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Abstract

Security analysts have to deal with a large volume of network traffic to identify
and prevent cyber attacks daily. To assist them in this task, network intrusion
detection systems (NIDSs) monitor the network and raise alarms when they
identify suspicious events or anomalies. We investigate unsupervised learning
techniques to analyze network traffic captures because they are more likely to
detect unknown attacks. There is a wide variety of unsupervised learning al-
gorithms, whose results seem complementary, but their lack of explainability
makes it difficult to find out which one of their results is right. Our system
intends to reconstruct attack patterns from a set of unsupervised anomaly de-
tectors outputs, and show them to security analysts. Therefore, we introduce
an explainable-by-design system to detect attacks on networks, and evaluated
its accuracy on the CSE-CIC-IDS2018 dataset [17].
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Chapter 1

Introduction

Security analysts have to deal with a large volume of network traffic to identify
and prevent cyber attacks daily. To assist them in this task, network intrusion
detection systems (NIDSs) monitor the network and raise alarms when they
identify suspicious events or anomalies [3, 4, 8]. Those alarms can correspond
to real attacks (true positive) or the system can be mistaken and raise alarms
when the network is not under attack (false positive). In the worst case, NIDSs
can remain silent and not raise any alarm when the network is under attack
(false negative).

Machine learning (ML) is a very promising technology for assisting security
analysts as it allows accurate identification of attacks on large amounts of data
without explicitly defining attack signatures, as opposed to rule-based systems.
In particular, unsupervised learning (UL) identifies anomalies without requiring
any training dataset (i.e., a set of labeled flows to learn attack signatures), as
opposed to supervised learning techniques, which can struggle to detect attacks
that are not part of the training dataset. Therefore, we will investigate unsu-
pervised learning techniques because they are more likely to detect unknown
attacks.

One of the problems with machine learning models is that a same network
flow can be considered as an attack by some models but not by others, and their
binary outputs do not provide enough information to evaluate the relevance of
their results. In other words, we are aware that the models we use still make
some errors, but we do not know what triggers these and we have thus no means
of further analyzing them manually.

In addition, there is no single model which always takes the right decision:
we observed that the accuracy of different models varies according to the given
dataset or the ML algorithm; different models make different mistakes. So, one
problem when using ML is choosing which model to use. This is a perfect case
for using ensemble methods [18, 5, 1] where multiple models can contribute to a
final decision. The ensemble learning approach [18, 5, 1] consists of combining
multiple models, called base learners, to build more accurate systems. Indeed,
some models can be better at detecting specific types of attack (e.g., brute-force,
and DoS). A possible way to address the problem is to use a weighted-majority
voting, where weights are assigned based on the base models’ accuracy. But
in some cases, we observed that a weak model, in terms of global accuracy,
can accurately detect an attack, whereas more globally accurate models can
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fail to detect it. Therefore, voting approaches do not seem to us to go in the
right direction. To take full advantage of the complementarity of the models,
we propose a new approach which is to systematically present the results of
each base learner to the end user in a manner that facilitates informed decision
making. This decision would be made thanks to a combination of a concise
visual representation of detections and a high level of explainability of each
base learner.

Explainability is the property of a system that makes its reasoning and
results understandable by humans [16, 8]. In current NIDSs, actions to solve
security issues are made by security analysts, based on the system analysis.
Therefore, providing evidence of ML models results in an intelligible way is
crucial for analysts to trust the system. Explainability is not only important for
improving the collaboration between security analysts and Artificial Intelligence
(AI) systems, but also for engineers and researchers to design more accurate
systems: understanding why and where a model may fail can help fix the issues,
so that the model does not reproduce the same errors.

We propose a method that will simultaneously allow a user to take advan-
tage of ensemble learning from multiple base models to enhance detections and
visualize the results of all the base models to gain insights into how these de-
tections are made. Our method analyzes base models by acting on their inputs
and outputs only, so that we can compare models with different algorithms.

A requirement for our work was to provide visual representations of traffic
anomalies, as the cybersecurity company Cyblex Technologies that coordinates
the project thinks it will help security analysts understand what is happening
on the network efficiently. We proposed to generate images based on all the un-
supervised learning detections, and use convolutional neural networks (CNNs),
a supervised layer, to analyze them and give the final result. Our system is ex-
pected to preserve properties of unsupervised systems, including the detection
of new attacks, as its supervised layer is used to analyze the behavior of base
models rather than pure network traffic data.

