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Watch out! There may be a Human.
Addressing Invisible Humans in Social Navigation

Phani Teja Singamaneni1, Anthony Favier1,2, Rachid Alami1,2

Abstract— Current approaches in human-aware or social
robot navigation address the humans that are visible to the
robot. However, it is also important to address the possible
emergences of humans to avoid shocks or surprises to humans
and erratic behavior of the robot planner. In this paper, we
propose a novel approach to detect and address these human
emergences called ‘invisible humans’. We determine the places
from which a human, currently not visible to the robot, can
appear suddenly and then adapt the path and speed of the robot
with the anticipation of potential collisions. This is done while
still considering and adapting humans present in the robot’s
field of view. We also show how this detection can be exploited to
identify and address the doorways or narrow passages. Finally,
the effectiveness of the proposed methodology is shown through
several simulated and real-world experiments.

I. INTRODUCTION

Human-aware or social robot navigation is rapidly advanc-
ing, and new frameworks [1], [2], [3], [4] are required to
address the intricate social navigation scenarios. However,
most of these frameworks [5], [6] address only the visible
humans and do not take into account the possible emergence
of humans that are not visible currently. We believe that
such invisible humans should be considered while developing
a human-aware navigation framework to avoid any erratic
behaviors of the robot planner when a human suddenly
appears. Therefore in this work, we try to address these
invisible humans in social navigation settings.

There are not many works that address this problem
in the field of human-aware navigation. However, there
are some existing works in classical robot navigation that
address similar issues. Particularly, this work is inspired by
the pioneering work of M. Krishna concerning the ability
of a mobile robot, based on the model of its perception
functions, to assess from where in the close environment
of the robot a human can emerge and prepare to react to
ensure no-collision by adapting its path and velocity [7],
[8], [9]. Some recent works like [10], [11] address the issues
of robot navigation in occluded or unknown regions with
a limited field of view. The work presented in [12] talks
about the adaptive speed control of the robot in unknown
environments and also talks about the occluded regions.
The authors of [13] propose a methodology to mitigate
or avoid collisions while navigating. In our case, we are
trying to mitigate possible future collisions with a human.
The motion planning problem in the presence of dynamic
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obstacles can be solved in several ways. Some works use
grid-based planning [1], [14] while some others [15], [16] use
optimizations like model predictive control. We use sparse
graph optimization proposed in [17] and add human-aware
constraints as proposed in our previous works [18], [19],
[20].

As it is evident that the unknown or occluded region could
cause issues with classical navigation, the same applies to so-
cial navigation. Hence, we propose the concept of ‘invisible
humans’ to human-aware navigation planning through this
paper. As per the knowledge of the authors, there is no other
work that addresses this problem in human-aware navigation.
The major contributions of this paper are as follows. Firstly,
we formulate the problem of invisible humans detection and
propose an algorithm to determine the locations from which
humans who are not currently visible can emerge suddenly.
These invisible humans are then integrated into our human-
aware navigation framework, CoHAN [20], by introducing a
new human-aware constraint into our optimization scheme.
This constraint modifies the path and speed of the robot
taking into account the anticipation of potential human
appearances to avoid collisions and surprises. We further
show how the detected invisible humans can be exploited to
identify some interesting scenarios (like doors/passages) and
address these by adding new modalities to CoHAN. The im-
plementation and code can be found at https://github.
com/sphanit/cohan_planner_multi/tree/model.

The rest of the paper is organized as follows. Section II
presents the formulation and an algorithm to detect invisible
humans. Section III shows how the invisible humans are
integrated into CoHAN and talks about the issues that arise.
It also presents a simple formulation to identify narrow
passages. In Section IV, various experiments to evaluate the
proposed approach are presented, followed by the real-world
experiments in Section V and a discussion on the limitations
in Section VI. Finally, Section VII concludes the work.

