all l), and

c1 [Kϕ (y
ne
k ) + ynek ϕ′ (ynek )] = c2

[
Kϕ

(
ynej

)
+ ynej ϕ′

(
ynej

)]
,∀k ∈ S1, ∀j ∈ S2. (10)

Note that, as in the centralized setting, links of the same type always receive the same amount of

traffic. As a direct consequence, the social cost at the NE is F (yne) = n1F1

(
λ̄
n1

)
for λ̄ ≤ λ̄ne, whereas

it can be written as F (yne) = n1F1 (y
ne
1 ) + n2F2 (y

ne
N ) for λ̄ > λ̄ne.

It directly follows from (7) and (9) that λ̄∗ < λ̄ne for K > 1. It means that when there are more
than one user, the decentralized routing strategy uses only the ”cheap” links longer than what would be
optimal. Of course, when there is only one user, that is for K = 1, we have λ̄ne = λ̄∗ and conditions (10)
and (8) are equivalent in this case. In other words, the centralized routing strategy and the decentralized
one coincide when there is only one user.

4 Worst-case total traffic

As discussed in Section 3.1, for a fixed total traffic λ̄ > 0, the worst inefficiency is obtained when all
users control the same amount of traffic λ̄

K , that is, for the symmetric game. We now study the worst-

case total traffic λ̄ for the ratio of social costs DK

(
λ̄
K 1,p

)
/D1(λ̄,p). As DK

(
λ̄
K 1,p

)
= F (yne) and

D1(λ̄,p) = F (y∗), we first establish some results pertaining to the comparison of equilibrium and optimal
flow configurations in Section 4.1. In particular, we show that for any ”cheap” link k the ratio ynek /y∗k
reaches its maximum for λ̄ = λ̄ne. We then study in Section 4.2 the ratio of social costs as a function of
λ̄ and prove that it also achieves its maximum for λ̄ = λ̄ne.
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4.1 Link flows under the centralized and decentralized routing strategies

Note that for λ̄ > λ̄∗ (resp. λ̄ > λ̄ne) the link flows y∗l (resp. ynel ) obtained under the centralized
(resp. decentralized) routing scheme are implicitly defined by equation (8) (resp. (10)). We first prove
in Lemma 1 below that under both routing schemes these link flows are continuous functions of λ̄.

Lemma 1. The vectors y∗ and yne are continuous in λ̄ over [0,∞).

Proof. See Appendix B.1.

Proposition 1 below prove some inequalities satisfied by the flows on cheap and expensive links, which
are valid under both strategies. It is worthwhile noticing that the proof of this proposition exploits only
the strict monotonicity and the convexity of the latency function ϕ.

Proposition 1. For K ≥ 1, it holds that

(a) The flow on the expensive links is strictly lower than that on the cheap links, that is, ynej < ynek for
all j ∈ S2 and k ∈ S1,

(b) For any cheap link k ∈ S1 and any expensive link j ∈ S2, it holds that c1ϕ (y
ne
k ) < c2ϕ

(
ynej

)
and

c1y
ne
k ϕ′ (ynek ) > c2y

ne
j ϕ′

(
ynej

)
.

(c) For λ̄ ≥ λ̄ne, the marginal cost of the cheap links is greater than or equal to that of the expensive
ones, that is

F ′
1(y

ne
k ) ≥ F ′

2(y
ne
j ), for all k ∈ S1 and j ∈ S2, (11)

and the inequality is strict for K > 1.

Proof. See Appendix B.2.

We emphasize that the properties stated in Proposition 1 also hold for K = 1, that is, for the
centralized routing strategy. Hence, the centralized routing strategy forwards more traffic on the cheap
links than on the expensive links, exactly as does the decentralized one. However, for λ̄ ≥ λ̄ne, the
marginal costs of cheap and expensive links are always equal under the centralized routing strategy,
whereas the marginal costs of cheap links are strictly greater than those of expensive links under the
decentralized routing strategy.

We now turn our attention to the comparison of the link flows obtained under both routing strategies
when λ̄ varies. When λ̄ is in the interval (0, λ̄∗], both strategies coincide: they both forward all the traffic
only on the cheap links. In the interval (λ̄∗, λ̄ne], the centralized strategy deviates a fraction of the traffic
onto the expensive links, whereas the decentralized one keeps using only the cheap links. Finally, in the
interval (λ̄ne,∞), both the centralized and decentralized strategies use both type of links. Proposition
2 below states our main result regarding the comparison of the equilibrium and optimal link flows when
λ̄ is in the latter interval. The proof relies on a technical condition which is easily shown to be satisfied
by ϕ(x) = eνx and ϕ(x) = (1 + x)m (see Assumption 4 and Lemma 7 in Appendix A). More generally,
all the results in this section are valid for any other latency function satisfying Assumptions 1, 3 and 4
in Appendix A, such as ϕ(x) = 1/(1− x)m and ϕ(x) = 1 + xm.

Proposition 2. For λ̄ > λ̄ne, it holds that

(a) The decentralized routing strategy forwards more (resp. less) traffic on cheap (resp. expensive)
links than the centralized one does, that is

ynek > y∗k for all k ∈ S1 and ynej < y∗j for all j ∈ S2. (12)

(b) For any cheap link k ∈ S1, the difference ynek − y∗k between the amount of flow forwarded on this
link by the decentralized routing strategy and the centralized one decreases as λ̄ increases, that is,

dynek

dλ̄
<
dy∗k
dλ̄

. (13)

8



0 1 2 3 4 5 6 7 8

∏

0.0

0.2

0.4

0.6

0.8

1.0

1.2

∏
§

∏
ne

yne
1 /y§1

yne
2 /y§2

Figure 2: Evolution of the link flow ratios yne1 /y∗1 (for the cheap link) and yne2 /y∗2 (for the expensive
links) as a function of λ̄ for the latency function ϕ(x) = ex. In this example, there are K = 5 users, one
cheap link with c1 = 1 and nine expensive links with c2 = 10.

(c) For any expensive link j ∈ S2, the difference ynej −y∗j between the amount of flow forwarded on this

link by the decentralized routing strategy and the centralized one increases as λ̄ increases, that is,

dynej

dλ̄
>
dy∗j
dλ̄

. (14)

Proof. See Appendix B.3.

Using Proposition 1 and Proposition 2, Proposition 3 below characterizes the behaviour of the ratios
ynel /y∗l of link flows obtained under both settings when the total traffic λ̄ varies.

Proposition 3. Let k ∈ S1 be an arbitrary cheap link and j ∈ S2 be an arbitrary expensive link and
consider the ratios ynek /y∗k and ynej /y∗j as functions of the total traffic λ̄. It holds that

• the ratio ynek /y∗k is strictly increasing in λ̄ over the interval
(
λ̄∗, λ̄ne

]
, and strictly decreasing over

the interval
(
λ̄ne,∞

)
,

• The ratio ynej /y∗j is 0 over the interval
(
λ̄∗, λ̄ne

]
, and strictly increasing in λ̄ over the interval(

λ̄ne,∞
)
.

Proof. See Appendix B.4.

It directly follows from Proposition 3 and Lemma 1 that for any cheap link k the maximum value of
the ratio ynek /y∗k is obtained when λ̄ = λ̄ne, as formally stated in Corollary 1.

Corollary 1. For all cheap links k ∈ S1, the ratio ynek /y∗k achieves its maximum for λ̄ = λ̄ne. At this
point, the ratio ynej /y∗j is minimum for all expensive links j ∈ S2.

To summarize, in the interval (0, λ̄∗], the ratio ynek /y∗k is constant and equal to 1 for any cheap link
k. In the interval (λ̄∗, λ̄ne], the ratio ynek /y∗k increases as λ̄ increases and it reaches its maximum for
λ̄ = λ̄ne. From this point onwards, the ratio ynek /y∗k decreases with λ̄ . Similarly, for any expensive link
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j, the ratio ynej /y∗j is 0 over the interval (λ̄∗, λ̄ne] (it is undefined for λ̄ ≤ λ̄∗) and it increases with λ̄ over

(λ̄ne,∞). Figure 2 illustrates this behaviour of the link flow ratios ynek /y∗k and ynej /y∗j for ϕ(x) = ex,
K = 5 users and N = 10 parallel links. In this example, there is only one cheap link of cost c1 = 1 and
there are nine expensive links of cost c2 = 10.

4.2 Worst-case total traffic for the ratio of social costs

We now study the ratio of social costs. It directly follows from Lemma 1 that this ratio is continuous in
λ̄.

Lemma 2. As a function of λ̄, the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) is continuous over (0,∞).

Proof. See Appendix C.1.

Proposition 4 below characterizes the behaviour of the ratio of social costs as λ̄ varies over (0,∞).

Proposition 4. For K > 1, as a function of λ̄, the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) of the social costs

obtained under the decentralized routing strategy and the centralized one is

(a) constant and equal to 1 in the interval (0, λ̄∗],

(b) strictly increasing with λ̄ in the interval
(
λ̄∗, λ̄ne

]
, and,

(c) strictly decreasing with λ̄ in the interval
(
λ̄ne,∞

)
.

Proof. See Appendix C.

We have shown in Section 4.1 that for any cheap link k ∈ S1, the ratio ynek /y∗k of the flows on this
link obtained under the decentralized routing strategy and the optimal one achieves its maximum for
λ̄ = λ̄ne. As stated in Corollary 2, the same is true for the ratio of social costs.

Corollary 2. The ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) achieves its maximum when λ̄ = λ̄ne, implying that

IK(p) =
n1F1

(
λ̄ne

n1

)

n1F1 (y∗1) + n2F2 (y∗N )
, (15)

where y∗1 and y∗N are the links flows over cheap and expensive links, respectively, obtained under the
centralized routing strategy for λ̄ = λ̄ne.

Proof. The proof directly follows from Lemma 2 and Proposition 4.

Figure 3 illustrates the evolution of the ratio of social costs as the total traffic λ̄ in the system varies
for the latency functions ϕ(x) = ex, ϕ(x) = (1 + x)3 and ϕ(x) = (1 + x)4. The setting is the same as
in Figure 2, that is, there are K = 5 users, one cheap link with c1 = 1 and nine expensive links with
c2 = 10. For ϕ(x) = ex, the ratio is constant before λ̄∗ = 1.42, it increases from λ̄∗ up to λ̄ne = 1.97
where it reaches a maximum value of 1.21, and then decreases with λ̄. Similarly, for ϕ(x) = (1+x)4, the
ratio of social costs is constant before λ̄∗ = 0.45. From this point onwards it increases up to λ̄ne = 0.66
where it reaches a maximum value of 1.18, and then decreases with λ̄.

In summary, we have shown that, given a fixed network configuration p, the worst inefficiency of the
decentralized routing scheme is obtained when all users control the same amount of traffic and when the
total traffic in the system is λ̄ = λ̄ne. This corresponds to the value of the total traffic for which the
decentralized routing scheme starts using the expensive links. When K > 1, this value is strictly greater
than λ̄∗, which means that selfish users send all their traffic demands on the cheap links longer than
what would be globally optimal. Although this result is proven here only for latency functions satisfying
Assumptions 1-5, we note that a similar result was proven in [16] for the M/M/1 latency function, that
is, for ϕ(x) = 1/(1 − x). As discussed in Section 6, numerical experiments suggest that Corollary 2
probably holds for a much broader class of latency functions.

We would like to remark that the result of Corollary 2 is consistent with the work of [11], in which
the authors show that, for nonatomic routing games and affine costs, the local maxima of the ratio of
social costs are obtained when the total traffic is such that a new set of links is used. Another direct
consequence of Corollary 2 is that, given a fixed network configuration, the worst inefficiency of the

10
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Figure 3: Evolution of the ratioDK

(
λ̄
K 1,p

)
/D1(λ̄,p) as λ̄ increases for the latency functions ϕ(x) = ex,

ϕ(x) = (1 + x)3 and ϕ(x) = (1 + x)4. The setting is the same as in Figure 2.

decentralized routing scheme is obtained neither for λ̄ → 0 nor for λ̄ → ∞, as could be expected.
Interestingly, this result is consistent with the work of [8] where the authors show that the PoA of
nonatomic routing games is not achieved when the traffic is very small or very large. Nevertheless, for
ϕ(x) = (1 + x)m, the value of λ̄ne can be made arbitrarily small, as shown in Lemma 3 below.

Lemma 3. For ϕ(x) = (1 + x)m, λ
ne

decreases with m and λ̄ne → 0 as m→ ∞.

Proof. See Appendix C.3.