Our idea is to look at all the alarms raised by multiple detectors during
a macroscopic time window and identify patterns of attacks [6, 19]. As an
example, if we consider a brute-force attack scenario where the attacker intends
to find a password by trying repeatedly to authenticate from one machine with
all the words from a dictionary, we expect to observe a sequence of alarms from
the same IP address. Our system intends to reconstruct attack patterns from a
set of anomaly detectors outputs and show them to security analysts.

We introduce an explainable-by-design system that analyzes a set of unsu-
pervised learning models to detect network attacks. Our contributions are as
follows:

1. A more transparent ML-based NIDS, whose analysis is understandable,

2. A representation of network anomalies as an image that the user can
interpret,

3. An ensemble learning method that uses CNN to combine models.
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Chapter 2

Related Work

Our research investigates mechanisms to reconstruct attack patterns based on
multiple unsupervised learning detection techniques. Our work addresses issues
related to (1) ensemble learning, (2) attack patterns detection, and (3) explain-
able learning. This section will address these themes in this order, and position
our work in relation to recent studies.

Regarding ensemble learning systems for network anomaly detection, Vane-
rio and Casas [18] compared multiple meta-learners for detecting attacks. A
meta-learner combines outputs of a set of base learners to return a more ac-
curate detection. As an example of meta-learner, the authors considered a
weighted-majority voting algorithm where the weights were defined depending
on the accuracy of the base learner. We have taken a different approach in
which the meta-learner is another ML layer, a CNN, that takes as input a vi-
sual representation of the base learners’ outputs and detects attack patterns on
them. Mirsky et al. [13] proposed Kitsune, an ensemble of autoencoders for
detecting network anomalies. The system relies on autoencoders, which are of-
ten considered as unsupervised learning techniques because they use unlabeled
data, but autoencoders still require a training phase on normal data. Kitsune
stacks autoencoders, by using another autoencoder as a meta-learner to process
their anomaly scores. The approach to combine base learners is close to ours,
except that we address heterogeneous algorithms and data representations.

On a different topic, Zhou et al. [22] proposed a system using LSTM to
detect multi-stage attacks. Their model treats sequences of alerts generated by
the NIDS Snort and addresses the problem of long-term dependency between
the alerts. Ghafir et al.[7], proposed a system for the detection and prediction of
advanced persistent threats (APT). The system uses the Hidden Markov Model
(HMM) to detect the most probable APT scenario given the alarms. Then, it
forecasts the next step of the ongoing APT. A significant difference with our
work is that their system is trained on a given attack lifecycle [9, 12], whereas our
system learns attack patterns directly from the data. Wang et al. [19] converted
raw traffic data (pcap files) into images and also noticed attack patterns.

Wei et al. [20] observed that current general-purpose explanation methods,
such as SHAP [11] and LIME [16], are not suitable for NIDSs because they
do not handle dependencies of network flows’ features. To overcome this issue,
the authors proposed data-driven explanation methods for DL-based NIDSs,
that are based on history inputs. Based on the extracted feature importance,
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the system generates defense rules to block malicious activities. Han et al. [8]
addressed ML explainability by proposing a system to interpret existing un-
supervised, DL-based NIDS. The system analyzed a given model detection by
providing the most important features and describing their meaning so that a
security expert can understand them. Instead of relying on ad hoc interpreta-
tions, we designed a more transparent system and provided a representation of
traffic anomalies to help the security analyst monitor the traffic and identify
potential errors.
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Chapter 3

Methods

3.1 Approach

In this paper, we investigate unsupervised learning (UL) techniques as they
are more likely to detect new attacks. To combine multiple models with dif-
ferent algorithms, we intended to characterize their behavior without assuming
knowledge about the algorithms, by playing on the inputs and outputs.

Regarding the inputs, we needed a data representation that was semantically
interesting for UL models to extract attack signatures (Section 4.2). Similarly
to UNADA [3, 4], we aggregated network flows by source IP address and by
destination IP address to distinguish point-to-point (e.g., brute-force) from dis-
tributed attacks (e.g., DDoS). Related work on unsupervised anomaly detection
also used aggregated flows and consider other aggregations keys.