II. INVISIBLE HUMANS DETECTION

The invisible humans are detected using an emulated laser
scan on a 2D map in ROS. A custom laser scan is attached to
the robot’s base and it is continuously updated as the robot
moves on a given map. The entire system is implemented
in ROS [21] and requires the map that is published by the
ROS Navigation stack. In order to avoid too many detections,
we limit the invisible humans detection to a radius of 5m
in front of the robot. The detection of invisible humans is
a two-step process involving corner detection and locating
invisible humans. Each step is explained in detail below.

https://github.com/sphanit/cohan_planner_multi/tree/model
https://github.com/sphanit/cohan_planner_multi/tree/model


(a) Laser Contour (b) Detected Invisible Humans
Fig. 1: (a) Laser contour built by the custom laser sensor. The
red and blue lines are the actual walls or obstacles in the front
and back of the robot respectively. The black lines are the laser
range boundaries and the yellow lines are interpolated lines between
two gaps of laser data. The robot is shown as a red dot with an
arrow. The detected corners are shown in yellow, while the detected
invisible humans are shown in green. (b) The detected invisible
humans on the map for the contour shown. The red circles shows
the location and the blue arrow shows the assumed direction, which
is always oriented towards the robot.

A. Laser Contour and Corner Detection

A custom laser scan sensor that is attached to the robot’s
base, scans the given 2D map to get the visible contour of
the map. The laser data consists of a list of values showing
the scan ranges in the field of vision of the sensor. This
custom sensor data is used in the place of the real laser
scan data to ensure uniformity across different robots and
sensors. An example laser contour built using this is shown
in Fig. 1. Different parts of these contour lines are shown
in different colors for ease of explanation. The red and the
blue lines together constitute the regions on the real map
where the laser has hit a wall or an obstacle. The black
lines represent the laser data that did not hit anything and
reached the end of their range (in our case, range of the
laser is 7m). Lastly, the yellow lines are interpolated rays
joining large separations between consecutive laser values
and play a major role in our algorithm. The red circle and the
arrow represent the robot’s position and its direction, while
the green circles represent the estimated invisible humans.
The corner detection is relatively easy once the laser contour
is available. Firstly, all the pairs of consecutive laser ranges
that are separated by more than 0.5m are determined and
stored in a set {V }. The threshold of 0.5m is chosen to
filter out small gaps from where a human will not emerge.
After this, the values that are closest to the robot in each of
the above pairs are identified to be corners and stored in a
set {c}. These are shown as yellow circles in Fig. 1.

B. Estimation of Invisible Humans

The estimation of possible locations for the invisible
humans is not very straightforward. The laser contour forms
a complex non-convex polygon, and we are searching for
circles whose centers are outside this polygon and do not
intersect the contour. We solve this problem using a combina-
tion of ray tracing and vector algebra. Consider a non-convex
polygon as shown in Fig. 2. The vertices are numbered in
the anti-clockwise direction. Consider a point P1 that lies

Algorithm 1 Locate Invisible Humans

1: Determine the vertex pairs set {V } using laser contour
2: Determine the corners set {c} from {V }
3: for each c do
4: V1 = c = (x1, y1)
5: V2 = (x2, y2) ▷ Corresponding pair from {V }
6: ux = (x2−x1)

∥
−−−→
V1V2∥

, uy = (y2−y1)

∥
−−−→
V1V2∥

7: Set P = (xp, yp) = (x1, y1)
8: while True do
9: Calculate Hinv using Eq. (4)

10: Calculate −→r and β
11: if ∥−→r ∥ < LaserData(β) then
12: xp = xp + αux

13: yp = yp + αuy

14: continue
15: end if
16: Check for overlap on the Map
17: if no overlap then
18: advance = False
19: for i = 1 to k do
20: d = i

k ∗ (hrad + ϵ)
21: Calculate Pr and Pl using Eqs. (4), (5)
22: Check Pr, Pl for the overlap on Map
23: if no overlap then
24: continue
25: else if overlap then
26: advance = True
27: break
28: end if
29: end for
30: end if
31: if advance == True then
32: xp = xp + αux