5 From Inefficiency to Price of Anarchy

In Section 4, we have characterized the worst traffic conditions for the inefficiency IK(p) of the decen-
tralized routing scheme, assuming a fixed network configuration p. In this section, we assume that the
worst traffic conditions are met and investigate the worst network configuration for the inefficiency of
the decentralized routing scheme. In other words, we study the PoA for the routing game over parallel
links, where in (3), the PoA was defined as the supremum over all the network configurations p of IK(p).
We first show that the Inefficiency depends only on the ratios n1/n2 and c1/c2.

Proposition 5. The Inefficiency IK(p) depends on the parameters p = (n, c) only through the ratios
α = n1

n2
and γ = c1

c2
.

Proof. See Appendix D.

Note in particular that the Inefficiency depends on the total number of links only through the values
that the ratio α = n1

n2
can take. As a consequence of Proposition 5, we shall write IK(α, γ) instead of

IK(n, c) to denote the Inefficiency in the following. We study below how the Inefficiency varies with α
and γ.

We first study how IK(α, γ) varies with α for a fixed value of γ. Assuming that K = 5 and N = 100,
Figure 4 shows IK(α, γ) as a function of n1/N for γ = 0.5, γ = 0.2 and γ = 0.1 when ϕ(x) = (1 + x)3.
We observe that the inefficiency of the decentralized routing scheme seems to decrease as the proportion
of cheap links increases. A similar behavior was observed for ϕ(x) = ex. As n1/N = α/(1 + α) is an
increasing function of α, this suggests that the inefficiency decreases with the ratio α of the numbers of
cheap and expensive links. This is formally proven in Proposition 6 below.
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N for different values of γ and for ϕ(x) = (1 + x)3.

Proposition 6. The Inefficiency IK(α, γ) is strictly decreasing with α.

Proof. See Appendix D.

An immediate consequence is the following corollary.

Corollary 3. The PoA is obtained when there is only one “cheap” link and N − 1 “ expensive” links,
that is,

PoA(K,N) = sup
α,γ

IK(α, γ) = sup
γ
IK

(
1

N − 1
, γ

)
. (16)

In the following, we shall therefore assume that α = 1/(N − 1) and study how the Inefficiency varies

as a function of γ. Assuming that ϕ(x) = ex, Figure 5a shows the values obtained for IK

(
1

N−1 , γ
)
as

γ varies from 0 to 1 in scenarios with K = 2, K = 3 and K = 5 users and N = 10 parallel links. We
observe that for all values of K the Inefficiency is strictly decreasing with γ, which, according to (16),
implies that the PoA is obtained when γ tends to zero. As a result, we conjecture that for ϕ(x) = eνx,

PoA(K,N) = lim
γ→0

IK

(
1

N − 1
, γ

)
.

Besides, we get the following bounds on the performance degradation.

Lemma 4. For ϕ(x) = eνx and N ≥ 2, it holds that

K
N−1−ν
N−1

N − 1

N(1 + logK)− 1
≤ lim

γ→0
IK

(
1

N − 1
, γ

)
≤ K,

from which it follows that K/(1 + log(K)) ≤ limN→∞ PoA(K,N).

Proof. See Appendix D.
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Figure 5: Inefficiency IK( 1
N−1 , γ) as a function of γ for different values of K and for (a) ϕ(x) = ex and

(b) ϕ(x) = (1 + x)2.

In words, we conjecture that for ϕ(x) = eνx the worst inefficiency is achieved when the cost of the
”expensive” links is infinitely larger than the cost of the ”cheap” link. If this conjecture holds, this
implies that the PoA is upper bounded by K. Furthermore, regardless this conjecture is true or not,

the above result implies that the PoA for ϕ(x) = eνx is, at least, K
N−1−ν
N−1 (N − 1)/[N(1 + logK) − 1].

For ν = 1, N = 10 and K = 5, it yields 1.499, which is to be compared to the value 1.7 obtained in
Figure 5a. Moreover, we can conclude that the PoA for ϕ(x) = eνx is unbounded in nonatomic routing
games as K/(1 + log(K)) tends to ∞ when K → ∞. Surprisingly, the monotonicity property shown in
Figure 5a for ϕ(x) = eνx does not seem to hold for ϕ(x) = (1 + x)m. As illustrated for ϕ(x) = (1 + x)2

in Figure 5b, in which we also assume that N = 10, the inefficiency IK( 1
N−1 , γ) obtained for different

values of K is not monotone as a function of γ. A similar behaviour was observed for other values of m.
Unfortunately, we were not able to characterize the value of γ yielding the worst inefficiency. Therefore,
the precise value of γ for which the PoA is achieved when ϕ(x) = (1 + x)m remains an open question.

6 Extensions of this work

Our main result is that the worst inefficiency of the decentralized routing scheme is obtained when the
traffic demands of all users are λ̄ne/K. The key ingredient to prove this result is Proposition 4, which
characterizes how the ratio of equilibrium and optimal social costs varies with the total traffic demand
λ̄. Proposition 4 has been established under sufficient conditions on the latency function ϕ(x), assuming
that there are only two types of links with the same latency function ϕ(x). We discuss below several
interesting extensions of this work.

6.1 Generalization to other latency functions

As already mentioned, it was proven in [16] that for ϕ(x) = 1/(1−x) the ratio of social costs varies with
λ̄ exactly as stated in Proposition 4 for latency functions satisfying Assumptions 1-5 such as ϕ(x) = eνx

and ϕ(x) = (1 + x)m . Our numeric experiments suggest however that Proposition 4 holds for a much
broader class of latency functions.

For instance, in Figure 6 we plot the evolution of the ratio of social costs as λ̄ increases when
ϕ(x) = 1 + xm for different values of m. A similar behavior of the ratio of social costs is obtained for
ϕ(x) = 1/(1 − x)m. For both types of latency function, we observe that the ratio of social costs varies
with λ̄ as stated in Proposition 4, and that the worst inefficiency is obtained when λ̄ = λ̄ne.
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Figure 6: Evolution of the ratio of social costs as λ̄ increases for the latency function ϕ(x) = 1 + xm. In
this example, there are K = 5 users, one cheap link with c1 = 1 and nine expensive links with c2 = 10.

Unfortunately, the arguments used to prove Proposition 4 do not readily apply to these latency
functions, as we now briefly explain:

• For ϕ(x) = 1 + xm, with m ≥ 1, it is straightforward to show that Lemma 8 holds, and thus
that the ratio of social costs is strictly decreasing with λ̄ over the interval

(
λ̄ne,+∞

)
. However,

the argument used to prove that this ratio is strictly increasing with λ̄ over
(
λ̄∗, λ̄ne

)
does not

apply because the latency function ϕ(x) = 1 + xm does not satisfy Assumption 2 in Appendix A.
Therefore, a different argument should be used to prove that the ratio of social costs increases over(
λ̄∗, λ̄ne

)
.

• For ϕ = 1
(1−x)m with m ≥ 2, the same approach as for ϕ(x) = eνx and ϕ(x) = (1+x)m can be used

to show that the ratio of social costs is strictly increasing with λ̄ over
(
λ̄∗, λ̄ne

)
. Unfortunately, our

numerical experiments suggest that Assumption 5 in Appendix A is not met by ϕ(x) = 1/(1−x)m,
implying that a different approach should be used to prove that the ratio of social costs is strictly
decreasing with λ̄ for λ̄ > λ̄ne.

6.2 Extension to more than two types of links

Our results on the inefficiency of selfish routing have been established assuming that there are only two
types of links which differ by their cost parameters c1 and c2 > c1. Numeric experiments suggest however
that similar results hold for more than two types of links.

In Figure 7 we plot the ratio of social costs obtained in the symmetric game for ϕ(x) = ex and
ϕ(x) = (1 + x)2 as a function of the total traffic demand λ̄ when there are 4 links, each of a different
type. It can be observed that as λ̄ increases the ratio goes through peaks and valleys, and finally
converges towards 1 as λ̄ → ∞. The peaks correspond to values of the total traffic demand λ̄ at which
the decentralized routing scheme starts using one new link (these values are shown with dotted vertical
lines in Figure 7). A similar behavior of the ratio of social costs was observed in [16] for the latency
function ϕ(x) = 1/(1− x), and in nonatomic routing games with affine costs [11].

The analysis is nevertheless much more complex for more than two types of links as one needs to
compare multiple local maxima to determine the Inefficiency. The extension of our results to more than
two types of links is therefore left for future work.
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Figure 7: Evolution of the ratio of social costs as a function of the total traffic demand for ϕ(x) = ex

and ϕ(x) = (1 + x)2 when there are K = 5 users and N = 4 links, each of a different type. The cost
parameters of the links are as follows: c1 = 1, c2 = 2, c3 = 4 and c4 = 8.

6.3 Extension to heterogeneous latency functions

It was assumed throughout this paper that the two types of links share the same latency function ϕ(x)
and differ only through their cost parameters c1 and c2. A natural extension of this work would be
to investigate the inefficiency of selfish routing for heterogeneous latency functions, that is, when the
cost function of type-i links is ci ϕi(x) (e.g., c1e

x for type-1 links and c2(1 + x)m for type-2 links). It
is known that even in this case the Nash Equilibrium exists and is unique under mild assumptions on
the latency functions ϕi(x) [24]. It is not clear however whether the global cost DK(λ,p) achieves its

maximum for the symmetric game λ =
(

λ̄
K , . . . ,

λ̄
K

)
in this case. The proof of this result in [6] relies

on a monotonic property regarding the order of preference of links as seen by each user (see Proposition
2 and Lemma 1 in [6]). Proving that this monotonic property is still valid in the case of heterogeneous
latency functions is highly non-trivial. As a consequence, it is not clear whether the worst inefficiency of
the decentralized routing scheme is obtained for a symmetric game, which is crucial to characterize the
decentralized routing strategy as the solution of a convex optimization problem (see Theorem 1). This
extension is therefore also left for future work.

7 Conclusions and future work

For the specific atomic routing game considered in this paper, it was shown that the worst traffic
conditions occur when all users have the same traffic demand and the total traffic demand is such that
”expensive links” are marginally used by selfish routing. Moreover, if these worst traffic conditions are
met, the worst inefficiency of the selfish routing scheme is obtained when the number of ”expensive” links
is infinitely larger than the number of ”cheap” links and under a very specific condition on the ratio c1/c2
(which we conjecture to be c1/c2 → 0 for ϕ(x) = eνx). The worst-case scenarios for the inefficiency of
selfish routing therefore corresponds to very specific traffic conditions and to highly asymmetric network
configurations, which explain why the PoA is probably an overly pessimistic performance measure, as
advocated in many recent works on non-atomic routing games.

As future work, we plan, as discussed in Section 6, to investigate the extension of our results to other
latency functions, to more than two types of links and to heterogeneous latency functions for the different
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types of links.
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A Some Properties of Latency Functions

As mentioned before, in this work we consider the following latency functions: ϕ(x) = eνx for ν > 0
and ϕ(x) = (1 + x)m for m ≥ 2. However, in order to keep the discussion as general as possible and
ease the proofs for other latency functions, we shall regroup here all the technical assumptions on the
latency function ϕ that are required for our results to hold, and systematically indicate in which proof
an assumption is used. We also prove in this appendix that all the assumptions hold for the latency
functions ϕ(x) = eνx and ϕ(x) = (1+x)m. We emphasize however that all the results proven in Appendix
B, C and D hold for any other latency function ϕ satisfying Assumption 1-5 below. Table 1 summarizes
which assumption is required for which proof and shows whether or not an assumption is satisfied by
one of the latency functions considered in the present paper.

Remark 1. One can also easily check that Assumptions A1-A3 are also true for ϕ(x) = (1 + xm)eνx

and ϕ(x) = (1 + x)meνx, where ν > 0 and m ≥ 2. Our numerical experiments suggest that these latency
functions also verify Assumptions A4 and A5.

Our basic assumption on the latency function ϕ is formally stated in Assumption 1 below.

Assumption 1. The latency function ϕ is a continuously differentiable, strictly increasing and convex
function over the interval [0,+∞) which verifies that ϕ(0) = 1 and limx→+∞ ϕ(x) = +∞. In addition,
its second derivative ϕ

′′
() exists at all points in the interval [0,+∞).

As discussed in [6], any latency function ϕ for which Assumption 1 is satisfied is such that the
conditions given in [24] for the existence of a unique NE for the routing game are satisfied. It is clear
that these conditions are satisfied both for ϕ(x) = eνx and ϕ(x) = (1 + x)m.