To quantify the degree of abnormality (Section 3.4), we played on subspaces
of features: we applied UL algorithms on different subspaces of features and
summed their results. Our anomaly scores are again model-agnostic, unlike the
ones provided by the scikit-learn library that depend on the ML algorithms. On
the same problem, Mirsky et al. [13] tried to approximate the normal behavior
of traffic using autoencoders, and used the root mean squared error (RMSE)
between the expected behavior and the observed behavior as anomaly score.
Our approach is different because we did not try to learn the behavior of the
system based on its previous states: this is because traffic can change drastically
in short time periods.

To go further in the characterization of models’ outputs, we introduced a rep-
resentation (Section 3.5) that highlights both a spatial aspect (e.g., do anomalies
affect or come from the same IP address?) and a temporal aspect (e.g., how
frequent are the anomalies?). This representation was analyzed by another layer
of ML, a CNN, to identify attack patterns. In this sense, Wang et al. [19] iden-
tified attack patterns using CNN on a visual representation of pcap files. Our
approach is different because we used a CNN as a meta-learner, that analyzed
a combination of anomaly detectors to detect attacks.
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Figure 3.1: System overview

3.2 System overview

We designed a ML-based NIDS that uses a set of unsupervised learning models
to detect network anomalies, and a supervised learning layer to combine them.
The system analyzes a network traffic capture and raises an alarm if the network
is under attack. The system, described in Figure 3.1, takes as input a network
traffic capture (pcap files). A probe, that was not designed within this project,
aggregates the packets into flows and extracts flow features such as the total
number of forward packets of a TCP flow. Then, the system aggregates flows and
computes aggregate features from flow features (Section 4.2). The aggregates are
analyzed by a set of unsupervised learning (UL) models to detect anomalies and
quantify their degree of abnormality (Section 3.4). The system generates images
from the anomaly scores that represent traffic during a time window. Finally,
convolutional neural networks (CNNs) analyze those images to recognize attack
patterns (Section 3.5).

3.3 Aggregation of network flows

ML-based NIDSs usually perform on a given set of flow features, such as the
flow duration, the number of packets in the forward direction, the average size
of packets, etc. As an example, the CIC-CSE-IDS2018 dataset [17] proposes 83
flow features to evaluate ML-based NIDSs. As clustering algorithms perform
poorly on high-dimensional data, we considered aggregates of flows, with fewer,
statistical features.

The system uses two types of aggregates: aggregates by source IP address
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and aggregates by destination IP address. In fact, some attacks such as Dis-
tributed Denial of Service (DDoS) involve IP addresses from many sources to-
wards a single destination, and other anomalies such as network scans involve IP
addresses from a single source towards multiple destinations. So, the aggregates
perspective helps characterize the attacks and highlights attack patterns.

As network traffic can evolve very quickly, clustering algorithms were used to
detect abnormal aggregates among all aggregates during the same time interval
∆t. This was done to avoid detecting anomalies corresponding to a legitimate
increase in network traffic. In addition, traffic can differ depending on the time
of the day or whether it is during a working day or on holidays. By comparing
the current traffic to a baseline, a system could raise an anomaly if an employee
is working unusually late, for example.

To summarize, network flows that ended during a time interval ∆t were ag-
gregated by source IP address and aggregates by destination IP address. The
aggregates perspective was designed to better identify attack patterns, and also,
the resulting aggregates are more readable for the end user, who is the security
analyst. In fact, there are fewer aggregate features than flow features, which
makes the data more readable, and security analysts are familiar with IP ad-
dresses.

3.4 Unsupervised anomaly scoring

This component is composed of a set of anomaly detectors. It takes as input
the aggregate features (Table 4.1), either by source IP address or by destination
IP address, that ended during a same time frame of duration ∆T and returns a
set of matrices. Each matrix contains the anomaly scores of all the aggregates
computed by an unsupervised anomaly detector.