33: yp = yp + αuy

34: else if advance == False then
35: break
36: end if
37: end while
38: Add Hinv to the set of invisible humans, {Hinv}
39: end for
40: return {Hinv}

between the vertices V1 and V2. If P1 is outside the polygon
it should lie to the right of the vector

−−→
V1V2. Similarly, a point

P2 lying outside the polygon between V2 and V3 lies to the
right of

−−→
V2V3 and so on. It holds true irrespective of the

number of sides of the polygon. We exploit this property to
determine the positions of the invisible humans. Note that,
a point lying outside the polygon will always be on the
right side of the vectors, but not every point on the right
of the vectors lies outside the polygon. This is because this
methodology uses only a single side and does not consider
the other sides. To handle this, we use the fact that the
polygon in our case is determined by the laser contour and
any point outside this polygon is not visible to the laser.



Fig. 2: Non-convex polygon and vector formulation to determine
invisible humans. We try to find a point H that lies between two
vertices V1 and V2 and lies to the right of

−−→
V1V2. Note that the

perpendicular distance of this point should be greater than the
assumed human radius.

In Fig. 1, the yellow lines correspond to the edges of
interest in the polygon. The numbering of the vertices is
determined based on the indices of the laser scan data which
(the rays) move from right to left in the anti-clockwise
direction. In order to determine a possible invisible human,
we need to determine a point H that is to the right of

−−→
V1V2

and whose perpendicular distance is greater than an average
human radius, hrad as shown in Fig. 2. Consider a point P
that lies on line segment V1V2 such that

−−→
PH is perpendicular

to
−−→
V1V2. If we know the point P , then H can be determined

using the following equations:

sign(
−−→
V1V2 ×

−−→
PH) = −1 (1)

−−→
V1V2 ·

−−→
PH = 0 (2)

∥
−−→
PH∥ = hrad + ϵ (3)

where (×) is the cross product, (·) is the dot product and
(∥∥) is the euclidean norm respectively. ϵ is the off-set on the
human radius to avoid unrealistic detections. In this work, we
chose ϵ to be hrad

2 . Let V1 = (x1, y1), V2 = (x2, y2) and P =
(xp, yp), then by solving the above equations, H = (xh, yh)
is given by:

xh = xp +
d(y2 − y1)√

(x2 − x1)2 + (y2 − y1)2

yh = yp −
d(x2 − x1)√

(x2 − x1)2 + (y2 − y1)2

(4)

where d = (hrad+ ϵ). Similarly, the point on the left can be
obtained by reversing the sign in Eq. (1), which yields:

xh = xp −
d(y2 − y1)√

(x2 − x1)2 + (y2 − y1)2

yh = yp +
d(x2 − x1)√

(x2 − x1)2 + (y2 − y1)2

(5)

From the Eq. (4), we can see that (xp, yp) is required
to determine (xh, yh) and it is still unknown as we cannot
solve for four variables using only three equations (Eq. (1)-
(3)). As it is already known that P lies on the line segment
joining V1V2, it can be determined by performing a search
on this line segment, starting at one end and moving towards
the other in small increments. The set of detected corners,

{c} are taken as the starting points of this search. In each
iteration, a possible invisible human position is estimated
using Eq. (4) and then projected onto the map to see if there
is any overlap with an obstacle or wall. As mentioned before,
we need another check to ensure that the point is outside the
laser contour. Suppose, the vector joining the robot and the
point H is −→r and it subtends an angle β with the positive
x−axis of the base frame of the robot. As the custom laser is
also attached to the base frame of the robot, there should be
laser scan data corresponding to this angle β. Hence, when
the H is outside, the following condition is satisfied:

∥−→r ∥ > ρ(β) (6)

where β = atan2(xh−xrb, yh−yrb), (xrb, yrb) is the robot
base frame’s position and ρ(β) is the laser scan reading at
angle β. To refine this search further, two points, one on left,
Pl, and the other on the right, Pr, of the H are considered
with incremental distances until hrad + ϵ and checked for
overlap using the map.