To prove assertion (b) of Proposition 4, that is, that the ratio of social costs is strictly increasing over
(λ̄∗, λ̄ne], we will need the following assumption.
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Assumption Required for ϕ(x) = eνx ϕ(x) = (1 + x)m ϕ(x) = 1
(1−x)m ϕ(x) = 1 + xm

Existence of
Assumption 1 a unique NE ✓ ✓ ✓ ✓

and Theorem 1
Assumption 2 Assertion (b)

of Proposition 4 ✓ ✓ ✓ ✗

Assumption 3 Proposition 3 ✓ ✓ ✓ ✓
Assumption 4 Proposition 2 ✓ ✓ ✓ ✓
Assumption 5 Proposition 4 ✓ ✓ ✗ ✓

Table 1: This table shows which assumptions are satisfied or not by some classic latency functions and
indicates where they are used.

Assumption 2. The function g : [0,+∞) → [0,+∞) defined by

g(y) =
F1(y)

F ′
1(y)

=
F2(y)

F ′
2(y)

=
y ϕ(y)

ϕ(y) + yϕ′(y)
(17)

is strictly increasing and strictly concave on [0,+∞).

As stated in Lemma 5 below, Assumption 2 is satisfied for ϕ(x) = eνx and ϕ(x) = (1 + x)m.

Lemma 5. For ϕ(x) = eνx and ϕ(x) = (1 + x)m, Assumption 2 holds.

Proof. It is enough to check that in both cases we have g′(y) > 0 and g′′(y) < 0 for all y ∈ [0,∞). For
ϕ(x) = eνx, we have g(y) = y

1+ν y , and therefore g′(y) = 1
(1+νy)2 > 0 and g′′(y) = − 2ν

(1+νy)3 < 0 for all

y ∈ [0,∞). For ϕ(x) = (1+x)m, we obtain g(y) = y+y2

1+(m+1)y , which yields g′(y) = 1+2y+(m+1)y2

(1+(m+1)y)2 > 0 and

g′′(y) = − 2m
(1+(m+1)y)3 < 0 for all y ∈ [0,∞).

The third assumption that we shall require is stated below.

Assumption 3. The function f : [0,+∞) → [0,+∞) defined by

f(y) =
F ′′
1 (y)

F ′
1(y)

y =
F ′′
2 (y)

F ′
2(y)

y =
2ϕ′(y) + yϕ′′(y)

ϕ(y) + yϕ′(y)
y (18)

is strictly increasing over [0,+∞).

Assumption 3 is required in the proof of Lemma 22 to show that the ratio ynek /y∗k increases as λ̄
increases in the interval (λ̄∗, λ̄ne] for all cheap links k. Lemma 22 is in turn used to prove Proposition 3.
Lemma 6 below establishes that Assumption 3 is satisfied for ϕ(x) = eνx and ϕ(x) = (1 + x)m.

Lemma 6. For ϕ(x) = eνx and ϕ(x) = (1 + x)m, Assumption 3 holds.

Proof. For ϕ(x) = eνx, we have f(y) = νy + νy
1+νy from which it follows that f ′(y) = ν + ν

(1+νy)2 > 0.

For ϕ(x) = (1 + x)m, f(y) = my
1+y

(
1 + 1

1+(m+1)y

)
, from which we obtain

f ′(y) =
2m

(1 + y)2(1 + (m+ 1)y)2

[
1 + (m+ 1)y +

m(m+ 1)

2
y2
]
> 0.

In order to prove that
dyne

k

dλ̄
<

dy∗
k

dλ̄
for λ̄ ≥ λ̄ne and any cheap link k ∈ S1 (see Proposition 2), we will

need Assumption 4 below.

Assumption 4. Let

H(x, y) = xϕ′(x)− ϕ(x)

(
1 + y

ϕ′′(y)

ϕ′(y)

)
, (19)

for x, y ∈ [0,+∞). Then, it is assumed that
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• the function A(x, y) = [c1H(x, y)− c2H(y, y)] /ϕ′(x) is decreasing in x over
[
y, ϕ−1( c2c1ϕ(y))

)
for y

fixed, and increasing in y over
[
ϕ−1( c1c2ϕ(x)), x

)
for x fixed, and at least one of the monotonicities

is strict;

• the function B(x, y) = [c1H(x, x)− c2H(y, x)] /ϕ′(y) is increasing in x over
[
y, ϕ−1( c2c1ϕ(y))

)
for y

fixed, and decreasing in y over
[
ϕ−1( c1c2ϕ(x)), x

)
for x fixed, and at least one of the monotonicities

is strict.

Lemma 7 proves that this assumption is satisfied by the latency functions ϕ(x) = eνx and ϕ(x) =
(1 + x)m.

Lemma 7. For ϕ(x) = eνx and ϕ(x) = (1 + x)m, Assumption 4 holds.

Proof. We first give the proof for ϕ(x) = eνx. Define a1 = eνx, a2 = eνy and b = a1

a2
. We have

H(x, y) = a1 log(a1)− a1(1 + log(a2)) = a1(log(b)− 1), (20)

H(y, y) = a2 log(a2)− a2(1 + log(a2)) = −a2, (21)

and by symmetry, it follows that H(x, x) = −a1 and H(y, x) = −a2(log(b) + 1). We thus obtain
νA(x, y) = c1(log(b) − 1) + c2/b, which is strictly decreasing in b over the interval [1, c2c1 ). As ϕ() is a

strictly increasing function, this implies that A(x, y) is strictly decreasing in x over
[
y, log

(
c2
c1
ey
))

for

y fixed, and strictly increasing in y over
[
log
(

c1
c2
ex
)
, x
)
for x fixed. Hence, the statement of Lemma 7

pertaining to A(x, y) is satisfied for ϕ(x) = eνx. Similarly, we obtain νB(x, y) = −c1b + c2(log(b) + 1),
which is clearly strictly increasing in b over the interval [1, c2c1 ). It follows that B(x, y) is strictly increasing

in x over
[
y, log

(
c2
c1
ey
))

for y fixed, and strictly decreasing in y over
[
log
(

c1
c2
ex
)
, x
)

for x fixed, as

claimed.
The proof for ϕ(x) = (1 + x)m is similar. In this case, we have

A(x, y) = − 1

m

[
c1(m− (m− 1)b1/m)− c2b

−(1−1/m)
]
,

B(x, y) = − 1

m

[
c1b

1−1/m − c2(m− (m− 1)b−1/m)
]
,

where b = ϕ(x)/ϕ(y). It is easy to check that A(x, y) (resp. B(x, y)) is strictly decreasing (resp.
increasing) in b over the interval [1, c2c1 ), from which the result follows.

Finally, in order to prove Proposition 4, we will need one last assumption. Before introducing this
assumption, we define some additional notations. Given a fixed value of λ̄ ≥ λ̄ne, let y∗1 (resp. y∗N ) be
the flow on an arbitrary ”cheap” (resp.”expensive”) link under the centralized routing strategy. Let us

define the vector-valued function y(∆) =
(
y∗1 +∆, y∗N − n1

n2
∆
)
for ∆ ∈

[
0, n2

n1
y∗N

]
, and

Q(y) =
n1F1(y1) + n2F2(yN )

δF ′
1(y1) + (1− δ)F ′

2(yN )
, (22)

where δ = n1
dy∗

1

dλ̄
. With a slight abuse of notation, we write Q(∆) for Q(y(∆)). Note that y(0) = y∗

and that there exists ∆ne ∈
(
0, n2

n1
y∗N

)
such that y(∆ne) = yne. Our last assumption is then as follows.

Assumption 5. The latency function ϕ is such that Q(∆) > Q(0) for all ∆ ∈
(
0, n2

n1
y∗N

]
.

Lemma 8 below shows that Assumption 5 is satisfied for both ϕ(x) = eνx and ϕ(x) = (1 + x)m.
This lemma implies in particular that Q(0) < Q(∆ne). The latter inequality is used in the proof of
Proposition 4, which can be found in Appendix C.2.

Lemma 8. For ϕ(x) = eνx and ϕ(x) = (1 + x)m, Assumption 5 holds.

Proof. See Appendix A.1 for the proof for ϕ(x) = eνx, and Appendix A.2 for the proof for ϕ(x) =
(1 + x)m.
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A.1 Proof of Lemma 8 for ϕ(x) = eνx

Define ak = 1/(1 + νy∗l ) for l ∈ Sk and k = 1, 2. Note that as y∗l = y∗m for any links l,m ∈ Sk, the
value of ak does not depend on the link l ∈ Sk considered. Moreover, it follows from property (a) in
Proposition 1 that 1 > a2 > a1 > 0. We first establish the expressions of δ and Q(∆) in terms of a1 and
a2 in Lemma 9.

Lemma 9. It holds that

δ =
n1(1 + a2)

n2(1 + a1) + n1(1 + a2)
and 1− δ =

n2(1 + a1)

n2(1 + a1) + n1(1 + a2)
, (23)

and

Q(∆) =
1

ν

n1e
ν∆ (ā1 + νa1∆) + n2e

−νω∆ (ā2 − νa2ω∆)

δeν∆ (1 + νa1∆) + δ̄ e−νω∆ (1− νa2ω∆)
. (24)

where āk = 1− ak for k = 1, 2 and δ̄ = 1− δ.

Proof. We have

F ′
k(y) = ck [ϕ(y) + yϕ′(y)] = ck(1 + νy)eνy (25)

for k = 1, 2. Similarly, for any link l ∈ Sk we have

ck [2ϕ
′(y∗l ) + y∗l ϕ

′′(y∗l )] = ckνe
νy∗

l (2 + νy∗l )

= ck(1 + νy∗l )e
νy∗

l ν
2 + νy∗l
1 + νy∗l

= F ′
k(y

∗
l )ν(1 + ak), (26)

where ak = 1/(1 + y∗l ). Note that the value of ak does not depend on the link l ∈ Sk considered.
Moreover, it follows from property (a) in Proposition 1 that a2 > a1. We first use (26) to establish the
expression of δ. We have from (52)

δ = n1
∂y∗1
∂λ̄

,

=
n1c2 [2ϕ

′ (y∗N ) + y∗N ϕ′′ (y∗N )]

n2c1 [2ϕ′ (y∗1) + y∗1 ϕ
′′ (y∗1)] + n1c2 [2ϕ′ (y∗N ) + y∗N ϕ′′ (y∗N )]

,

=
n1F

′
2(y

∗
N )ν(1 + a2)

n2F ′
1(y

∗
1)ν(1 + a1) + n1F ′

2(y
∗
N )ν(1 + a2)

,

and with the optimality condition F ′
1(y

∗
1) = F ′

2(y
∗
N ), it yields (23).

We now derive an expression for the function

Q(∆) =
n1F1(y

∗
1 +∆1) + n2F2(y

∗
N +∆2)

δF ′
1(y

∗
1 +∆1) + (1− δ)F ′

2(y
∗
N +∆2)

,

where ∆1 = ∆, ∆2 = −ω∆ and ω = n1/n2. For the terms in the numerator of Q(∆), it follows from
(25) that for k = 1, 2 and l ∈ Sk

Fk(y
∗
l +∆k) = ck(y

∗
l +∆k)e

ν(y∗
l +∆k)

= eν∆kF ′
k(y

∗
l )
y∗l +∆k

1 + νy∗l

= eν∆kF ′
k(y

∗
l )

1

ν
[1− ak + νak∆k] . (27)

Similarly, for the terms in the denominator of Q(∆), we obtain
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F ′
k(y

∗
l +∆k) = ck(1 + ν(y∗l +∆k))e

ν(y∗
l +∆k)

= eν∆kF ′
k(y

∗
l )

1 + νy∗l + ν∆k

1 + νy∗l

= eν∆kF ′
k(y

∗
l ) [1 + νak∆k] . (28)

Combining (27) and (28) and using the optimality condition F ′
1(y

∗
1) = F ′

2(y
∗
N ), we obtain (24).

Interestingly, we note from (23) that a2 > a1 implies that δ = n1
∂y∗

1

∂λ̄
> 1− δ = n2

∂y∗
N

∂λ̄
.

We shall use Lemma 9 to derive a sufficient condition for Q(∆) > Q(0) to hold true for all ∆ ∈(
0, n2

n1
y∗N

]
. To this end, we will need the following result.

Lemma 10. Let ω = n1

n2
. For any strictly positive numbers m1, m2 and p such that m2−m1 = ν(1+ω)p,

it holds that

eν∆ [m1∆+ p] > e−νω∆ [m2∆+ p] , (29)

for any ∆ > 0.

Proof. The proof is based on the well-known inequality ex ≥ x+ 1. It yields eν(1+ω)∆ ≥ ν(1 + ω)∆+ 1,
and it is therefore enough to show that

ν(1 + ω)∆ >
m2∆+ p

m1∆+ p
− 1 =

(m2 −m1)∆

m1∆+ p
=
ν(1 + ω)p∆

m1∆+ p
, (30)

which is equivalent to m1∆ > 0. As m1 > 0, the latter inequality clearly holds true.