Unlike unsupervised anomaly detectors, supervised learning models require
a labeled training dataset to classify a flow. Recent learning techniques allow to
accurately recognize attack flows that are statistically similar to the ones from
the training dataset. However, those models can struggle to identify attacks
that were not in the training dataset. To be able to detect new attacks (0-
day attacks), we considered unsupervised learning techniques. The system used
clustering techniques to detect anomalies, data samples that statistically differ
from others, and did not require any knowledge dataset.

Clustering algorithms can give different outputs from the same input data,
i.e., they may not detect the same aggregates as anomalies. Sometimes, a model
can give the correct result where a more accurate model fails. To take advan-
tage of the complementarity of the models’ detections, we combined multiple
clustering algorithms, referred to as base learners, to build a more accurate en-
semble system. Instead of considering the binary output (normal or abnormal)
of the base learners, we considered an anomaly score that quantifies the degree
of abnormality of an aggregate according to a model.

Machine learning libraries, such as scikit-learn or PyOD provide an anomaly
score function for most of the clustering algorithms implemented, but those
anomaly scores depend on the decision function of the models. To compare the
results using different clustering algorithms, we use a model-agnostic quantifi-
cation of anomalies, previously defined in UNADA [3, 4].

To define anomaly scores, we considered all the subspaces of k features among
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all the n aggregates’ features and perform outlier detection, with the same
algorithm, on each subspace. The anomaly score of an aggregate is the number
of times the aggregate was classified as an outlier. Those scores range from 0,
for a completely normal aggregate (according to the model), to the number of
combinations of k features among n for a completely abnormal aggregate, which
is: (

n
k

)
= n!

k!(n−k)!

To select a set of base learners among a list of algorithms, we considered
all possible combinations of N algorithms and computed the anomaly scores
of the aggregates by source IP address on the one hand and by destination IP
address on the other hand on a training dataset. We sorted the combination
using two criteria. First, the number of accurate alarms, as false negatives are
considered more critical than false positives. Then, the number of false alarms.
We selected the subset of N models that detected the most attacks with the
fewest false alarms. The alarms raised by the chosen subset will be the input
of a meta-learner (Section 3.5), a model that will make the final analysis, given
the analysis of the base learners.

3.5 Attack patterns recognition

In the previous section, we selected a set of unsupervised learning models that
detected anomalies on aggregates by source IP address and on aggregates by
destination IP address. To reinforce the system, we studied the sequences of
anomalies detected by each base learner during a time frame ∆T , greater than
the time intervals ∆t. We proposed to represent the output of each base learner
as a matrix of anomaly scores, where each line corresponds to a source or des-
tination IP address, depending on the aggregation key, and each column to a
time interval. Then, the output of a set of base learners was a set of matrices.

To visualize the analysis of the base learners, we can assign them a color
channel (red, blue, or green). The color intensity of a pixel was proportional
to the anomaly score generated by the model for the aggregate. Thus, a white
pixel means that all the models diagnosed the aggregate as very abnormal, and
a black pixel means that none of the models raised an alarm (Figure 3.2 and
Figure 3.3).

We can then analyze these images using deep neural networks (DNNs) such
as convolutional neural networks (CNNs). Therefore, we used a CNN as a meta-
learner to identify attack patterns on the traffic representations. The attack
pattern recognition module takes two inputs:

1. The image generated from the outputs of the base learners on aggregates
by source IP,

2. The image generated from the outputs of the base learners on aggregates
by destination IP during the same time frame ∆T ,

The model required a knowledge database, a labeled dataset for training and
validation. Each generated image was labeled attack if it contained at least one
attack aggregate, and benign otherwise. The CNN gave the final result of the
system, meaning if the network was under attack during the time frame ∆T .
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Figure 3.2: Representation of the analysis of 3 base learners during a time
interval ∆t. This analysis generates a vertical segment that is part of the image
generated in Figure 3.3. Network flows during ∆t are grouped into aggregates
(4 in this example). Then, aggregates features are extracted and preprocessed
to be analyzed by N UL models (N = 3 in this example). Each model scores
the degree of abnormality of each aggregate. A color is assigned to each model
so that an anomaly score vector was encoded into a monochrome segment. By
superposing the monochrome segments of the N models, we obtain a colored
segment that represents the anomalies detected by all the models during ∆t.
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Figure 3.3: Representation of the analysis of 3 base learners during a timeframe
∆T . The timeframe ∆T consists in this example of 3 consecutive time intervals
∆t. The flows that occurred during each time interval ∆t are analyzed as in
Figure 3.2. Each time interval ∆t is represented by a colored segment. By
putting the 3 segments side-by-side we obtain an image that represents the
traffic anomalies detected by N = 3 models during the timeframe ∆T .
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Chapter 4