The entire procedure is shown below in Algorithm 1 where
ux and uy (line 6) are the unit vectors along the direction
of

−−→
V1V2 and α is a scalar determining (lines 26, 27) the step

size or increment. The invisible humans detected using the
above-mentioned algorithm are shown in Fig. 1 (b). The red
circles are the detected location while the blue arrows show
the direction. We assume that the humans are always coming
towards the robot and hence, the direction is always oriented
towards the robot. In the next section, we explain how this
is integrated into the human-aware planning framework for
social robot navigation.

III. INTEGRATION WITH A HUMAN-AWARE PLANNER

In the previous version of CoHAN, we address different
types of visible humans by introducing new modalities and
human-aware constraints [20]. In this work, we extend it
further to address the invisible humans. The invisible humans
are detected as explained above and then they are published
on a ROS topic. CoHAN subscribes to this topic and adds a
new constraint to its optimization that is specifically designed
for invisible humans. Further, using these invisible human
detections, we propose a methodology to identify doors and
narrow passages. For more details on the modality switching
and constraint implementation readers are advised to refer to
our previous works [18], [19], [20].

A. Invisible Humans Constraint

The invisible humans constraint takes into account the
human reaction time, walking speed, and deceleration and
aims to make the robot cautious about the sudden human
emergence. The cost added by this constraint for the nth pose
of the robot’s trajectory is given as:

costinv human = max

(
V − a∆tn

d
, 0

)
if ∆tn > 0.5s

=
V

d
otherwise

(7)



where d is the distance between the invisible human and
the robot, V is the average human walking speed, 1.3m/s
[22], a is the deceleration of the human and ∆tn is the time
difference between the nth pose and the starting pose of the
planned trajectory of the robot. The value of the deceleration,
a, can vary and can be up to a maximum of 2.94m/s2

(0.3 g) [23]. In this work we take a reaction time of 0.5 s
as discussed in [23], [24]. Hence the constraint adds the
maximum possible cost until 0.5 s. Then we assume that the
human will continuously decelerate to avoid collision with
the robot over time and eventually stops, which is reflected
in the upper part of Eq. (7). The time (∆t) and human
detections are reset after every control cycle.

1) Issue with the constraint: The main objective of the
constraint is to push the robot away from the opening,
anticipating the emergence of invisible humans. However,
when the robot needs to pass through this opening and if the
passage is narrow (door or narrow corridor), the constraint
pushes the robot away and makes it impossible to enter the
passage. To mitigate this, we devise a simple formulation that
detects such scenarios. Once a narrow passage is detected,
the invisible humans constraint is switched off, and the
maximum robot’s velocity is reduced until it passes through.
The passage detection process is explained in detail below.

B. Doorway or Narrow Passage Detection

The detection of narrow passages or doorways not only
allows us to overcome the issue of the invisible humans
constraint but also allows us to define a new modality of
planning that needs to be handled separately. In this work,
we try to address three different scenarios, as shown in Fig.
3. The first scenario, Fig. 3 (a), occurs in the case of a
doorway or the openings and closings of a narrow passage.
In such scenarios, the invisible humans exert equal forces
from two different directions, which align the robot at the
center of the passage, but it cannot pass through until the
invisible constraint is switched off. However, the threat of
invisible humans still exists, therefore, we make the robot
act cautiously and move it with a lower velocity (≤ 0.3m/s)
until it passes through the passage. To detect this scenario,
we use the positions of the invisible humans and the robot
to check whether an isosceles triangle is formed with the
three vertices. The robot lies on the vertex, which connects
the approximately equal sides, and humans are present at the
base vertices. In order to limit false detections, we set some
numerical limits on the lengths of the equal sides and the
base. Assuming that a human has 0.3m radius and the robot
has 0.5m, the length of the base should be ≥ 1.6m. When
the clearance from obstacles or walls is taken into account
it increases further. In this work, we set the limit on base
length as 3m. Similarly, for the equal sides, there should be
a minimum length of 0.8m, and we chose the limit to be
2m. These values are chosen empirically based on the tests
in several situations. If the above conditions are satisfied, a
passage is detected, and CoHAN switches to a new modality
called Passing Through, which sets the conditions mentioned
above. The situation shown in Fig. 3 (c) is almost the same as

