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Abstract

We consider the human-aware task planning problem where
a human-robot team is given a shared task with a known
objective to achieve. Recent approaches tackle it by model-
ing it as a team of independent, rational agents, where the
robot plans for both agents’ (shared) tasks. However, the
robot knows that humans cannot be administered like arti-
ficial agents, so it emulates and predicts the human’s deci-
sions, actions, and reactions. Based on earlier approaches,
we describe a novel approach to solve such problems, which
models and uses execution-time observability conventions.
Abstractly, this modeling is based on situation assessment,
which helps our approach capture the evolution of individual
agents’ beliefs and anticipate belief divergences that arise in
practice. It decides if and when belief alignment is needed and
achieves it with communication. These changes improve the
solver’s performance: (a) communication is effectively used,
and (b) robust for more realistic and challenging problems.

Introduction
Consider a scenario where you (the human agent) want to
prepare, together with a robot, some pasta in your kitchen.
This joint task comprises several components and activi-
ties, e.g., pasta is kept either in the kitchen or the living
room, covering a pot, turning a furnace on, the salt container,
adding salt to the pasta, etc. Sometimes, some components
and activities might be accessible only to you (the robot)
from your (its) current position, while some are accessible
to both. Like this subclass of joint task, its multiple instan-
tiations exist across many real-world domains, e.g., homes,
offices, hospitals, etc.

Naturally, while achieving such tasks, you would want a
pleasant and flexible collaboration. This involves behaviors
like not being bothered too much by the robot or being able
to delegate tasks to it, even if it delays the overall process.
Here, we consider the human agent cooperative and ratio-
nal but cannot be administered like a robot (a controllable
agent). So, if the human agent has several ways to achieve
a goal or accomplish a task, the robot cannot instruct them
explicitly which one to choose. However, it can still act to
influence their choices, thus eliciting future actions.

Presented at the AI-HRI Symposium at AAAI Fall Symposium Se-
ries (FSS) 2022

The above example outlines an important point about
human-robot collaboration. The robot should not only plan
for agents’ joint actions but also predict and emulate hu-
man decisions, actions, and reactions, to achieve a joint goal
seamlessly. It must put itself in the shoes of the human in
order to better predict their decisions based on an accurate
estimation of their beliefs; this would open the possibility
for the robot to “create” circumstances that promote actions
to be performed by humans and relevant to achieving the
joint task or to prevent them from making errors based on
false, outdated or inaccurate beliefs.

Human-aware planning has been a topic of interest, and a
framework proposed and upgraded over the years is called
HATP (Human-Aware Task Planner) (Alami et al. 2006;
Alili, Alami, and Montreuil 2009; Lallement, De Silva, and
Alami 2014; Lallement, de Silva, and Alami 2018). Pre-
cisely, the HATP framework extends the existing Hierar-
chical Task Network (HTN) framework (Ghallab, Nau, and
Traverso 2004), extending its representation and semantics
to make it more suitable for robotics and, more specifi-
cally, human-robot collaboration. The agents become the
first class entities while “social rules” are added to classify
planned behaviors for the robot as (un)acceptable.

A more elaborate planning architecture, inspired by
HATP although extends HTNs differently, has been recently
proposed (Buisan and Alami 2021; Buisan et al. 2022). It
introduced the first planning framework of this type, dis-
cussing the abilities and framework’s broad spectrum. It is
called HATP/EHDA, which extends HATP by emulating
human decisions and actions. The new planning scheme
raises several interesting, non-trivial questions to be investi-
gated, and their principled will improve the proposed HAT-
P/EHDA framework toward task-level autonomy for human-
robot interaction or human-robot collaboration.

HATP/EHDA comprises a dual-HTN structure that can
be seen as a joint hierarchical task specification model. We
assume such specifications are given by a domain modeler.
The joint model describes agents’ capabilities, initial be-
liefs, shared tasks, world dynamics, understanding of com-
mon ground, etc. Moreover, the modeler implicitly captures
hypothetical variables to represent the human mood, inten-
tions, etc., that are non-trivial to manage explicitly but “af-
fect” the human behavior.