We are now in position to prove Lemma 8 for ϕ(x) = eνx.

Proof of Lemma 8 for ϕ(x) = eνx. With Lemma 9, we have

Q(0) < Q(∆) ⇐⇒ eν∆ [n1ā1 −Q(0)δ + (n1 −Q(0)δ)νa1∆] > e−νω∆
[
Q(0)δ̄ − n2ā2 + (n2 −Q(0)δ̄)νa2ω∆

]
,

Let p = n1ā1 −Q(0)δ. Note from (24) that Q(0) = n1ā1 + n2ā2. It follows that

Q(0)δ̄ − n2ā2 = Q(0)−Q(0)δ − n2ā2 = n1ā1 −Q(0)δ = p.

Letting m1 = (n1 −Q(0)δ)νa1 and m2 = (n2 −Q(0)δ̄)νa2ω, it yields

Q(0) < Q(∆) ⇐⇒ eν∆ [m1∆+ p] > e−νω∆ [m2∆+ p] . (31)

With Q(0) = n1ā1 + n2ā2 and (23), we obtain after some algebra

p = n1n2
a22 − a21

n2(1 + a1) + n1(1 + a2)
> 0.

Similarly, we have

m1 = ν n1a1
a2(n1a1 + n2a2) + a1(n1 + n2)

n2(1 + a1) + n1(1 + a2)
,

m2 = ν n1a2
a1(n1a1 + n2a2) + a2(n1 + n2)

n2(1 + a1) + n1(1 + a2)
,

from which we conclude that m1 > 0, m2 > 0 and m2 −m1 = ν(1 + ω)p. The assumptions of Lemma
10 are met and we can thus conclude that inequality (31) is satisfied for all ∆ > 0. We thus get that
Q(0) < Q(∆) for all ∆ ∈

(
0, 1

ωy
∗
N

]
, as claimed.
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A.2 Proof of Lemma 8 for ϕ(x) = (1 + x)m

We proceed as in the case ϕ(x) = ex. Define ak = 1
1+y∗

l
and bk = 1

1+(m+1)y∗
l
for k = 1, 2 and l ∈ Sk.

Note that the values of ak and bk do not depend on the chosen link l ∈ Sk. Moreover, note that y∗1 > y∗N
implies that a1 < a2 and b1 < b2.

We first establish the expressions of δ and Q(∆) in terms of a1, a2, b1 and b2 in Lemma 11.

Lemma 11. It holds that

δ =
ωa2(1 + b2)

a1(1 + b1) + ωa2(1 + b2)
, (32)

1− δ =
a1(1 + b1)

a1(1 + b1) + ωa2(1 + b2)
, (33)

where ω = n1

n2
as in Appendix A.1, and

Q(∆) =
n2

m+ 1

ω
a1

[1− b1 + (m+ 1)b1∆] (1 + a1∆)
m
+ 1

a2
[1− b2 − (m+ 1)b2ω∆] (1− a2ω∆)

m

δ [1 + (m+ 1)b1∆] (1 + a1∆)
m+1

+ (1− δ) [1− (m+ 1)b2ω∆] (1− a2ω∆)
m+1 , (34)

Proof. For ϕ(x) = (1+x)m, we have ϕ′(x) = m(1+x)m−1 and ϕ′′(x) = m(m−1)(1+x)m−2, from which
we obtain

F ′
k(y) = ck [ϕ(y) + yϕ′(y)] = ck(1 + y)m−1 [1 + (m+ 1)y] , k = 1, 2. (35)

Besides, we also have

2ϕ′(y) + yϕ′′(y) = m(1 + y)m−2 [2 + (m+ 1)y]

=
m

1 + y
(1 + y)m−1 [1 + (m+ 1)y]

[
1 +

1

1 + (m+ 1)y

]
,

which yields with (35)

ck [2ϕ
′(y∗l ) + y∗l ϕ

′′(y∗l )] = makF
′
k(y

∗
l )(1 + bk), l ∈ Sk, k = 1, 2. (36)

We now use (36) to establish the expression of δ. We have from (52)

δ = n1
∂y∗1
∂λ̄

=
n1c2 [2ϕ

′ (y∗N ) + y∗N ϕ′′ (y∗N )]

n2c1 [2ϕ′ (y∗1) + y∗1 ϕ
′′ (y∗1)] + n1c2 [2ϕ′ (y∗N ) + y∗N ϕ′′ (y∗N )]

=
n1ma2F

′
2(y

∗
N )(1 + b2)

n2ma1F ′
1(y

∗
1)(1 + b1) + n1ma2F ′

2(y
∗
N )(1 + b2)

,

and with the optimality condition F ′
1(y

∗
1) = F ′

2(y
∗
N ), it yields (32) and (33).

We now derive an expression for the function

Q(∆) =
n1F1(y

∗
1 +∆1) + n2F2(y

∗
N +∆2)

δ1F ′
1(y1 +∆1) + δ2F ′

2(y
∗
N +∆2)

,

where δ1 = δ, δ2 = 1 − δ, ∆1 = ∆, ∆2 = −ω∆. Regarding the terms in the numerator of Q(∆), we
observe that

Fk(y
∗
l +∆k) =

ck
m+ 1

[1 + (m+ 1)y∗l + (m+ 1)∆k − 1] (1 + y∗l )
m

(
1 +

∆k

1 + y∗l

)m

=
1

(m+ 1)ak
F ′
k(y

∗
l ) [1− bk + (m+ 1)bk∆k] (1 + ak∆k)

m
. (37)
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For the terms in the denominator of Q(∆), we have

F ′
k(y

∗
l +∆k) = ck(1 + y∗l )

m−1 (1 + ak∆k)
m
[1 + (m+ 1)y∗l ] [1 + (m+ 1)bk∆k]

= F ′
k(y

∗
l ) [1 + (m+ 1)bk∆k] (1 + ak∆k)

m−1
. (38)

Combining (37) and (38), and using F ′
1(y

∗
1) = F ′

2(y
∗
N ), we obtain

Q(∆) =
1

m+ 1

∑2
k=1

nk

ak
[1− bk + (m+ 1)bk∆k] (1 + ak∆k)

m

∑2
k=1 δk [1 + (m+ 1)bk∆k] (1 + ak∆k)

m−1 , (39)

which corresponds to (34).

We now exploit the expression of Q(∆) given in Lemma 11 to obtain an equivalent condition for
Q(0) < Q(∆) to be true for all ∆ > 0. Note from (34) that

Q(0) =
n2

m+ 1

{
ω
1− b1
a1

+
1− b2
a2

}
, (40)

and define Q0(0) =
m+1
n2

Q(0) = ω 1−b1
a1

+ 1−b2
a2

. We also define the following quantities:

• p1 = δQ0(0)− ω(1−b1)
a1

, p2 = b1(m+ 1)δQ0(0)− ω(1− b1)− ω(m+1)b1
a1

and p3 = −ω(m+ 1)b1,

• q1 = Q0(0)(1−δ)− 1−b2
a2

, q2 = −Q0(0)(1−δ)(m+1)b2ω+(1−b2)ω+ (m+1)b2ω
a2

and q3 = −(m+1)b2ω
2.

The equivalent condition is stated in Lemma 12 below.

Lemma 12. The condition Q(0) < Q(∆) is equivalent to

(
1 + a1∆

1− a2ω∆

)m−1

(p1 + p2∆+ p3∆
2) + (q1 + q2∆+ q3∆

2) < 0. (41)

Proof. With (34) and (40), the condition Q(0) < Q(∆) is equivalent to

(1 + a1∆)m−1

{
Q0(0)δ[1 + (m+ 1)b1∆]− ω

a1
[1− b1 + (m+ 1)b1∆](1 + a1∆)

}
+

(1− a2ω∆)m−1

{
Q0(0)(1− δ)[1− (m+ 1)b2ω∆]− 1

a2
[1− b2 − (m+ 1)b2ω∆](1− a2ω∆)

}
< 0

Observe that

Q0(0)δ[1 + (m+ 1)b1∆]− ω

a1
[1− b1 + (m+ 1)b1∆](1 + a1∆) = p1 + p2∆+ p3∆

2,

and

Q0(0)(1− δ)[1− (m+ 1)b2ω∆]− 1

a2
[1− b2 − (m+ 1)b2ω∆](1− a2ω∆) = q1 + q2∆+ q3∆

2,

which yields the equivalent condition (41).

We shall use the equivalent condition provided in Lemma 12 to derive a sufficient condition for
Q(0) < Q(∆) to be true for all ∆ > 0. To this end, we will need the following technical result.

Lemma 13. Let p1, p2 and q2 be as defined above. It holds that

(m− 1)(a1 + a2ω) p1 + p2 + q2 = 0. (42)
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Proof. First, we note from (32) and (40) that

p1 = δQ0(0)−
ω(1− b1)

a1

=
ωa2(1 + b2)

a1(1 + b1) + ωa2(1 + b2)

(
ω(1− b1)

a1
+

1− b2
a2

)
− ω(1− b1)

a1

=
ω(b21 − b22)

a1(1 + b1) + ωa2(1 + b2)
.

Thus, we aim to show that

ω(b21 − b22)(m− 1)(a1 + a2ω) + (p2 + q2)(a1(1 + b1) + ωa2(1 + b2)) = 0. (43)

From the definition of p2, and exploiting again (32) and (40), we obtain

p2(a1(1 + b1) + ωa2(1 + b2))

=

(
b1(m+ 1)δQ0(0)− ω(1− b1)−

ω(m+ 1)b1
a1

)
(a1(1 + b1) + ωa2(1 + b2))

=

(
b1(m+ 1)ωa2(1 + b2)

a1(1 + b1) + ωa2(1 + b2)

(
ω(1− b1)

a1
+

1− b2
a2

)
− ω(1− b1)−

ω(m+ 1)b1
a1

)

(a1(1 + b1) + ωa2(1 + b2))

= b1(m+ 1)ωa2(1 + b2)

(
ω(1− b1)

a1
+

1− b2
a2

)
− ω(1− b1)(a1(1 + b1) + ωa2(1 + b2))

− ω(m+ 1)b1
a1

(a1(1 + b1) + ωa2(1 + b2))

=
b1a2(m+ 1)ω(1 + b2)ω(1− b1)

a1
+ b1(m+ 1)ω(1− b22)− a1ω(1− b21)

− a2ω
2(1− b1)(1 + b2)− ω(m+ 1)b1(1 + b1)−

a2ω
2(m+ 1)b1(1 + b2)

a1
.

Similarly, we have

q2(a1(1 + b1) + ωa2(1 + b2)) =

(
−Q0(0)(1− δ)(m+ 1)b2ω + (1− b2)ω +

(m+ 1)b2ω

a2

)

(a1(1 + b1) + ωa2(1 + b2))

= −
(
ω(1− b1)

a1
+

1− b2
a2

)
a1(1 + b1)(m+ 1)b2ω

+ (1− b2)ω(a1(1 + b1) + ωa2(1 + b2))

+
(m+ 1)b2ω

a2
(a1(1 + b1) + ωa2(1 + b2))

= −ω(1− b21)(m+ 1)b2ω − a1b2(m+ 1)(1− b2)(1 + b1)ω

a2

+ (1− b2)ωa1(1 + b1) + (1− b2)ω
2a2(1 + b2)

+
(m+ 1)b2ωa1(1 + b1)

a2
+ (m+ 1)b2ω

2(1 + b2)

We also note that

ω(b21 − b22)(m− 1)(a1 + a2ω) = ω(1− b22)(m− 1)(a1 + a2ω)− ω(1− b21)(m− 1)(a1 + a2ω)

Hence, replacing the above expressions in (43) and moving all the negative terms to the other side, we
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derive the following equivalent equality:

(a1 + a2ω)ω(1− b21)(m− 1) + a1ω(1− b21) + a2ω
2(1− b1)(1 + b2) + ωb1(1 + b1)(m+ 1)

+ ω2b2(1− b21)(m+ 1) +
a2ω

2(m+ 1)b1(1 + b2)

a1
+
a1b2(m+ 1)(1− b2)(1 + b1)ω

a2

=(a1 + a2ω)ω(1− b22)(m− 1) + a2ω
2(1− b22) + a1ω(1 + b1)(1− b2) + ω2b2(1 + b2)(m+ 1)