Experiments

4.1 Dataset

The proposed system was evaluated on the CIC-CSE-IDS2018 dataset [17].
Sharafaldin et al. [17] implemented a realistic company network, with 420 ma-
chines and 30 servers, and an attacking infrastructure with 50 machines. The
dataset consists of 10 days of network traffic captures during working hours. The
authors simulated multiple attacks scenarios, such as brute-force, distributed de-
nial of service (DDoS), SQL injections, etc. For this study, we evaluated the
detection of brute-force and DoS only.

4.2 Aggregation of network flows

The brute-force, DoS, and benign network flows of the CIC-CSE-IDS2018 dataset [17]
were grouped by a time interval ∆t of 2 minutes. Then, the flows were aggre-
gated by source IP address and by destination IP address. The aggregates
features described in Table 4.1 are statistical features computed from the flows
features. Table 4.2 and Table 4.3 show the proportion of aggregates by source IP
address and by destination IP address respectively, by attack category (brute-
force, DoS, and benign).

Feature Aggregation key Description
n dst ip IPsrc Number of destination IP addresses
n src ip IPdst Number of source IP addresses
n dst ports IPsrc & IPdst Number of destination ports
n src ports IPsrc & IPdst Number of source ports
n fwd pkts IPsrc & IPdst Number of forward packets
n bwd pkts IPsrc & IPdst Number of backward packets
sum flx dur IPsrc & IPdst Sum of flows duration
tot flx IPsrc & IPdst Number of flows
sum pkts size IPsrc & IPdst Sum of packets size
std pkt size IPsrc & IPdst Standard deviation of packets size

Table 4.1: Aggregates features
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Category type Count Proportion (%)
brute-force 95 1.457950
DoS 6 1.028238
Benign 6354 97.513812

Table 4.2: Proportion of aggregates by source IP address by attack category

Category type Count Proportion (%)
brute-force 95 2.725186
DoS 67 1.921974
Benign 3324 95.352840

Table 4.3: Proportion of aggregates by destination IP address by attack category

4.3 Unsupervised anomaly scoring

The aim of this section is to select a set of unsupervised learning algorithms to
implement the proposed system.

For this study, we considered unsupervised algorithms with different mech-
anisms for anomaly detection. We used implementations from the scikit-learn
library [15] and PyOD [21] libraries:

• Isolation Forest detects anomalies using isolation. The algorithm is con-
structed recursively: each step consists on randomly selecting a feature
and then randomly selecting a split value between the maximum and min-
imum values of the selected feature. The anomaly score is the number of
splittings required to isolate a data sample.

• Local Outlier Factor detects anomalies by comparing the local density of
a data sample with the local density of its neighbors.

• DBSCAN defines clusters by grouping the data samples that are closed
according to a distance measure. If there are enough data samples in a
group, they form a cluster, otherwise, they are outliers.

• One-Class SVM defines a separating hyperplane and detects anomalies
based on a distance between the data samples and the hyperplane.

• Unsupervised KNN [2] is also a proximity-based model that uses the dis-
tance to the kth nearest neighbor as outlier score.

• COPOD [10] is a probabilistic model.

We then sought the best possible combination of three algorithms by iter-
atively testing them all on the aggregates defined in Section 4.2 grouped by
a time interval of ∆t = 2minutes. In the following, we call agreement zone
the samples where all models detected the same thing. We call grey zone the
samples where the models’ detections differ. For the aggregates by source IP
address, there are 56 false negatives in the agreement zone, meaning that 56
attacks were not detected by any model. For the aggregates by destination IP
address, there are 98 false negatives in the agreement zone.
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Subset Accurate attack
detections