HATP allows only one search thread for a shared plan, re-



sulting in two coordinated plan streams for the robot and hu-
man team. However, HATP/EHDA proposed a two-threaded
search process, generating a policy tree comprising both
agents’ actions. The human agent is uncontrollable, so it
is not trivial to determine their exact “next” feasible ac-
tion for the overall joint task. It captures the impact of their
mental state, mood, intention, etc. Also, it is important to
note that both the robot’s and human’s HTNs are within the
robot. At each stage, it must plan their joint actions follow-
ing the specifications while predicting, managing, and emu-
lating human’s decisions, goals, beliefs, etc.

However, the current implementation of the HATP/EHDA
framework makes some simplistic assumptions. E.g., an ac-
tion performed by an agent would also impact the beliefs of
other agents, i.e., considering that other agents are always
aware of the action execution and share the same perspec-
tive as the actor. In reality, a robot’s action can influence hu-
man’s beliefs differently under different scenarios. For ex-
ample, adding salt to the pasta or switching on the furnace
(in the kitchen) would impact the human’s belief state differ-
ently depending on whether the human is also in the kitchen
or not at the time of action execution.

We introduce a novel paradigm for implementing suit-
able conventions understood during plan execution in this
context. This paradigm helps upgrade the HATP/EHDA’s
planning system. A high-level idea to formalize it is in-
spired by existing situation assessment reasoners which per-
form spatial reasoning and perspective taking (Flavell 1992;
Trafton et al. 2005; Johnson and Demiris 2005; Sisbot, Ros,
and Alami 2011; Warnier et al. 2012; Lemaignan et al.
2017). The upgraded planning system handles divergences
in human-robot individual beliefs (computed using our pro-
posed model) and plans with explicitly modeled communi-
cation actions such that it tackles belief divergences via com-
munication, if and when needed.

Effective use of a communication modality is essential
to achieve the motivation behind their development, say,
a seamless collaboration. However, in reality, communica-
tion incurs some costs. Moreover, in human-robot interac-
tion (HRI), communicating too much or too little can dis-
turb the overall task achievement process. Hence, deciding
“how” to communicate is crucial, but it is equally crucial to
decide, “if”, “when”, and “what” to communicate. Assume
that a speech modality is available while the decisional as-
pect of communication is handled by the new solver with an
enhanced reasoning system on the human mental state.

Related Work
Several attempts to model human activities are made such
that these models are used to design a system, which inte-
grates into another paradigm dealing with human tasks to
improve the latter’s performance.

A common way to represent human activity and inter-
action with a computer at an abstraction level is by using
task models. The hierarchical structure of activities was first
exploited by Annett and Duncan (1967), and they said a
task could be seen at several abstraction levels until some
criterion is satisfied. Each can, thus, refine into more con-
crete subtasks detailing the procedure followed by the hu-

man to achieve the higher-level task. Task modeling evolved
to introduce system interactions, produced and needed in-
formation, potential errors, and a variety of operators spec-
ifying how tasks interact with each other during their ex-
ecution. Task models’ usage is common in user-centered
and user interface designing processes. Most advanced no-
tations include CONCURTASKTREES (Paternò 2004) and
HAMSTERS (Martinie et al. 2019). Such models are used for
designing or evaluating interactive systems, provide a task
understanding, and inspire this work since they share a high-
level architecture with HTNs.

Previous approaches are based on decomposing tasks hi-
erarchically to human-aware task planning and assume a
fully controllable and cooperative human agent willing to
participate in achieving a joint-goal (Alami et al. 2006; Alili
et al. 2009; Lallement, De Silva, and Alami 2014; De Silva,
Lallement, and Alami 2015; Lallement, de Silva, and Alami
2018). Moreover, the agents are assumed to have established
a shared goal before planning. Later, the generated plan gets
shared with the human before the execution (Milliez et al.
2016). We note that HATP does not represent humans as
regular agents with separate decision processes, which may
lead to diverging plans without robot communication.