+ ωb1(1− b22)(m+ 1) +
a1b2ω(m+ 1)(1 + b1)

a2
+
a2b1(m+ 1)(1 + b2)(1− b1)ω

2

a1

Dividing by ω, we obtain

(a1 + a2ω)(1− b21)(m− 1) + a1(1− b21) + a2ω(1− b1)(1 + b2) + b1(1 + b1)(m+ 1)

+ ωb2(1− b21)(m+ 1) +
a2ωb1(m+ 1)(1 + b2)

a1
+
a1b2(m+ 1)(1 + b1)(1− b2)

a2

=(a1 + a2ω)(1− b22)(m− 1) + a2ω(1− b22) + a1(1 + b1)(1− b2) + ωb2(1 + b2)(m+ 1)

+ b1(1− b22)(m+ 1) +
a1b2(m+ 1)(1 + b1)

a2
+
a2ωb1(m+ 1)(1 + b2)(1− b1)

a1
,

which yields

(a1 + a2ω)(1− b21)(m− 1) + a1(1− b21) + a2ω(1− b1)(1 + b2) + b1(1 + b1)(m+ 1)

+ ωb2(1− b21)(m+ 1)− a1b
2
2(1 + b1)(m+ 1)

a2

=(a1 + a2ω)(1− b22)(m− 1) + a2ω(1− b22) + a1(1 + b1)(1− b2) + ωb2(1 + b2)(m+ 1)

+ b1(1− b22)(m+ 1)− a2ωb
2
1(1 + b2)(m+ 1)

a1
,

or equivalently

(a1 + a2ω)(1− b21)(m− 1) + a1(1− b21) + a2ω(1− b1)(1 + b2) + b1(1 + b1)(m+ 1)

+ ωb2(1− b21)(m+ 1) +
a2ωb

2
1(1 + b2)(m+ 1)

a1

=(a1 + a2ω)(1− b22)(m− 1) + a2ω(1− b22) + a1(1 + b1)(1− b2) + ωb2(1 + b2)(m+ 1)

+ b1(1− b22)(m+ 1) +
a1b

2
2(1 + b1)(m+ 1)

a2
.

Multiplying on both sides of the above equality by a1a2, we obtain

a1a2(a1 + a2ω)(1− b21)(m− 1) + a21a2(1− b21) + a1a
2
2ω(1− b1)(1 + b2) + a1a2b1(1 + b1)(m+ 1)

+ a1a2ωb2(1− b21)(m+ 1) + a22ωb
2
1(1 + b2)(m+ 1)

=a1a2(a1 + a2ω)(1− b22)(m− 1) + a1a
2
2ω(1− b22) + a21a2(1 + b1)(1− b2) + a1a2ωb2(1 + b2)(m+ 1)

+ a1a2b1(1− b22)(m+ 1) + a21b
2
2(1 + b1)(m+ 1),

that is

a1a2(a1 + a2ω)(1− b21)(m− 1) + a21a2(1− b21) + a1a
2
2ω(1− b1)(1 + b2) + a1a2b

2
1(m+ 1)

− a1a2ωb
2
1b2(m+ 1) + a22ωb

2
1(1 + b2)(m+ 1)

=a1a2(a1 + a2ω)(1− b22)(m− 1) + a1a
2
2ω(1− b22) + a21a2(1 + b1)(1− b2) + a1a2ωb

2
2(m+ 1)

− a1a2b1b
2
2(m+ 1) + a21b

2
2(1 + b1)(m+ 1).

We move the negative terms on the LHS to the RHS and the negative terms of the RHS to the LHS
to obtain

a1a2(a1 + a2ω)(1− b21)(m− 1) + a21a2(1− b21) + a1a
2
2ω(1− b1)(1 + b2) + a1a2b

2
1(m+ 1)

+ a1a2b1b
2
2(m+ 1) + a22ωb

2
1(1 + b2)(m+ 1)

=a1a2(a1 + a2ω)(1− b22)(m− 1) + a1a
2
2ω(1− b22) + a21a2(1 + b1)(1− b2) + a1a2ωb

2
2(m+ 1)

+ a1a2ωb
2
1b2(m+ 1) + a21b

2
2(1 + b1)(m+ 1),
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which after simplification yields

a1a2(a1 + a2ω)b
2
2(m− 1) + a21a2(1 + b1)b2 + a1a

2
2ω(1 + b2)b2 + a1a2b

2
1(m+ 1)

+ a1a2b1b
2
2(m+ 1) + a22ωb

2
1(1 + b2)(m+ 1)

=a1a2(a1 + a2ω)b
2
1(m− 1) + a21a2(1 + b1)b1 + a1a

2
2ω(1 + b2)b1 + a1a2ωb

2
2(m+ 1)

+ a1a2ωb
2
1b2(m+ 1) + a21b

2
2(1 + b1)(m+ 1). (44)

We prove below that the terms in factor of ω in (44) are equal and the other terms are equal as well.
For the terms in factor of ω, we prove that

a1a
2
2b

2
2(m− 1) + a1a

2
2(1 + b2)b2 + a22b

2
1(1 + b2)(m+ 1) = a1a

2
2b

2
1(m− 1) + a1a

2
2(1 + b2)b1

+ a1a2b
2
2(m+ 1) + a1a2b

2
1b2(m+ 1), (45)

whereas for the other terms we prove that

a21a2b
2
2(m− 1) + a21a2(1 + b1)b2 + a1a2b

2
1(m+ 1) + a1a2b1b

2
2(m+ 1)

= a21a2b
2
1(m− 1) + a21a2(1 + b1)b1 + a21b

2
2(1 + b1)(m+ 1). (46)

We first focus on (45). Dividing by a2, we obtain

a1a2b
2
2(m− 1) + a1a2(1 + b2)b2 + a2b

2
1(1 + b2)(m+ 1)

= a1a2b
2
1(m− 1) + a1a2(1 + b2)b1 + a1b

2
2(m+ 1) + a1b

2
1b2(m+ 1),

which yields after some algebra

a1a2(b2 − b1)(mb2 + (m− 1)b1 + 1) + (m+ 1)(a2b
2
1 − a1b

2
2 + b21b2(a2 − a1)) = 0.

Let ck = m + 1 −mak for k = 1, 2. Hence, bk = ak/ck and the previous equality can be written as
follows

a1a2

(
a2
c2

− a1
c1

)(
m
a2
c2

+ (m− 1)
a1
c1

+ 1

)
+(m+1)

(
a2

(
a1
c1

)2

− a1

(
a2
c2

)2

+

(
a1
c1

)2
a2
c2

(a2 − a1)

)
= 0.

Dividing by a1a2, it yields

(
a2
c2

− a1
c1

)(
m
a2
c2

+ (m− 1)
a1
c1

+ 1

)
+ (m+ 1)

(
a1
c21

− a2
c22

+
a1a2
c21c2

− a21
c21c2

)
= 0.

We note that a2

c2
− a1

c1
= (m+1)(a2−a1)

c1c2
and thus

a2 − a1
c1c2

(
m
a2
c2

+ (m− 1)
a1
c1

+ 1

)
+ (m+ 1)

(
a1
c21

− a2
c22

+
a1a2
c21c2

− a21
c21c2

)
= 0 ⇐⇒

m
a2(a2 − a1)

c1c22
+ (m− 1)

a1(a2 − a1)

c21c2
+
a2 − a1
c1c2

+
a1
c21

− a2
c22

+
a1a2
c21c2

− a21
c21c2

= 0 ⇐⇒

m
a2(a2 − a1)

c1c22
+m

a1(a2 − a1)

c21c2
+
a2 − a1
c1c2

+
a1
c21

− a2
c22

= 0. (47)

Multiplying (47) by c21c2, we obtain

mc1a2(a2 − a1) +mc2a1(a2 − a1) + c1c2(a2 − a1)+ = c21a2 − c22a1 ⇐⇒

m(a2 − a1)(c1a2 + c2a1) = c21a2 − c22a1 − c1c2(a2 − a1) ⇐⇒

m(a2 − a1)(c1a2 + c2a1) = (c1 − c2)(c1a2 + c2a1) ⇐⇒
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m(a2 − a1) = (c1 − c2),

and since the last expression holds, we have shown that (45) holds. We now focus on (46). Dividing by
a1, we obtain

a1a2b
2
2(m− 1) + a1a2(1 + b1)b2 + a2b

2
1(m+ 1) + a2b1b

2
2(m+ 1)

= a1a2b
2
1(m− 1) + a1a2(1 + b1)b1 + a1b

2
2(1 + b1)(m+ 1).

After some algebra, it yields

a1a2(b2 − b1)((m− 1)b2 +mb1 + 1) + (m+ 1)(a2b
2
1 − a1b

2
2 + b1b

2
2(a2 − a1)) = 0.

Using that ck = m+1−mak and bk = ak/ck for k = 1, 2, the previous equality can be written as follows

a1a2

(
a2
c2

− a1
c1

)(
(m− 1)

a2
c2

+m
a1
c1

+ 1

)
+(m+1)

(
a2

(
a1
c1

)2

− a1

(
a2
c2

)2

+
a1
c1

(
a2
c2

)2

(a2 − a1)

)
= 0,

which upon division by a1a2 yields

(
a2
c2

− a1
c1

)(
(m− 1)

a2
c2

+m
a1
c1

+ 1

)
+ (m+ 1)

(
a1
c21

− a2
c22

+
a2
c1c22

(a2 − a1)

)
= 0.

Using that a2

c2
− a1

c1
= (m+1)(a2−a1)

c1c2
and simplifying, we get

a2 − a1
c1c2

(
m
a2
c2

+m
a1
c1

+ 1

)
+

(
a1
c21

− a2
c22

)
= 0,

which coincides with (47). As the latter equality has been shown to hold above, (46) also holds true,
which concludes the proof.

We are now in position to prove Lemma 8 for ϕ(x) = (1 + x)m.

Proof of Lemma 8 for ϕ(x) = (1 + x)m. We use (41) to obtain a sufficient condition for Q(0) < Q(∆) to
be true, and then prove that this condition is satisfied. We first show that p1 < 0 as follows

δQ0(0)−
ω(1− b1)

a1
< 0 ⇐⇒ δ

(
ω(1− b1)

a1
+

1− b2
a2

)
− ω(1− b1)

a1
< 0

⇐⇒ δ
ω(1− b1)

a1
+ δ

1− b2
a2

− ω(1− b1)

a1
< 0

⇐⇒ (δ − 1)
ω(1− b1)

a1
+ δ

1− b2
a2

< 0

⇐⇒ −a1(1 + b1)ω(1− b1)

a1
+
ωa2(1 + b2)(1− b2)

a2
< 0

⇐⇒ −(1 + b1)(1− b1) + (1 + b2)(1− b2) < 0

⇐⇒ b21 − b22 < 0,

and since b1 < b2 the last expression is true and we have shown that p1 < 0. Likewise, we can show that
p2 is negative. In fact, after some algebra, we get that

b1(m+1)δQ0(0)−ω(1− b1)−
ω(m+ 1)b1

a1
=

(
ω(−b1 − b22)

a1(1 + b1) + ωa2(1 + b2)
− b1δω

a1

)
b1(m+1)−ω(1− b1),

and the RHS of the above expression is clearly negative.
Since p3 < 0 and from the above reasoning, we know that that p1 + ∆p2 + p3∆

2 < 0. As a result,
using that (1 + x)m ≥ 1 + xm for x > 0, it follows that a sufficient condition for (41) to hold is

(
1 + ∆(m− 1)

a1 + a2ω

1− a2ω∆

)
[p3∆

2 + p2∆+ p1] + q3∆
2 + q2∆+ q1 < 0. (48)
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Let us note that

p1 + q1 = δQ0(0)−
ω(1− b1)

a1
+ δ̄Q0(0)−

(1− b2)

a2
= Q0(0)−

ω(1− b1)

a1
− (1− b2)

a2
= 0,

that is, q1 = −p1. Thus, we need to show that
(
1 + ∆(m− 1)

a1 + a2ω

1− a2ω∆

)
[p3∆

2 + p2∆] + q3∆
2 + q2∆+ p1∆(m− 1)

a1 + a2ω

1− a2ω∆
< 0,

for all ∆ > 0. Dividing by ∆, we get
(
1 + ∆(m− 1)

a1 + a2ω

1− a2ω∆

)
[p3∆+ p2] + q3∆+ q2 + p1(m− 1)

a1 + a2ω

1− a2ω∆
< 0. (49)

Since p3 < 0 and p2 < 0, we know that

∆(m− 1)
a1 + a2ω

1− a2ω∆
[p3∆+ p2] < 0.

Besides, it follows from p1 < 0 that

p1(m− 1)
a1 + a2ω

1− a2ω∆
≤ p1(m− 1)(a1 + a2ω).