Fig. 3: Different types of passages that are detected using invisible
humans. (a) Doorways or openings and endings of the corridors (b)
a narrow passage with opening on one side and a wall on the other
side (c) a large pillar or obstacle where robot cannot see on either
side. The green circles are the possible locations of the invisible
humans and the red triangle shows the robot pointed towards the
direction of its motion.

the doorway and we differentiate these scenarios by reading
the center value of the laser scan data. If the value in the
data is less than the length of the perpendicular bisector of
the triangle’s base, then it is identified as a pillar or large
obstacle approach. CoHAN identifies this as a new modality,
but for now, we handle it the same we handle the doorway.

The situation shown in Fig. 3 (b) is different from the
other two as the robot’s passage is blocked by an invisible
human on one side and obstacle clearance on the other
side. As the robot, may or may not align in this case, it
is handled differently. We check the angle of the laser scan
corresponding to the detected corner and read the value of
the data that is symmetrical to this angle along the direction
of the robot. Finally, if the difference between the distance
of this laser scan data and the invisible human from the
robot’s position is < 1m, we identify it as a wall passage
and set CoHAN to Pass Through mode. The threshold of
1m is chosen empirically here.

IV. EXPERIMENTS

The proposed approach, after being completely integrated
with CoHAN is tested in several settings. In this section,
we show four interesting scenarios and present a detailed
analysis. In all these experiments, we assume hrad =0.3m
and set k = 10 and α = 0.2. We use ROS-melodic with
Ubuntu 18.04, and all the scenarios are simulated using
MORSE [25] simulator. The simulated human agents used
in the experiments are controlled using InHuS [26], a human
simulator developed in our lab.

A. The effect of the Invisible Humans constraint

To show the effect of introducing the invisible humans
constraint into CoHAN, we present the robot with a door
crossing scenario as shown in Fig. 4. We test scenarios
without and with the invisible humans constraint and the
corresponding paths of the robot are presented in Fig. 5 (a)
and Fig. 5 (b) respectively. The paths are colored, and the
color moves from blue to red as the robot moves from start to
goal. It can be clearly seen from these paths that the inclusion
of the constraint made the robot more cautious as it takes
a larger distance and aligns its path earlier to pass through
the doorway. The corresponding speed plots are shown in



Fig. 5 (c) and (d). Comparing the plot in Fig. 5 (d) with
the profiles in Fig. 5 (c), it can be clearly seen that the robot
slows down significantly before passing through the passage.
The cautious behavior of the robot is again reflected in these
speed profiles.

Fig. 4: The robot passing through the door under the presence of
invisible humans. The colored circles represent the poses of the
robot and different color corresponds to different time instance.

Fig. 5: Paths and speed profiles of the robot passing the door without
(a, c) and with (b, d) the Invisible Humans constraint. The color of
the paths indicates the time and progress of the robot, from blue to
red (start to goal). In (a) the robot crosses the door “full speed”.
In (b) it decelerates before entering the door (black star) and has
the lowest speed at the entrance to the door (red star) around 4.2s
corresponding to the shortest distance to invisible humans.