Other approaches are distantly related to what we do, con-
sider an external human model (e.g., Agent Markov Mod-
els (AMMs) (Unhelkar, Li, and Shah 2020a, 2019)), which
predicts human activities, and hence the robot plans accord-
ingly (Hoffman and Breazeal 2007; Unhelkar, Li, and Shah
2020a, 2019). Such systems can determine actions that in-
fluence human future actions. While some systems interact
with humans even when they are non-collaborating (Buck-
ingham, Chita-Tegmark, and Scheutz 2020).

In human psychology, especially in human-human inter-
action or collaboration, spatial reasoning and perspective-
taking are crucial (Flavell 1992; Tversky, Lee, and Main-
waring 1999). Through them, a person can mimic the mind
of another person to understand their point of view. Indeed,
Theory of Mind (ToM) refers to the ability to ascribe distinct
mental states to other people and update them by reasoning
about their perceptions and goals (Premack and Woodruff
1978; Baron-Cohen, Leslie, and Frith 1985).

Ideas from psychology got employed in many human-
robot contexts. In robotics, ToM often focuses on perspec-
tive taking and belief management such that a robot rea-
sons out what humans can perceive (Berlin et al. 2006; Mil-
liez et al. 2014) and builds representations of the environ-
ment from their perspective, which sometimes helps solve
ambiguous tasks, predict human behavior, etc. Johnson and
Demiris (2005) propose a method based on visual perspec-
tive taking for a robot recognizing an action executed by an-
other robot. While Milliez et al. (2014) propose visual and
spatial perspective taking to find out the referent indicated
by the human. In (Sisbot, Ros, and Alami 2011), based on
spatial reasoning and perspective taking, a reasoner gener-
ates online (symbolic) relations between agents and objects
co-present in the environment. Such relations are stored in
databases, allowing access to the complete framework, and
used for planning, acting, or both.

The framework proposed in (Devin and Alami 2016) al-



lows the robot to estimate the mental state of the human,
which contains not only the human’s belief but their actions,
goals, and plans. It supports the robot’s capabilities to do
spatial reasoning w.r.t. the human and track their activities.
In particular, it shows how to manage the execution of shared
plans in a collaborative object manipulation context and how
a robot can adapt to human decisions and actions while com-
municating when needed.

This work is motivated by the main ideas of ToM (Devin
and Alami 2016) and situation assessment based on spa-
tial reasoning and observability while abstractly employing
them during planning.

Communication is a key to successful human-robot col-
laboration, used to align an agent’s belief, clarify its deci-
sion or action, fix errors, etc. (Tellex et al. 2014; Sebastiani
et al. 2017). We already discussed the ToM-enabled frame-
work by Devin and Alami (2016). The framework handles
execution time subtleties such that it decides at the execu-
tion time if communication is needed and then the content
that should be transmitted. They achieve it by monitoring
the divergence between the robot knowledge and the esti-
mated human knowledge. If a belief divergence is detected
that can endanger the plan, then verbal communication takes
place. Recent work deals with an explicit usage of commu-
nication actions in planning (Buisan, Sarthou, and Alami
2020; Nikolaidis et al. 2018; Roncone, Mangin, and Scassel-
lati 2017; Sanelli et al. 2017; Unhelkar, Li, and Shah 2020b).
E.g., in (Roncone, Mangin, and Scassellati 2017; Unhelkar,
Li, and Shah 2020b), the authors represent and plan with
explicit communication actions, considering them as regu-
lar POMDP actions, such that execution policies generated
contain communication actions.