False alarms

(LocalOutlierFactor, KNN, COPOD) 84 2140
(IsolationForest, LocalOutlierFactor, KNN) 84 2154
(IsolationForest, LocalOutlierFactor, COPOD) 84 2159
(DBSCAN, KNN, COPOD) 84 2838
(IsolationForest, DBSCAN, KNN) 84 2851
(IsolationForest, DBSCAN, COPOD) 84 2852
(LocalOutlierFactor, DBSCAN, KNN) 84 3104
(LocalOutlierFactor, DBSCAN, COPOD) 84 3107
(IsolationForest, LocalOutlierFactor, DBSCAN) 84 3112
(IsolationForest, LocalOutlierFactor, OneClassSVM) 84 4138
(IsolationForest, DBSCAN, OneClassSVM) 84 4138
(IsolationForest, OneClassSVM, KNN) 84 4138
(IsolationForest, OneClassSVM, COPOD) 84 4138
(LocalOutlierFactor, DBSCAN, OneClassSVM) 84 4138
(LocalOutlierFactor, OneClassSVM, KNN) 84 4138
(LocalOutlierFactor, OneClassSVM, COPOD) 84 4138
(DBSCAN, OneClassSVM, KNN) 84 4138
(DBSCAN, OneClassSVM, COPOD) 84 4138
(OneClassSVM, KNN, COPOD) 84 4138
(IsolationForest, KNN, COPOD) 82 1063

Table 4.4: Detected attacks and false alarms of sets of unsupervised learning
models on aggregates by source IP address

All the subsets of 3 models were evaluated on the grey zone. In the following,
we refer as accurate attack detections the number of attack aggregates that were
detected as an anomaly by at least one model of the subset. The number of false
alarms for the subset is the number of benign samples detected as anomalies
by at least one model. Table 4.4 and Table 4.5 show the number of accurately
detected attacks and false alarms for each possible subset of 3 algorithms.

The combination that was chosen to analyze both aggregates by source IP
address and aggregates by destination IP address was LocalOutlierFactor, KNN,
COPOD. This makes sense because these algorithms have a different mechanism
to detect anomalies, and so are more likely to be complementary.

4.4 Attack patterns recognition

This section describes the implementation and the results of the attack patterns
detection module.

We built a dataset of images that represent the network traffic over a time
frame of ∆T = 30minutes, as described in Section 3.5. A color has been assigned
to each model:

• Red for Local Outlier Factor

• Green for KNN

• Blue for COPOD
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Subset Accurate attack
detections

False alarms

(IsolationForest, LocalOutlierFactor, KNN) 58 541
(LocalOutlierFactor, KNN, COPOD) 58 541
(IsolationForest, LocalOutlierFactor, COPOD) 58 546
(IsolationForest, LocalOutlierFactor, DBSCAN) 58 672
(IsolationForest, DBSCAN, KNN) 58 672
(IsolationForest, DBSCAN, COPOD) 58 672
(LocalOutlierFactor, DBSCAN, KNN) 58 672
(LocalOutlierFactor, DBSCAN, COPOD) 58 672
(DBSCAN, KNN, COPOD) 58 672
(IsolationForest, OneClassSVM, KNN) 58 675
(IsolationForest, OneClassSVM, COPOD) 58 675
(LocalOutlierFactor, OneClassSVM, KNN) 58 675
(OneClassSVM, KNN, COPOD) 58 675
(IsolationForest, LocalOutlierFactor, OneClass... 58 676
(IsolationForest, DBSCAN, OneClassSVM) 58 676
(LocalOutlierFactor, DBSCAN, OneClassSVM) 58 676
(LocalOutlierFactor, OneClassSVM, COPOD) 58 676
(DBSCAN, OneClassSVM, KNN) 58 676
(DBSCAN, OneClassSVM, COPOD) 58 676
(IsolationForest, KNN, COPOD) 56 317

Table 4.5: Detected attacks and false alarms of sets of unsupervised learning
models on aggregates by destination IP address
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Figure 4.1: Traffic representation

Figure 4.1 are examples of images for an attack and a benign period. First,
there are many red-green dots and a few light blue points, which is consistent
with the distribution of anomaly scores.

In the attack image, we observe a distinctive horizontal line that corresponds
to an attack. In the considered period of the CSE-CIC-IDS2018 dataset, the
attack comes from the same IP and the flows are very close in time. The benign
data points are more isolated.