B. Navigation in the presence of visible and invisible humans

The inclusion of the invisible humans into human-aware
navigation planning should not cause discomfort to the
visible humans that are moving around the robot. To show
that CoHAN finds a fine balance between the invisible and
visible humans, we present two corridor scenarios, one with
many doors (or openings) as shown in Fig. 6 (a) and the
other with pillars as shown in Fig. 6 (b). In both of these
scenarios, the robot faces complex situations where it has to
find a balance between the visible and the invisible humans.

In the case of the corridor with many openings, the robot
anticipates that a human might emerge anytime and tries
to move away from the openings. However, when it sees a
human passing through the corridor, it tries to provide more
space to the human by moving to one side. At the same
instance, it faces the forces from the invisible humans and
tries to find a balance between these and the visible human.
By observing the path and speed profile of this scenario from
Fig. 7 (a) and (c), we can see that the robot moves away as

Fig. 6: Corridor scenarios used for testing CoHAN. (a) Corridor
with many openings where the robot continuously anticipates the
emergence of humans. (b) Corridor with pillars between passage
that creates complex navigation scenarios. In both these settings, the
robot tries to find a balance between visible and invisible humans.
The green circle is the visible human interacting with the robot,
while the red circles are estimated invisible humans. The colored
path with circles is the planned trajectory of the robot.

Fig. 7: Paths and speeds profiles of the robot in corridor scenarios.
(a), (c) correspond to the corridor with many openings. (b), (d)
correspond to the pillar corridor. The color of the paths indicates
the time and progress of the robot, from blue (start) to red (goal).

well as reduces its speed rapidly to accommodate the visible
human. Nonetheless, it does not move very close to the wall
as it anticipates a human emergence.

In the corridor with pillars, the robot faces another com-
plex situation where it has to pass through a very narrow
opening and has to let the human pass through the same as
shown in Fig. 6 (b). From the path and speed profiles of this
scenario from Fig. 7 (b) and (d), we can see that the robot
slows down rapidly while moving to a side and momentarily
stops before moving forward again. Here, the robot stops
and lets the visible human pass before it can continue its
navigation. Further, it detects the narrow passage scenario
discussed in Section III and changes to Pass Through mode.
We can, therefore, infer that CoHAN always tries to find a
fine balance between visible and invisible humans and can
mitigate very complex situations.



C. Sudden emergence of a human

Fig. 8: Sudden emergence scenario. The colored paths with circles
is the planned trajectory of the robot. (a) Shows the anticipated
invisible human in red and the real human in green. The robot starts
moving away from the corner. (b) The robot has seen the human
and adjusted its trajectory to provide more space to the human. (c)
The scenario without the invisible humans constraint. The robot
moves very near to the wall blocks the human momentarily before
adapting its path.

Fig. 9: Path and speed profiles of the sudden emergence scenario
without (a, b) and with (c, d) the invisible humans constraint. The
color of the path indicates the time and progress of the robot, from
blue to green (start to goal).

The final scenario we discuss in this section shows a
situation where a human emerges suddenly from an occluded
region. The snapshots of this scenario before and after the
emergence are shown in Fig. 8. The added invisible humans
detection predicts a possible position of the human as shown
in Fig. 8 (a), which approximately overlaps with the real
human. The robot starts moving away from the wall slowly
because of this anticipation, and suddenly a real human
appears in front of it (Fig. 8 (b)). The robot quickly adapts its
trajectory and moves away from the human, slowing down
a little before continuing to its goal. However, without this
detection, as shown in Fig. 8 (c), the robot moves close to
the wall and blocks the human’s way for a moment before
adapting its path. The paths taken by the robot without and
with the addition of invisible humans constraint to CoHAN
are shown in Fig. 9 (a) and Fig. 9 (c) respectively. It is clear
from these plots that the proposed constraint makes the robot
move cautiously and lessens the surprise to humans. Further,
the path of the robot is smoother in Fig. 9 (c) when compared

to the path in Fig. 9 (a) as there are no sudden path changes.
The speed profile in Fig. 9 (b) shows a sudden drop in the

velocity of the robot. This occurs because CoHAN adapts
its speed to prevent a possible collision and shock to the
human. Then, the robot slowly moves away and plans a new
path to the goal. The speed profile in Fig. 9 (d) is completely
different compared to the last one. The robot starts drifting
away from the wall (both x and y velocities) before seeing the
human and this shows the increase in the velocity. When the
human appears, it slows down and then changes its direction
before continuing to the goal with almost a constant speed.
This is the sharp change (slowdown) we see in Fig. 9 (d).