However, this work estimates the evolution of the agents’
beliefs and decides “if” and “when” belief alignment is nec-
essary for planning. And, it is achieved via explicit com-
munication actions, answering “what” to communicate. Our
solver does not use these actions (for the deliberation pro-
cess) like (non-) primitive tasks but to minimally align an
agent’s belief with the ground reality so that the belief di-
vergence does not impact the overall task achievement. At
each stage, if needed, a sequence of communication actions
is computed by a modified Breadth-First Search planning
subroutine and appended to the sender’s plan. We provide
clarification on this when we formalize our contributions.

Relevant Background
Hierarchical Task Networks
Generalized basic terminologies and definitions related to
HTNs are presented, e.g., task network, problem, and solu-
tion definitions (Ghallab, Nau, and Traverso 2004).

A task network is a 2-tuple w = (U,C), where u ∈ U is
a task node, while tu is the task associated to this node. C
is the set of constraints - including orderings between task
nodes, binding constraints, etc. If ∀u ∈ U , tu is a primitive
task, the task network is primitive; otherwise, non-primitive.

Definition 1. (HTN Planning Problem.) The HTN planning
problem is a 3-tuple P = (s0, w0, D) where s0 is the initial
belief state (the ground truth), w0 is the initial task network,

and D is the HTN planning domain which consists of a set
of tasks and methods.

A domain is a 2-tuple D = (O,M) where O is the set of
operators and M is the set of methods. An operator o ∈ O is
a primitive task described as o = (name(o), pre(o), eff(o)),
i.e., its name, precondition, and effect, respectively.

A task consists of a task symbol and a list of parameters.
It is called a primitive task if its task symbol is an opera-
tor name and its parameters match, otherwise, it is a non-
primitive task. A primitive task is assumed to be directly ex-
ecutable, while to execute a non-primitive task, we need to
decompose it into sub-tasks using methods.

A method (m ∈ M ) is a 4-tuple m =
(name(m), task(m), subtasks(m), constr(m)) which
are method name, a non-primitive task, a set of sub-tasks,
and a set of constraints, respectively. m is relevant for a
task t, if for a parameter substitution σ, σ(t) = task(m).
There could be different methods relevant for a single task
t, decomposing it differently, depending on the context.
(subtasks(m), constr(m)) is a task network in m.

Suppose m is an instantiated method, and task(m) =
tu then m decomposes u into subtasks(m′), produc-
ing a new task network, δ(w, u,m) = ((U − {u}) ∪
subtasks(m′), C ′ ∪ constr(m′)). Here, every precedence,
before, after, and between constraints between tasks are
carefully maintained after each decomposition.

Definition 2. (Solution Plan.) A sequence of primitive ac-
tions π = (o1, o2, o3..., ok) is a solution plan for the HTN
planning problem P = (s0, w0, D) iff there exists a primi-
tive decomposition wp (of the initial task network w0), and
π is an instance of it.

The HATP/EHDA Framework
The framework comprises a dual-HTN based joint-task
specification model. For ease of exposition, consider a team
of a single human and a single robot. Two categories: the
robot model, HTNr, represents the task specifications for
the controllable agent, while HTNh, represents the model
for the human, who is an uncontrollable one but the planner
has its model representation and relevant interpretations to
predict and emulate their decisions, actions, and reactions.

We restrict the framework’s description to what is rele-
vant but briefly discuss its ability to capture a broad class of
scenarios. It supports the robot to act in the presence of a hu-
man agent even when they do not share a task to achieve in
the beginning. Or, it can also support the robot planning for
both agents by asking the human to help it occasionally, can
manage the creation of shared tasks, handle human reactions
modeled explicitly via triggers, etc. More details on triggers
in (Ingrand et al. 1996; Alami et al. 1998).

A brief working description of the HATP/EHDA frame-
work is as follows. The structure manipulated by it is
“agent” (Buisan 2021; Buisan et al. 2022). Two such struc-
tures are used, one for the human and one for the robot, each
includes a model of the corresponding agent. Each model
(structure) has its own belief state, action model, task net-
work, plan, and triggers. We are interested in solving the
HATP/EHDA problem, Phr, in which agents start with a



joint task, i.e., a shared initial task network, w0, to decom-
pose. The existing planner uses agents’ action models and
beliefs to decompose the given task network into its legal
primitive components. Decomposition updates the current
network by inserting new (non-) primitive tasks, additional
constraints, etc., such that the single-agent process is gen-
eralized for the two-agent scenario. While doing so, it also
updates the belief state of each agent and models their reac-
tion by executing the triggers.