Therefore, a sufficient condition for (49) to be true is

p3∆+ p2 + q3∆+ q2 + p1(m− 1)(a1 + a2ω) < 0

that is

(p3 + q3)∆ + (p2 + q2 + (m− 1)(a1 + a2ω)p1) < 0,

for all ∆ > 0. With Lemma 13, we know that p2+ q2+(m−1)(a1+a2ω)p1 = 0, and the above sufficient
condition reduces to (p3 + q3)∆ < 0. Note from their definitions that p3 < 0 and q3 < 0. The sufficient
condition is therefore satisfied for all ∆ > 0, which proves that Q(0) < Q(∆) for all ∆ > 0.

B Proof of Results in Section 4.1

B.1 Proof of Lemma 1

Proof of Lemma 1. We only give the proof for the centralized routing scheme as the proof for yne follows
similar arguments. As y∗k = y∗1 for all cheap links k ∈ S1 and y∗j = y∗N for all expensive links j ∈ S2, it

is enough to show the continuity of y∗1 and y∗N . Moreover, as y∗N = (λ̄− n1y
∗
1)/n2, it is enough to show

that y∗1 is continuous in λ̄.
For λ̄ < λ̄∗, we know that y∗1 = λ̄, from which the continuity of y∗1 over [0, λ̄∗) follows.
For λ̄ ≥ λ̄∗, y∗1 is defined in (8) as the solution of J(λ̄, y∗1) = 0, where

J(λ̄, y∗1) = F ′
1 (y

∗
1)− F ′

2

(
λ̄− n1y

∗
1

n2

)
.

As J is of class C1 and ∂J
∂y∗

1
(λ̄, y∗1) > 0 at all points (λ̄, y∗1) such that J(λ̄, y∗1) = 0, it follows from the

Implicit Function Theorem that y∗1 is a continuously differentiable function of λ̄ in the neighborhood of
all such points. Hence, y∗1 is a continuous function of λ̄ over (λ̄∗,∞).

It remains to show that y∗1 is a continuous function of λ̄ at point λ̄ = λ̄∗, that is, that y∗1 → λ̄∗

n1
as

λ̄ → λ̄∗. As the result is obvious when λ̄ → λ̄∗ from below, we focus on the case when λ̄ → λ̄∗ from
above. We want to show that for any ϵ > 0, there exists θ > 0 such that λ̄∗

n1
≥ y∗1 > λ̄∗

n1
− ϵ for all

λ̄ ∈ (λ̄∗, λ̄∗ + θ). Assume on the contrary that there exists ϵ > 0 such that for all θ > 0 we can find λ̄

in the interval (λ̄∗, λ̄∗ + θ) such that the solution y∗1 of J(λ̄, y∗1) = 0 satisfies y∗1 ≤ λ̄∗

n1
− ϵ. Note that

it also implies that y∗N > n1

n2
ϵ. As the functions F ′

1(y) and F ′
2(y) are strictly increasing in y, we then

have F ′
1(y

∗
1) < F ′

1(λ̄
∗/n1) and F ′

2(y
∗
N ) > c2, from which we obtain J(λ̄, y∗1) < J(λ̄∗, λ̄∗/n1) = 0, where

the last equality follows from the definition of λ̄∗ in (7). As this is a contradiction with our assumption
J(λ̄, y∗1) = 0, we conclude that, as a function of λ̄, y∗1 is continuous at point λ̄ = λ̄∗, and therefore over
[0,∞).
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B.2 Proof of Proposition 1

Since all cheap links receive the same amount of traffic, as do all expensive links, we just need to prove
Proposition 1 for an arbitrary cheap link, say link 1, and an arbitrary expensive link, say link N . We
prove a series of technical lemmata, from which the proof of Proposition 1 directly follows.

Lemma 14. It holds that yneN < yne1 .

Proof. With (10), c2 > c1 implies that Kϕ(yne1 ) + yne1 ϕ′(yne1 ) > Kϕ(yneN ) + yneN ϕ′(yneN ). As the functions
ϕ() and ϕ′() are increasing, this implies that yneN < yne1 .

Lemma 15. It holds that

c1ϕ (y
ne
1 ) < c2ϕ (y

ne
N ) ⇐⇒ c1y

ne
1 ϕ′ (yne1 ) > c2y

ne
N ϕ′ (yneN ) (50)

Proof. It follows from (10) that

c2ϕ (y
ne
N )− c1ϕ (y

ne
1 ) =

1

K
{c1yne1 ϕ′ (yne1 )− c2y

ne
N ϕ′ (yneN )} ,

from which the result follows.

Lemma 16. It holds that c1ϕ (y
ne
1 ) < c2ϕ (y

ne
N ).

Proof. Assume on the contrary that c1ϕ (y
ne
1 ) ≥ c2ϕ (y

ne
N ). With Lemma 15, it yields c1y

ne
1 ϕ′ (yne1 ) ≤

c2y
ne
N ϕ′ (yneN ). We therefore have

yne1

ϕ′ (yne1 )

ϕ (yne1 )
≤ yneN

ϕ′ (yneN )

ϕ (yneN )
. (51)

As the function w → w ϕ′(w)
ϕ(w) is strictly increasing on [0,∞) for any strictly increasing and convex

latency function ϕ(x) (see Lemma 11 in [6]), (51) implies that yneN ≥ yne1 . As ϕ() is increasing, we thus
have c2ϕ (y

ne
N ) ≤ c1ϕ (y

ne
1 ) ≤ c1ϕ (y

ne
N ), from which we conclude that c2 ≤ c1. As it is assumed that

c2 > c1, this is a contradiction.

Lemma 17. It holds that F ′
1(y

ne
1 ) ≥ F ′

2(y
ne
N ), and the inequality is strict for K > 1.

Proof. From (10), we obtain F ′
1(y

ne
1 )− F ′

2(y
ne
N ) = (K − 1) [c2ϕ (y

ne
N )− c1ϕ (y

ne
1 )], and the result follows

from Lemma 16.

We are now in position to prove Proposition 1.

Proof of Proposition 1. The proof of property (a) directly follows from Lemma 14. The proof of property
(b) follows from Lemma 16 and Lemma 15. The inequality on the marginal costs stated in property (c)
is proven in Lemma 17.

B.3 Proof of Proposition 2

We assume throughout this section that λ̄ > λ̄ne. As for the proof of Proposition 1, it is enough to prove
the results for an arbitrary cheap link and an arbitrary expensive links. We choose links 1 and N . We
first establish some technical results which are required to prove Proposition 2. We first prove in Lemma
18 below that for K > 1, the decentralized routing strategy forwards more (resp. less) traffic on cheap
(resp. low) links than the centralized one does.

Lemma 18. For K > 1, it holds that yne1 > y∗1 and yneN < y∗N .

Proof. Assume that yne1 ≤ y∗1 . As the function F ′
1() is increasing, this implies that F ′

1(y
ne
1 ) ≤ F ′

1(y
∗
1).

Besides, yneN = (λ̄− n1y
ne
1 )/n2 ≥ (λ̄− n1y

∗
1)/n2 = y∗N implies that F ′

2(y
ne
N ) ≥ F ′

2(y
∗
N ). As we know that

F ′
2(y

∗
N ) = F ′

1(y
∗
1), it yields F

′
1(y

ne
1 ) ≤ F ′

2(y
ne
N ), which is a contradiction with statement (c) of Proposition

1 for K > 1. It follows that yne1 > y∗1 , and thus that yneN = (λ̄− n1y
ne
1 )/n2 < (λ̄− n1y

∗
1)/n2 = y∗N .

Lemma 19 below establishes the expression of
∂yne

1

∂λ̄
, which is required to prove statements (b) and

(c) of Proposition 2.
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Lemma 19. For K ≥ 1 and all λ̄ > λ̄ne, we have

∂yne1

∂λ̄
=

c2 [(K + 1)ϕ′ (yneN ) + yneN ϕ′′ (yneN )]

n2c1 [(K + 1)ϕ′ (yne1 ) + yne1 ϕ′′ (yne1 )] + n1c2 [(K + 1)ϕ′ (yneN ) + yneN ϕ′′ (yneN )]
. (52)

Proof. Taking the derivative of (10) with respect to λ̄, we obtain

c1 [(K + 1)ϕ′ (yne1 ) + yne1 ϕ′′ (yne1 )]
∂yne1

∂λ̄
= c2 [(K + 1)ϕ′ (yneN ) + yneN ϕ′′ (yneN )]

∂yneN

∂λ̄
. (53)

The equality n1y
ne
1 + n2y

ne
N = λ̄ implies that

∂yne
N

∂λ̄
= 1

n2

(
1− n1

∂yne
1

∂λ̄

)
. Combining the latter result

with (53), the desired result follows after some algebra.

We prove in Lemma 20 a property that we will use in Lemma 21.

Lemma 20. For K ≥ 1 and all λ̄ > λ̄ne, it holds that

K =
c1y

ne
1 ϕ′(yne1 )− c2y

ne
N ϕ′(yneN )

c2ϕ(yneN )− c1ϕ(yne1 )
. (54)

Proof. From (10), we obtain

K [c2ϕ(y
ne
N )− c1ϕ(y

ne
1 )] = c1y

ne
1 ϕ′(yne1 )− c2y

ne
N ϕ′(yneN ).

From statement (b) of Proposition 1 we know that c2ϕ(y
ne
N )− c1ϕ(y

ne
1 ) > 0, from which (54) follows.

We now prove in Lemma 21 below that as λ̄ increases in the interval
(
λ̄ne,∞

)
, the difference yne1 −y∗1

between the amount of flow forwarded on cheap link 1 by the decentralized routing strategy and the
centralized one decreases.

Lemma 21. For K > 1 and all λ̄ > λ̄ne,
dyne

1

dλ <
dy∗

1

dλ and
dyne

N

dλ >
dy∗

N

dλ .

Proof. Let ψ(K, y) = (K + 1)ϕ′(y) + yϕ′′(y). With Lemma 19, the condition
dyne

1

dλ <
dy∗

1

dλ can be written
as

c2ψ(K, y
ne
N )

n2c1ψ(K, yne1 ) + n1c2ψ(K, yneN )
<

c2ψ(1, y
∗
N )

n2c1ψ(1, y∗1) + n1c2ψ(1, y∗N )
,

which is equivalent to

ψ(K, yneN )

ψ(K, yne1 )
<
ψ(1, y∗N )

ψ(1, y∗1)
,

that is,

(K + 1)ϕ′(yneN ) + yneN ϕ′′(yneN )

(K + 1)ϕ′(yne1 ) + yne1 ϕ′′(yne1 )
<

2ϕ′(y∗N ) + y∗Nϕ
′′(y∗N )

2ϕ′(y∗1) + y∗1ϕ
′′(y∗1)

. (55)

Let yne = (yne1 , yneN ) and y∗ = (y∗1 , y
∗
N ). With Lemma 20, (55) can equivalently be written as

R(yne) < R(y∗), where the function R(y) is defined as follows

R(y) =
(c1y1ϕ

′(y1)− c2yNϕ
′(yN ))ϕ′(yN ) + (ϕ′(yN ) + yNϕ

′′(yN )) (c2ϕ(y
ne
N )− c1ϕ(y

ne
1 ))

(c1y1ϕ′(y1)− c2yNϕ′(yN ))ϕ′(y1) + (ϕ′(y1) + y1ϕ′′(y1)) (c2ϕ(yneN )− c1ϕ(yne1 ))
. (56)

Consider now the vector-valued function y(t) = (y1(t), yN (t)) defined by y1(t) = (1 + t)y∗1 and

yN (t) = y∗N − tn1

n2
y∗1 over the interval

[
0,

n2y
∗
N

n1y∗
1

]
. Observe that n1y1(t) + n2yN (t) = λ̄ for all t in this

interval and that y(0) = y∗. Moreover, defining tne =
n2(y

∗
N−yne

N )
n1y∗

1
, we note from Lemma 18 that tne > 0

and tne <
n2y

∗
N

n1y∗
1
, and we obtain that y(tne) = yne. We also note that as y1(t) increases with t and yN (t)

decreases with t, y1(0) = y∗1 > y∗N = yN (0) implies that y1(t) > yN (t) for all t ≤ tne. Similarly, we know
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that for t ≤ tne we have y1(t) < yne1 and yN (t) > yneN . Since ϕ is strictly increasing, it follows from
statement (b) of Proposition 1 that

c1ϕ(y1(t)) < c1ϕ(y
ne
1 ) < c2ϕ(y

ne
N ) < c2ϕ(yN (t)),

so that it holds that

yN (t) < y1(t) < ϕ−1

(
c2
c1
ϕ(yN (t))

)
and ϕ−1

(
c1
c2
ϕ(y1(t))

)
< yN (t) < y1(t), (57)

for all t in the interval [0, tne].
In order to show that R(yne) < R(y∗), and hence that inequality (55) holds, we just need to show

that R(y(t)) is a decreasing function of t. To this end, observe that R(y) can be written as follows

R(y) =
ϕ′(yN )

ϕ′(y1)

c1

[
y1ϕ

′(y1)− ϕ(y1)
(
1 + yN

ϕ′′(yN )
ϕ′(yN )

)]
−c2

[
yNϕ

′(yN )− ϕ(yN )
(
1 + yN

ϕ′′(yN )
ϕ′(yN )

)]

c1

[
y1ϕ′(y1)− ϕ(y1)

(
1 + y1

ϕ′′(y1)
ϕ′(y1)

)]
−c2

[
yNϕ′(yN )− ϕ(yN )

(
1 + y1

ϕ′′(y1)
ϕ′(y1)

)] ,(58)

=
[c1H(y1, yN )− c2H(yN , yN )] /ϕ′(y1)

[c1H(y1, y1)− c2H(yN , y1)] /ϕ′(yN )
, (59)

=
A(y)

B(y)
, (60)

where the functions H(x, y), A(x, y) and B(x, y) have been introduced in Assumption 4. We shall prove
that A(y(t)) is a strictly positive and decreasing function of t over [0, tne], and that B(y(t)) is a strictly
positive and increasing function of t over [0, tne], implying that R(y(t)) decreases with t over [0, tne].