We generated a dataset of 2000 images that represent periods of 30 min-
utes of CSE-CIC2018. An image that contains at least one attack aggregate
is labeled as an attack. The images are padded to have the same dimensions.
The images representing the aggregates by source IP address and the aggregates
by destination IP address during the same time window were coupled. The re-
sulting dataset was split into a training and a validation dataset. The models’
hyperparameters were optimized using KerasTuner[14].

Table 4.6 shows the F-score and confusion matrix of the resulting model, and
compares it with a model that takes only images representing the aggregates by
source IP address and with another model that takes only images representing
the aggregates by destination IP address. The combined model has a better F-
score than the two other models. The combined model is free of false positives,
however it accurately detected fewer attacks than the model taking only the
images representing the aggregates by destination IP address.

The false positives are shown in Figure 4.2. Images 1, 2, 3, 4, and 8 are
very dark: no base learner detected very abnormal aggregates. In images 6 and
7, there are a few light spots in the representations of aggregates by source IP
address, but there are spread on the image. Image 5 corresponds to the end of
a DoS attack where a single machine targets another one. There, the anomaly
detectors detected a sequence of anomalies coming from the attacker, which
forms a clear light line as we expected. Unfortunately, the CNN failed to detect
an attack pattern on this image, so this error must be investigated.
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F-score Confusion matrix

Combined model 0.978

[
35 0
8 329

]
Source IP model 0.961

[
32 3
11 326

]
Destination IP model 0.963

[
38 9
5 320

]
Table 4.6: F-score and confusion matrix of the CNNs

Figure 4.2: False negatives
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Chapter 5

Discussion

We proposed a system that combines multiple anomaly-based detectors using
CNN on a 2-D representation of the traffic. The combination allowed to improve
significantly the performance of the system. However, the performance of the
system is below other state-of-the-art systems using neural networks [19]. On
this aspect, the intermediate representation of the traffic anomalies can help a
security analyst identify errors.

The final system reached a decent accuracy, but not a competitive one.
However, all the attacks were at least partially detected. To reinforce the system,
we could consider using video processing techniques, where we could add a
time series layer to our image analysis to detect pattern changes over time. In
addition, the image dataset was too small for a CNN training. The observed
attack patterns were also simple, with one victim and one attacker who was
sending packets frequently. The attacker could change his/her IP address and
space out his/her actions over time. This is why we will design a dataset with
more complex attack patterns.

For this paper, we chose to study aggregates on a fixed time interval of
two minutes. We may miss small but important parts of traffic that we could
identify on a more fine-grained analysis. Thus, we should consider dynamically
defining the time interval. In the same way, the set of models was chosen once.
The selection of models could be dynamic, as some models may perform better
depending on the context.

So far, we have only looked at aggregates by source IP. Using aggregates
by destination IP is more relevant for identifying some sorts of attacks, such as
DDoS. In addition, it is currently hard to distinguish attacks from some sorts of
legitimate traffic, for example, DDoS from peer-to-peer. The sequences of flags,
the evolution of their proportion, can help identify attacks. To prevent the curse
of dimensionality, we will continue to perform macroscopic analyses. But, we
will systematically analyze multiple, well-chosen dimensions, and combine those
analyses to identify attacks.

In further work, we will evaluate our system on a larger dataset, and evaluate
its capacity to detect new attacks.

19



Chapter 6

Conclusion

We proposed an explainable-by-design system to detect attacks on networks.
First, we used unsupervised learning techniques to detect anomalies on aggre-
gates by source and destination IP. The outputs remain human-readable because
security analysts are familiar with IP addresses and the features are few in num-
ber. Second, we represented the traffic anomalies detected by an ensemble of
unsupervised learning models as images on which a security analyst can see
attack patterns. Third, we analyzed the traffic representations using CNN to
detect attack patterns. To summarize, we proposed a more transparent sys-
tem whose design allows a security analyst to follow the steps of the analyses.
The evaluation on the CIC-CSE-IDS2018 dataset [17] showed that our system
reached a decent accuracy, but more importantly that the anomaly representa-
tions made the remaining errors easy to identify.
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