A simplifying assumption is that agents act alternatively,
while only one is allowed to act at a time. Hence, the frame-
work may face problems dealing with real concurrent ac-
tions (Crosby, Jonsson, and Rovatsos 2014), especially when
they are interacting (Shekhar and Brafman 2020). As a re-
sult, the framework is sound and complete only for the prob-
lem specifications in which action concurrency is handled
carefully. Later, one can find a sound parallelization of the
agent’s plans (by respecting the flexibility proposed for the
human agent) in the post-processing phase, e.g., by manag-
ing the causal links and synchronizing agents’ action order-
ings. Note that it is not trivial to formally handle interacting
actions in the current HATP/EHDA framework, and out of
the scope of this work, and it is a part of our future work.

First, the framework builds the whole search space con-
sidering all possible, feasible decompositions (Buisan et al.
2022). The framework uses specific actions during the
search. IDLE is inserted into the agent’s plan when its task
network is empty or fully decomposed, and WAIT, when
none of its actions is applicable. Then, it can adapt off-
the-shelf graph search algorithms, e.g., the well-known al-
gorithms like A∗ and AO∗, and consider social cost, plan
legibility, acceptability (Alili, Alami, and Montreuil 2009),
etc., to search for a joint solution plan for the agents.

A joint solution plan generated, prior to the preprocessing
stage, is defined as follows (extending Definition 2 for the
HATP/EHDA case).

Definition 3. (Joint Solution Plan.) It is a solution for Phr,
represented as a tree or a graph, i.e., G = (V,E). Each
vertex (v ∈ V ) represents the ground truth starting from the
root node (i.e., sr0). Each edge (e ∈ E) represents a primitive
action performed either by the robot (or) or the human (oh).
G is branched on possible human choices (oh1 , oh2 , ..., ohm).

The requirement from this solution tree is that for each
branch, from the root to a leaf node, the sequence of primi-
tive actions, say, π = (or1, o

h
2 , o

r
3, ..., o

h
k−1, o

r
k) is a solution

plan for Phr. Here, each ohi represents a choice (often out of
several choices) the human could make during execution.

Situation Assessment
In human psychology, especially in human-human interac-
tion, spatial reasoning and perspective-taking are crucial. In
practice, we often build relations between entities in the en-
vironment and estimate the knowledge and capabilities of
agents around us to have a seamless collaboration with them.

This work abstractly employs the main ideas of situation
assessment based on spatial reasoning and observability dur-
ing planning. The goal is to predict the situation assessment
of a collaborative human agent to have a better estimate of

their knowledge and next possible actions, and thus, produce
better plans.

Execution-Time Observability Conventions
We formally model run-time observability conventions, un-
derstood during plan execution, and use them for task plan-
ning in human-robot collaboration.

At a high-level, the formalization below is based on the
standard state-variable representation (we refer the reader
to (Ghallab, Nau, and Traverso 2004)) such that we abuse
the standard notations slightly, sometimes to maintain the
flow of the discussion.

A General Understanding of Common Ground
To describe an environment a set of constant symbols is
used. Constants are often classified as different groups (gr),
e.g., places, pots, agents, etc. Each constant can be repre-
sented as an object symbol, e.g., robot1, human2, pasta-pkt1,
etc. An object variable belonging to a group can be instan-
tiated using any constant symbol of that group.

Suppose S is the complete state-space and s ∈ S repre-
sents a single state (or a belief state in the current context).
Definition 4. (State Variable Function.) It is repre-
sented as: fsvs : (?g1(gr1), ?g2(gr2), ..., ?gk(grk),S) →
?gk+1(grk+1).