We first prove that A(y(t)) > 0 and B(y(t)) > 0 for all t ≤ tne. To this end, we first consider (56)
and show that both the numerator and the denominator are strictly positive over [0, tne]. Indeed, the
function c2ϕ(yN (t))−c1ϕ(y1(t)) is strictly decreasing with t, which implies that c2ϕ(yN (t))−c1ϕ(y1(t)) ≥
c2ϕ(y

ne
N ) − c1ϕ(y

ne
1 ) for all t ≤ tne. With statement (b) of Proposition 11 we can thus conclude that

c2ϕ(yN (t)) − c1ϕ(y1(t)) > 0 for all t ≤ tne. Similarly, c1y1(t)ϕ
′(y1(t)) − c2yN (t)ϕ′(yN (t)) is a strictly

increasing function of t, and thus c1y1(t)ϕ
′(y1(t))− c2yN (t)ϕ′(yN (t)) ≥ c1y

∗
1ϕ

′(y∗1)− c2y
∗
Nϕ

′(y∗N ) for all
t ≤ tne. With statement (b) of Proposition 11, it yields c1y1(t)ϕ

′(y1(t)) − c2yN (t)ϕ′(yN (t)) > 0 for
all t ≤ tne. As all the other terms in the numerator and the denominator of (56) are strictly positive,
this shows that both the numerator and the denominator of (56) are strictly positive. Considering the
rewriting of R(ρ) in (58)-(60), this clearly implies that A(y(t)) > 0 and B(y(t)) > 0 over [0, tne].

We now show that A(y(t)) is strictly decreasing with t over [0, tne]. We have

d

dt
A(y(t)) = y∗1

[
∂A

∂y1
(y(t))− n1

n2

∂A

∂yN
(y(t))

]
. (61)

It follows from (57) and Assumption 4 that ∂A
∂y1

(y(t)) ≤ 0 and ∂A
∂yN

(y(t)) ≥ 0, and that at least one

of the inequalities is strict. With (61), it yields d
dtA(y(t)) < 0, as claimed. Similarly, we have

d

dt
B(y(t)) = y∗1

[
∂B

∂y1
(y(t))− n1

n2

∂B

∂yN
(y(t))

]
. (62)

Since it follows from (57) and Assumption 4 that ∂B
∂y1

(y(t)) ≥ 0 and ∂B
∂yN

(y(t)) ≤ 0 with at least one

of these two inequalities being strict, this proves that B(y(t)) is strictly increasing with t over [0, tne].
To conclude, we just use (60) to obtain

d

dt
R(y(t)) =

1

B2(y(t))

{
d

dt
A(y(t))B(y(t))−A(y(t))

d

dt
B(y(t))

}
< 0, (63)

for all t ≤ tne, from which it follows that R(yne) = R(y(tne)) < R(y(0)) = R(y∗). This implies that

inequality (55) holds, and thus that
dyne

1

dλ <
dy∗

1

dλ as claimed.

We now show that
dyne

N

dλ >
dy∗

N

dλ . From n1
dyne

1

dλ + n2
dyne

N

dλ = n1
dy∗

1

dλ + n2
dy∗

N

dλ , we obtain

n2

(
dyneN

dλ
− dy∗N

dλ

)
= n1

(
dy∗1
dλ

− dyne1

dλ

)
> 0, (64)

which shows that
dyne

N

dλ >
dy∗

N

dλ .
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Proof of Proposition 2. The proof of property (a) directly follows from Lemma 18, whereas properties
(b) and (c) follow from Lemma 21.

B.4 Proof of Proposition 3

We first consider the behaviour of the link flow ratios when λ̄ varies over the interval
(
λ̄∗, λ̄ne

]
. Lemma

22 below proves that the ratio is increasing for cheap links, and equal to 0 for expensive links. It is
worthwhile noticing that the proof is valid for all latency functions ϕ such that the function f(y) defined
in (18) is strictly increasing.

Lemma 22. For λ̄ ∈
(
λ̄∗, λ̄ne

]
, the ratio ynej /y∗j is 0 for all expensive links j ∈ S2. In this interval, the

ratio ynek /y∗k increases as λ̄ increases for all cheap links k ∈ S1.

Proof. In the interval
(
λ̄∗, λ̄ne

]
, the decentralized strategy forwards all the traffic on the cheap links,

from which it follows that ynej = 0 for all j ∈ S2 in this interval, which proves the first statement of the
lemma. Consider now an arbitrary cheap link, say link 1, and an arbitrary expensive link, say link N .
Under the centralized routing strategy, the flows on these links are such that F ′

1(y
∗
1) = F ′

2(y
∗
N ) for all λ̄

in
[
λ̄∗, λ̄ne

)
. Hence, F ′′

1 (y
∗
1)

dy∗
1

dλ̄
= F ′′

2 (y
∗
N )

dy∗
N

dλ̄
, and we obtain

F ′′
1 (y

∗
1)

F ′
1(y

∗
1)

dy∗1
dλ̄

=
F ′′
2 (y

∗
N )

F ′
2(y

∗
N )

dy∗N
dλ̄

(65)

Note that it implies that both
dy∗

1

dλ̄
and

dy∗
N

dλ̄
are positive. The flow conservation constraint implies

that n1y
∗
1 + n2y

∗
N = n1y

ne
1 = λ̄. Dividing by y∗1 and taking the derivative with respect to λ̄ and using

(65), we obtain

d

dλ̄

(
yne1

y∗1

)
=
n2
n1

d

dλ̄

(
y∗N
y∗1

)
,

=
n2

n1(y∗1)
2

[
y∗1
dy∗N
dλ̄

− y∗N
dy∗1
dλ̄

]
,

=
n2

n1(y∗1)
2

F ′
2(y

∗
N )

F ′′
2 (y

∗
N )

[
y∗1
F ′′
1 (y

∗
1)

F ′
1(y

∗
1)

− y∗N
F ′′
2 (y

∗
N )

F ′
2(y

∗
N )

]
dy∗1
dλ̄

,

=
n2

n1(y∗1)
2

F ′
2(y

∗
N )

F ′′
2 (y

∗
N )

[f(y∗1)− f(y∗N )]
dy∗1
dλ̄

,

where the function f(y) is defined in (18). With Assumption 3 and statement (a) in Proposition 1, we

have f(y∗1)− f(y∗N ) > 0, which proves that d
dλ̄

(
yne
1

y∗
1

)
> 0.

We now prove Proposition 3.

Proof of Proposition 3. For λ̄ varying over the interval
(
λ̄∗, λ̄ne

]
, the proof directly follows from Lemma

22. For λ̄ varying over the interval
(
λ̄ne,∞

)
, Proposition 2 implies that the ratio ynek /y∗k decreases as λ̄

increases for all cheap links k ∈ S1. Indeed, we have

d

dλ̄

(
ynek

y∗k

)
=

1

(y∗k)
2

[
dynek

dλ̄
y∗k − ynek

dy∗k
dλ̄

]
<

1

(y∗k)
2
[y∗k − ynek ]

dynek

dλ̄
< 0, (66)

where the first (resp. second) inequality results from assertion (b) (resp. (a)) of Proposition 2. A similar
argument shows that the ratio ynej /y∗j increases as λ̄ increases for all expensive links k ∈ S2.

C Proof of Results in Section 4.2

In this appendix, we prove Lemma 2 and Lemma 3, as well as Proposition 4.
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C.1 Proof of Lemma 2

Proof of Lemma 2. Note that D1(λ̄,p) > 0 for all λ̄ > 0. As the ratio of two continuous functions is

continuous at all points where the denominator does not vanishes, it is enough to show that DK

(
λ̄
K 1,p

)

and D1(λ̄,p) are continuous functions of λ̄ over (0,∞). As D1(λ̄,p) = F (y∗) and F is a continuous
function of the vector y∗ of link flows obtained under the centralized routing scheme, the continuity of
D1(λ̄,p) follows from the continuity of y∗ as a function of λ̄ over (0,∞), which is proven in Lemma 1.

Similarly, the continuity of DK

(
λ̄
K 1,p

)
= F (yne) follows from the continuity of yne as a function of λ̄

over (0,∞), which is also proven in Lemma 1.

C.2 Proof of Proposition 4

Proof of Proposition 4. We first prove assertion (a). It readily follows from λ̄∗ < λ̄ne that for λ̄ ≤ λ̄∗

DK

(
λ̄
K 1,p

)

D1(λ̄,p)
=
F (yne)

F (y∗)
=
n1F1(

λ̄
n1

)

n1F1(
λ̄
n1

)
= 1.

We now consider assertion (b) and assume that λ̄ ∈
(
λ̄∗, λ̄ne

]
. Since for λ̄ ≤ λ̄ne we have yne =(

λ̄
n1
, . . . , λ̄

n1
, 0, . . . , 0

)
, the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) is strictly increasing in λ̄ if and only if

F ′
1

(
λ̄

n1

)
F (y∗) >

(
n1F

′
1(y

∗
1)
dy∗1
dλ̄

+ n2F
′
2(y

∗
N )

dy∗N
dλ̄

)
n1F1(

λ̄

n1
). (67)

The constraint n1y
∗
1 + n2y

∗
N = λ̄ implies that n1

dy∗
1

dλ̄
+ n2

dy∗
N

dλ̄
= 1. Moreover, λ̄ > λ̄∗ implies that

F ′
1(y

∗
1) = F ′

2(y
∗
N ). It yields n1F

′
1(y

∗
1)

dy∗
1

dλ̄
+n2F

′
2(y

∗
N )

dy∗
N

dλ̄
= F ′

1(y
∗
1). Therefore, the ratioDK

(
λ̄
K 1,p

)
/D1(λ̄,p)

is strictly increasing in λ̄ if and only if

F ′
1

(
λ̄

n1

)
[n1F1(y

∗
1) + n2F2(y

∗
N )] > n1 F

′
1(y

∗
1)F1

(
λ̄

n1

)
,

which can equivalently be written as

n1
F1(y

∗
1)

F ′
1(y

∗
1)

+ n2
F2(y

∗
N )

F ′
2(y

∗
N )

> n1
F1(

λ̄
n1

)

F ′
1(

λ̄
n1

)
,

where we have used the equality F ′
1(y

∗
1) = F ′

2(y
∗
N ). Observing that

F1(y
∗
1 )

F ′
1(y

∗
1 )

= g (y∗1) and
F2(y

∗
N )

F ′
2(y

∗
N ) = g (y∗N ),

where the function g() is defined by (17) in Appendix A, it is therefore enough to show that

n1g (y
∗
1) + n2g (y

∗
N ) > n1g

(
λ̄

n1

)
. (68)

To this end, let us consider the function h(t) = n1g
(

tλ̄
n1

)
+ n2g

(
(1−t)λ̄

n2

)
. We have

h′(t) = λ̄×
(
g′
(
tλ̄

n1

)
− g′

(
(1− t)λ̄

n2

))
,

which implies that h′(t) < 0 for t ∈
[

n1

n1+n2
, 1
]
because g is strictly concave for ϕ(x) = ex and ϕ(x) =

(1+ x)m (see Assumption 2 in Appendix A). We know from Proposition 1 that y∗1 > y∗N . Together with

n1y
∗
1 + n2y

∗
N = λ̄, it implies that

y∗
1

λ̄
> 1

n1+n2
. Taking t =

n1y
∗
1

λ̄
< 1, we hence obtain that h(1) < h(t),

which proves (68). We thus conclude that the ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) is strictly increasing in λ̄

over the interval
(
λ̄∗, λ̄ne

]
.