D. Quantitative Analysis

(a) Maps used for testing (i) LAAS
(ii) Bremen (iii) Random Maze

(b) Failed detections

Fig. 10: (a) Different maps used for testing the robustness and
accuracy of the approach. The map in (iii) shows an example of
randomly generated maze. The other maps are standard ones. (b)
Different types of failed detections. The detection in yellow circle is
a false positive whereas that in yellow square is an overlap (possibly
true). The passage detection is also wrong as the wall is detected
as passage. The green cube with black arrow shows the robot and
its direction. The red cylinders are the invisible humans.

For testing the proposed algorithm, we have designed
randomized experiments. We either generate a random map
using the Maze Generator1 or randomize the position of
the robot in the known map. The maps used for these
experiments are shown in Fig. 10 (a). The LAAS and Bremen
maps are collected from the models of the real spaces. Fig.
10 (a) (iii) shows a random map generated using the Maze
Generator. Fig. 10 (b) shows some failed detections using
the proposed algorithm that are taken into account while
calculating the accuracy. The red circles with blue arrows
are the predicted invisible humans. The invisible human in
the yellow circle is classified as a false positive as no human
could be located inside the wall. The detection in the yellow
square is similar, but it is not completely inside the wall. We
call this case an ‘overlap’ and classify this also as a false
positive. The door/passage detected (cyan rectangle) in this
picture is wrong, and we classify this as a false positive while
calculating accuracy for passage detection. The green square
with black arrow is the robot in the figure.

1) Robustness and accuracy : To test the robustness of
the proposed algorithm, we perform several randomized
experiments in different settings. In the LAAS and Bremen
maps, we randomize the position of the robot and evaluate

1https://github.com/razimantv/mazegenerator

https://github.com/razimantv/mazegenerator


the detections manually. We did 50 such evaluations for each
of the above two maps. In the next set of experiments, we
generate a random map and place the robot in a random pose
and then evaluate the detections. In this case, we have done
100 evaluations using 100 randomly generated maps. The
calculated accuracy of our invisible humans detection algo-
rithm based on these 200 experiments is 76.85%. However,
if we include the overlaps are true detections, it increases by
over 12% to 89.16%. These overlaps could be reduced by
improving the filtering. Table I shows the list of experiments
and the accuracy in each case.

Invisible Humans Detection
Experiment Accuracy (%) Accuracy with overlap (%)

LAAS 91.82 94.55
Bremen 65.28 81.94
Random 76.90 90.42
Overall 76.85 89.16

TABLE I: Accuracy calculated based on 200 experiments in 3
different environments. By correcting the overlapping detections,
the accuracy could be increased by over 12%.

Passage Detection
Experiment Accuracy (%) Misses due to limits (%)

LAAS 66.00 30.00
Bremen 54.00 36.00
Random 65.00 14.0
Overall 62.50 23.50

TABLE II: Accuracy calculated based on 200 experiments in 3
different environments. Increasing the limits of detection could
increase the accuracy by over 23%. These limits could be decided
based on the requirement.

For calculating the accuracy of passage detection, we
have performed similar experiments as above and evaluated
the detections in 200 experiments. Here, we classify the
detection simply either as true or false. There are also cases
where there are no detections. In such cases, no detection
within limits is classified as false, and out of the limits is
classified as a miss. Table II shows the accuracy of passage
detection in different settings. The overall accuracy based on
these experiments is around 62.50%. Note that the percentage
of misses is around 23.50%. This can be improved by having
higher or adaptive detection limits. They have to be set based
on the requirement.