Here, svs is state-variable symbol (or the attribute name),
while each term with “?” (a question mark symbol), can
be instantiated with a constant symbol from its respec-
tive group (mentioned inside “()”) appears right besides
the term. For example, to model agents’ location we use
fAgtAt : (?a(Agents),S) →?r(Rooms), representing, for
each given legal state (si ∈ S), the room where each agent
is located. Each such possible instantiation of defined state
variable functions represents si partially, and is also called a
characteristic attribute of si.

If a variable is of the form fsvsi : (?g1(gr1),S) →
?g2(gr2) such that gr1 contains only one element, then,
for a given state s ∈ S, we simplify this expression to,
fs
svsi →?g2(gr2).

Suppose s ∈ S is the real state with the ground truth. As
per our assumptions, the belief state of the robot w.r.t. the
real-world is always the real world state, i.e., Bs

φr
= s, and

the human belief w.r.t. s is Bs
φh

— that is estimated when
the robot takes the human’s perspective. Each state variable
function instantiation w.r.t. a belief state, Bs

φr
(Bs

φh
), repre-

sents the truth value of that state attribute (grounded state-
variable function) with the perspective of φr (φh). While
both these perspectives are managed by the robot.
Definition 5. (Belief Divergence.) Suppose that fsvsi :
(g(1)l, g(2)m, ..., g(k)n, s) → g(k+1)p, for a legal state s and
g(i) is the ith group while g(i)j is its jth element, represents
a possible grounding for a state-variable function. Belief di-
vergence is caused if there exists an instantiation such that
fsvsi : (g(1)l, g(2)m, ..., g(k)n, Bφr ) = g(k+1)p ̸= fsvsi :
(g(1)l, g(2)m, ..., g(k)n, Bφh

).
Uncertainty in agents’ knowledge is not captured explic-

itly, implying that they are convinced about their beliefs.



Place-Based Observability
We now define place-based observability criteria inspired by
some standard execution time observability conventions that
are relevant for the human-robot context.

Definition 6. (Places.) Represented as Places , it captures
a group of constant symbols such that each member indi-
vidually captures a pre-specified area in an environment de-
clared by the domain modeler.

Agents are always situated in a place or moving between
two places. Two agents situated in a same place p ∈ Places ,
at a given time instance, are said to be co-present.

Definition 7. (Place Specific State Attribute Function.) A
grounded attribute of a given state is explicitly associated
with some place or, in a generalized way, it can be expressed
as, floc : (fsvsi(?g1(gr1), ..., ?gk(grk),S))→ Places

Here, loc is a location specific symbol for place specific
attribute, while the function captures the associated place
w.r.t. a state attribute, fsvsi(...).

Defining it this way captures and maintains the explicit
places linked with “only” the state attributes of our interests.
These explicit mappings suggest that an attribute is effec-
tive (or observable) in its dedicate place. Such mappings can
change when an action changes the place of effectiveness of
a state attribute, e.g., holding a cup and moving to an adja-
cent room. Such updates are currently manually handled.

Definition 8. (State Variable Observability Function.)
The state variable observability function maps each
grounded state attribute to either OBS or INF; or a
more general and formal way to express it is, fobs :
(fsvsi(?g1(gr1), ..., ?gk(grk),S))→ {INF,OBS}.

Here, obs represents an observability symbol to capture
state-variable observability such that a state-variable func-
tion, for a legal state s ∈ S, is classified as either observable
(OBS) or inferrable (INF). Here, we further generalize it,
assuming that an attribute is either observable or inferrable,
and hence, relaxing the individual state based restrictions,
that means, the above expression can be further simplified
to, fobs : (fsvsi(?g1(gr1), ..., ?gk(grk)))→ {INF,OBS}.