Finally, we focus on assertion (c) assuming that λ̄ > λ̄ne. The ratio DK

(
λ̄
K 1,p

)
/D1(λ̄,p) is strictly

decreasing in λ̄ if and only if

{
n1F

′
1(y

ne
1 )

dyne1

dλ̄
+ n2F

′
2(y

ne
N )

dyneN

dλ̄

}
F (y∗) <

{
n1F

′
1(y

∗
1)
dy∗1
dλ̄

+ n2F
′
2(yN∗)dy

∗
N

dλ̄

}
F (yne). (69)
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From Proposition 2, we know that
dyne

1

dλ̄
<

dy∗
1

dλ̄
. Let δ = n1

dy∗
1

dλ̄
. We have

n1F
′
1(y

ne
1 )

dyne1

dλ̄
+ n2F

′
2(y

ne
N )

dyneN

dλ̄
= n1F

′
1(y

ne
1 )

dyne1

dλ̄
+ n2F

′
2(y

ne
N )

1

n2

(
1− n1

dyne1

dλ̄

)

= n1 (F
′
1(y

ne
1 )− F ′

2(y
ne
N ))

dyne1

dλ̄
+ F ′

2(y
ne
N )

< δ (F ′
1(y

ne
1 )− F ′

2(y
ne
N )) + F ′

2(y
ne
N )

= δF ′
1(y

ne
1 ) + (1− δ)F ′

2(y
ne
N ),

where we have used the inequality F ′
1(y

ne
1 ) > F ′

2(y
ne
N ) which is proven in Proposition 1. As a consequence,

a sufficient condition for (69) to hold is that

{δF ′
1(y

ne
1 ) + (1− δ)F ′

2(y
ne
N )} F (y∗) < {δF ′

1(y
∗
1) + (1− δ)F ′

2(y
∗
N )} F (yne), (70)

which can equivalently be written as follows

F (y∗)

δF ′
1(y

∗
1) + (1− δ)F ′

2(y
∗
N )

<
F (yne)

δF ′
1(y

ne
1 ) + (1− δ)F ′

2(y
ne
N )

, (71)

that is Q(0) < Q(∆ne). Assumption 5 completes the proof.

C.3 Proof of Lemma 3

Proof of Lemma 3. For ϕ(x) = (1 + x)m, (9) yields

(
1 +

λ̄ne

n1

)m [
1 +

m

K

λ̄ne/n1
1 + λ̄ne/n1

]
=
c2
c1
. (72)

Differentiating on both sides with respect to m, we obtain after some algebra

∂

∂m

(
λ̄ne

n1

)
m

1 + λ̄ne/n1

[
1 +

1 +mλ̄ne/n1
K(1 + λ̄ne/n1)

]
= − log

(
1 +

λ̄ne

n1

)[
1 +

m

K

λ̄ne/n1
1 + λ̄ne/n1

]
− 1

K

λ̄ne/n1
1 + λ̄ne/n1

.

As the RHS of the above expression is negative and ∂
∂m

(
λ̄ne

n1

)
is multiplied by a positive term, we

conclude that λ̄ne/n1 decreases with m. Since n1 is a constant, this implies that λ̄ne decreases with
m. Assuming that there exists ϵ > 0 such that λ̄ne/n1 > ϵ for some m as large as we want, we get a
contradiction with (72). We thus conclude that λ̄ne → 0 as m→ ∞.

D Proof of Results in Section 5

We give below the proofs of Proposition 5, Proposition 6 and Lemma 4.

Proof of Proposition 5. Assume that λ̄ = λ̄ne. It follows from (15) that

IK(p) =
n1c1y

ne
1 ϕ (yne1 )

n1c1y∗1ϕ (y
∗
1) + n2c2y∗Nϕ (y

∗
N )
, (73)

=
yne1 ϕ (yne1 )

y∗1ϕ (y
∗
1) +

1
αγ y

∗
Nϕ (y

∗
N )
. (74)

Note that the constraint n1y
∗
1 + n2y

∗
N = λ̄ne implies that y∗1 +

y∗
N

α = yne1 . It yields

IK(p) =
yne1 ϕ (yne1 )

y∗1ϕ (y
∗
1) +

1
γ (y

ne
1 − y∗1)ϕ (α(y

ne
1 − y∗1))

. (75)

As a consequence, to show that the inefficiency IK(p) depends only on the ratios α and γ, it is enough
to show that yne1 and y∗1 depend only on these ratios. From (9), we get that
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ϕ (yne1 ) +
1

K
yne1 ϕ′ (yne1 ) =

1

γ
, (76)

which shows that yne1 is a function of γ only. Similarly, (8) yields

ϕ (y∗1) + y∗1 ϕ
′ (y∗1) =

1

γ
[ϕ (y∗N ) + y∗N ϕ′ (y∗N )] , (77)

=
1

γ
[ϕ (α(yne1 − y∗1)) + α(yne1 − y∗1)ϕ

′ (α(yne1 − y∗1))] , (78)

which shows that y∗1 is a function of the ratios α and γ. The desired result follows.

It follows from Proposition 5 that the Inefficiency depends only on the ratios α and γ. As a con-
sequence, in the proof of Proposition 6 which is given below, we shall write IK(α, γ) to denote the
Inefficiency.

Proof of Proposition 6. We first note from (76) that yne1 does not depend on α, which implies that the
numerator of IK(α, γ) in (74) is constant when α varies. As a consequence, it is enough to prove that
the denominator of IK(α, γ) is increasing with α, that is, that

D = y∗1ϕ (y
∗
1) +

1

γ
(yne1 − y∗1)ϕ (α(y

ne
1 − y∗1)) ,

increases when α increases. Taking the derivative with respect to α and using the identity y∗N = α(yne1 −
y∗1) to simplify notations, we obtain

∂D

∂α
= [ϕ (y∗1) + y∗1 ϕ

′ (y∗1)]
∂y∗1
∂α

+
1

γ

[
−ϕ (α(yne1 − y∗1))

∂y∗1
∂α

+

(yne1 − y∗1)ϕ
′ (α(yne1 − y∗1))

(
(yne1 − y∗1)− α

∂y∗1
∂α

)]
,

=
1

γ
(yne1 − y∗1)

2ϕ′ (y∗N ) +

[
(ϕ (y∗1) + y∗1 ϕ

′ (y∗1))−
1

γ
(ϕ (y∗N ) + y∗N ϕ′ (y∗N ))

]
∂y∗1
∂α

,

=
1

γ
(yne1 − y∗1)

2ϕ′ (y∗N ) ,

where the last equality follows from (77). Since ϕ is strictly increasing, it follows that ∂D
∂α > 0, implying

that IK(α, γ) is strictly decreasing with α, as claimed.

Proof of Lemma 4. Assume that n1 = 1 and n2 = N − 1. For ϕ(x) = eνx, we know that λ̄∗ is defined by
γ(1 + νλ̄∗)eνλ̄

∗
= 1. This implies that λ̄∗ → ∞ as γ → 0. As a consequence,

lim
γ→0

γνλ̄∗eνλ̄
∗
= lim

γ→0
γ(1 + νλ̄∗)eνλ̄

∗ νλ̄∗

1 + νλ̄∗
= lim

γ→0

νλ̄∗

1 + νλ̄∗
= 1.

It implies that for any ϵ > 0 and for γ sufficiently close to 0, we have (1− ϵ)/γ < νλ̄∗eνλ̄
∗
< (1+ ϵ)/γ,

that is, W0 ((1− ϵ)/γ) < νλ̄∗ < W0 ((1 + ϵ)/γ), where W0 is the principal branch of the Lambert W
function. As it is known that W0(x) = log(x)− log(log(x)) + o(1) for large values of x, we obtain that

log

(
1− ϵ

γ

)
− log

(
log

(
1− ϵ

γ

))
+ o(1) < νλ̄∗ < log

(
1 + ϵ

γ

)
− log

(
log

(
1 + ϵ

γ

))
+ o(1),

for any ϵ > 0 and for γ sufficiently close to 0.
Similarly, it follows from λ̄ne > λ̄∗ that λ̄ne → ∞ as γ → 0. Since λ̄ne is defined by γ(1+ νλ̄ne

K )eνλ̄
ne

=
1, we have

lim
γ→0

γ
νλ̄ne

K
eνλ̄

ne

= lim
γ→0

γ(1 +
νλ̄ne

K
)eλ̄

ne νλ̄ne/K

1 + νλ̄ne/K
= lim

γ→0

νλ̄ne

K + νλ̄ne
= 1.
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and we can show with a similar reasoning that

log

(
K

1− ϵ

γ

)
− log

(
log

(
K

1− ϵ

γ

))
+ o(1) < νλ̄ne < log

(
K

1 + ϵ

γ

)
− log

(
log

(
K

1 + ϵ

γ

))
+ o(1),

for any ϵ > 0 and for γ sufficiently close to 0. With the above bounds on λ̄∗ and λ̄ne, we get

ν(λ̄ne − λ̄∗) < logK + log

(
1 + ϵ

1− ϵ

)
+ log




log
(

1−ϵ
γ

)

logK + log
(

1+ϵ
γ

)


 ,

and

ν(λ̄ne − λ̄∗) > logK + log

(
1− ϵ

1 + ϵ

)
+ log




log
(

1+ϵ
γ

)

logK + log
(

1−ϵ
γ

)


 ,

for any ϵ > 0 and for γ sufficiently close to 0. We thus conclude that

lim
γ→0

(
λ̄ne − λ̄∗

)
=

1

ν
log(K). (79)

Consider now the ratio of social costs at λ̄ = λ̄ne, which is by definition

IK

(
1

N − 1
, γ

)
=

F1

(
λ̄ne
)

F1 (y∗1) + (N − 1)F2 (y∗2)
=

γλ̄neeνλ̄
ne

γy∗1e
νy∗

1 + (N − 1)y∗2e
νy∗

2
, (80)

where y∗1 and y∗2 are such that y∗1 +(N − 1)y∗2 = λ̄ne and γ(1+ νy∗1)e
νy∗

1 = (1+ νy∗2)e
νy∗

2 . It then follows
from limγ→0 γλ̄

neeλ̄
ne

= K/ν that

lim
γ→0

IK

(
1

N − 1
, γ

)
=

K

limγ→0 {γνy∗1eνy
∗
1 + (N − 1)νy∗2e

νy∗
2 }
. (81)

Note that

γνy∗1e
νy∗

1 + (N − 1)νy∗2e
νy∗

2 = γ(1 + νy∗1)e
νy∗

1
νy∗1

1 + νy∗1
+ (N − 1)νy∗2e

νy∗
2 ,

= (1 + νy∗2)e
νy∗

2
νy∗1

1 + νy∗1
+ (N − 1)νy∗2e

νy∗
2 ,

and as y∗1 > λ̄∗ implies that y∗1 → ∞ as γ → 0, we deduce that

lim
γ→0

{
γνy∗1e

y∗
1 + (N − 1)νy∗2e

y∗
2

}
= lim

γ→0

{
(1 +Nνy∗2)e

νy∗
2

}
.

With (81), it yields

lim
γ→0

IK

(
1

N − 1
, γ

)
=

K

limγ→0 {(1 +Nνy∗2)e
νy∗

2 }
. (82)

We know that y∗2 > 0 and that y∗1 > λ̄∗. With y∗2 =
(
λ̄ne − y∗1

)
/(N − 1), it implies that

0 < y∗2 <
λ̄ne − λ̄∗

N − 1
,

for any value of γ < 1, and therefore that

1 < (1 +Nνy∗2)e
νy∗

2 <

[
1 +Nν

λ̄ne − λ̄∗

N − 1

]
exp

(
ν
λ̄ne − λ̄∗

N − 1

)
. (83)
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With (79) it yields

1 ≤ lim
γ→0

(1 +Nνy∗2)e
νy∗

2 ≤ K
ν

N−1

[
1 +

N

N − 1
logK

]
. (84)

Combining (84) and (82), we get

K
N−1−ν
N−1

N − 1

N(1 + logK)− 1
≤ lim

γ→0
IK

(
1

N − 1
, γ

)
≤ K. (85)

For N → ∞, it yields K/(1 + log(K)) ≤ limN→∞ PoA(K,N).

37