2) Comparison with other planners: To test the advantage
of the proposed approach, we compare the sudden emergence
scenario using three different planners. The first one is
Simple Move Base (SMB), where humans are added using
the laser scan. Then we use CoHAN with and without
the proposed constraint as the other two planners. As the

Planners Min. Human-Robot Distance (m)
SMB 0.584
CoHAN 0.922
CoHAN with constraint 1.247

TABLE III: Minimum human-robot distance in the sudden emer-
gence scenario using 3 different planners. The results are the
average over 5 runs.

proposed work makes the robot cautious and tries to reduce
the surprise to humans, we check the minimum human-robot

distance while navigating using these planners. We have
performed 5 runs of the same scenario with each planner,
and the results are presented in Table III. From Table III,
we can see that adding the invisible humans constraint to
CoHAN makes the robot maintain a larger distance from
the human around a corner. Keeping distance from humans
avoids surprise to humans and provides time for the robot
planner to adapt slowly.

V. REAL WORLD RESULTS

Fig. 11: Real world experiment setting (a) Human is inside the
room and does not move. (b) The human starts coming out of the
door as the robot approaches the door. In both scenarios, the robot
tries to pass through the door.

The CoHAN system is installed on the PR2 robot in our
lab and then tested in the doorway scenario discussed above.
We performed two kinds of experiments, as shown in Fig.
11. In the first situation, shown in Fig. 11 (a), the human
remains stationary, whereas in the second situation, shown in
Fig. 11 (b), he comes out of the door as the robot approaches
the door. The first situation is tested, with and without the
invisible humans constraint, and the results are shown in Fig.
12. We can see from the figure that the real-world results
match the results of the simulation approximately both in
the paths and the speed profiles. Note that in Fig. 12 (c), the
robot halts momentarily. This may be because of a sudden
human appearance or moving very close to the wall. The

Fig. 12: Paths and speed profiles without (a, c) and with (b, d)
invisible humans constraint. The addition of the constraints makes
robot takes larger turn (b).

second situation is similar to the sudden emergence scenario,
and the results of this run are shown in Fig. 13. The robot
takes a larger turn and slows down twice, once to align itself
for the door and then when the human emerges. The video



showing some more experiments and the tested scenarios can
be found at https://youtu.be/cbeFRkEdGgA.

Fig. 13: Path and speed profile in the sudden emergence scenario.

VI. DISCUSSION AND LIMITATIONS

The introduction of invisible humans into human-aware
navigation planning is relatively new and requires further
research. We present one possible approach to address this is-
sue. What is particularly interesting here is that our approach
is modeled as a situation assessment and prediction ability
to integrate into a mobile robot human-aware navigation.
Having this, we will have a robot that can interact, using
several modalities, with humans present in its field of view
while making provisions to adapt to humans that are not
yet seen. One difficulty we faced is the integration all
these features without being “too conservative” and avoiding
another case of the “freezing” robot. However, there are
still some limitations to this approach. Since the approach
is based on a 2D map, we can have false detections in the
regions visible through the head of the robot but not through
the base. There may also be some false detections in complex
maps. Both these can be mitigated by augmenting the current
approach with new sensor data and filtering further.

VII. CONCLUSION

We have proposed an approach to estimate the locations
of invisible humans on a 2D map. These invisible humans
are then integrated into our human-aware navigation planner
via a new constraint. We also show how narrow passages
can be identified by exploiting the detected invisible hu-
mans. We have presented the qualitative analysis of several
simulated scenarios, followed by the results of accuracy and
comparisons with some planners. Finally, we have shown the
real-world experiments and presented some discussion. In the
future, we plan to refine this approach further and address
the different modalities identified in a better manner. We also
aim to build a complete human-aware navigation system that
can address very intricate human-robot interactions.
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