When a state-variable function (fsvsi(...)) belongs to the
class OBS, it indicates that an agent can assess/observe the
correct knowledge of its exact status in a given state sl,
if the agent fulfills certain requirements w.r.t. the state sl.
But when a state-variable function (fsvsj (...)) belongs to the
class INF, unlike the previous case, it means that an agent
cannot observe it directly. However, under certain scenarios,
the agent can definitely predict or infer its exact status in sl.

To better understand observability classes, consider the
following scenario with a cup of coffee and some sugar on
the table (Figure 1). Initially, the cup is far from the man,
with no sugar. When he is not attentive, the robot adds some
sugar to the cup and pushes it toward him. Once he is at-
tentive again, he would notice that the cup is closer as its
position is observable to him. But, without seeing the robot
adding sugar, he cannot assess if there is sugar in the cup.
Hence, we say the SugarInCup attribute is inferrable, and
the human agent would know if they observed the robot act.

Figure 1: Human is not attentive when Robot adds sugar to
the cup before pushing it forward. Assessing the new situa-
tion after the two actions, Human can only “know” the cup’s
new position (observable), but not SugarInCup (inferrable).

Belief Updating
An agent’s belief can get updated in four ways as follows.

When Acting If the agent executes an action, its belief is
updated based on its effects. The state attributes appearing
in the action’s effect get updated with the new values, while
the remaining attributes keep their same old values.

When Being an Observant (Action Observability.) An
action executed by an agent is observed by another agent co-
present throughout the action execution. Therefore, we state
that if an agent observes an action getting executed, the agent
will infer the inferrable effects of the action. Consequently,
the agent immediately updates its belief state while each in-
ferrable attribute affected by the action receives a new value.

However, when the human executes an action not ob-
served by the robot, we keep it simple and consider that hu-
mans make only deterministic moves. The robot does not
need to be co-present to get the effects of human actions.
And, its belief state is always updated with both their in-
ferrable and observable effects. More complex cases are part
of our future work where the robot’s beliefs can diverge, too.

Via Situation Assessment The agent assesses the situa-
tion from its current location via spatial reasoning and its
reference frame, i.e., the observability model. Consequently,
it updates its existing belief with the relevant ground truth.

(Based on Definition 7) We can always associate spe-
cific state attributes to places. For example, suppose that
being in the state s1, the robot switches on the fur-
nace placed in kitchen, and this generates a new state s2.
Also, assume that fTurnOn is OBS (Definition 8). Then, the
place specific attribute function, floc : (...), w.r.t. the states
s1 and s2 can be expressed as, floc(f

s1
TurnOn) and floc(f

s2
TurnOn),

respectively, and both map to kitchen ∈ Places.
Consider the following scenario: The search progresses

from s2, along s1, s2, ..., such that the next action applica-
ble in it is, the agent (φh) moving to the kitchen. This gen-
erates a new state s3, and hence floc(fAgtAt(φh, s3)) maps to
kitchen, but so does floc(f

s3
TurnOn). In such cases, φh assesses

the status of the furnace, i.e., the exact value of fs3
TurnOn in s3,

which is ON, and hence the human agent updates their belief.
Note that the robot is always aware of the ground real-

ity hence, technically, the idea is effective only for the hu-
man agent. Here, the robot takes the human’s perspective
and performs spatial reasoning as per the human’s frame of
reference or their current location in the environment. The
human’s belief is updated w.r.t. what they can see as ground



truth (mimicked by the robot). This enables φh to learn an
observable attribute’s value achieved earlier by the robot.

The agent updates its belief with relevant ground truth
learned via situation assessment, performed “immediately”
(i.e., takes 0 seconds) at each stage, before the execution of
the next action. Technically, the robot performs situation as-
sessment for the human and itself.

When Being Communicated The agent’s belief is up-
dated by learning the ground truth when another agent com-
municates an attribute-value pair. Communication occurs
via a distinct set of actions, modeled as a predefined com-
munication protocol for a pair of sender-receiver agents.

Planning With Communication Actions
For an agent to decide if, when, and what to communicate
to another agent, it first needs to establish a common pro-
tocol with that agent even before planning. In this work,
we establish such communication protocols between each
sender-receiver agents pair, where we use speech modal-
ity, and model explicit communication actions between two
agents. However, we note that these actions are different
from agents’ (non-) primitive actions, and they are used only
in special circumstances during planning and execution.

Modeling Communication Actions
Next, we propose a generic communication action schema
(ca) in this context. Suppose there exists a state-variable
function, fsvs : (?g1(gr1), ?g2(gr2), ..., ?gk(grk),S) →
?gk+1(grk+1), such that for the current world state s ∈ S,
fsvs(g(1)l, g(2)m, ..., g(k)n, s) maps to q.

The agent φi can communicate this attribute-value pair
to φj (via the action caφi,φj

(fsvs(...), q)), if the follow-
ing conditions (i.e., its preconditions) meet: (1) For φi,
fsvs(g(1)l, g(2)m, ..., g(k)n, B

s
φi
) = q, and (2) for φj ,

fsvs(g(1)l, g(2)m, ..., g(k)n, B
s
φj
) = r s.t. r ̸= q. Later, φj’s

belief is updated, i.e., fsvs(g(1)l, g(2)m, ..., g(k)n, B
s
φj
)← q.

Planning with Reasoning on Human Mental State
Now that we have defined and described all essential tools,
we describe the new approach and explain how these tools
are utilized by it. First, we note that we put an effort to make
our main contributions to have a “generic” state-variable
representation. Hence, we believe that they are not limited to
only our intended architecture (HATP/EHDA) in this paper.
We plan to substantiate this claim experimentally in future.

We only describe the main changes made to enhance the
underlying solver. Suppose an agent applies an action: First,
the belief states of all agents co-present with this agent get
updated with the action’s inferrable effect. Later, the situa-
tion assessment process is used for every other agent to as-
sess the changes (captured via observable state attributes).
As a result, their beliefs are updated by the observable ef-
fects if the required conditions are satisfied. We discussed
these subroutines in detail in earlier sections.

Communication in Planning The following essential
changes in the existing algorithm support efficient plan-
ning with communication. (Recall the sender-receiver pair

discussed earlier.) The approach identifies whether the re-
ceiver’s belief divergence is relevant, and thus if the re-
ceiver’s belief needs to be corrected. If so, all state attributes
where the receiver agent’s belief differs w.r.t. the ground
truth are identified. Then, we decide which of these state
attributes and their exact values must be transmitted by the
sender (i.e., the robot), supporting the idea of communicat-
ing minimally and avoiding verbosity. Once we determine
that, the receiver’s (i.e., human’s) belief gets updated accord-
ingly, ensuring that the remaining false knowledge of the re-
ceiver’s updated belief is not effective, which also means that
the belief divergence is not relevant anymore.

• Relevant Belief Divergence. At a given stage, if the hu-
man agent, based on their own belief, can perform a set of
actions that differs from the one the human could perform
w.r.t. to the robot’s belief (or the ground reality), then we
say that such divergence in their belief is relevant. A di-
vergence is also declared as relevant if an action has dif-
ferent effects w.r.t the other agent’s belief. However, cur-
rently, our reasoning system is myopic: We do not evalu-
ate in a principled way the impact of different actions that
humans could execute (based on their wrong belief), or
of different effects, with their overall positive and detri-
mental effects on achieving the joint task. At this stage, it
simply “decides” to align the agent’s beliefs using com-
munication actions whenever the belief divergence is rel-
evant. However, a smarter approach would probably be
to analyze the history of plan trace(s) or agents’ future
actions to decide whether their beliefs should get aligned
or not, or for that matter, how much to communicate, but
it is currently out of the scope of this work.

• Communicate Only The Required Facts. It “decides”
the key changes in the human’s belief to be made such
that the relevance of their updated belief (might still be
diverging) is non-effective. The subroutine that decides
needed communication to be made appears in the robot’s
executable policy; is described in the following steps:
1. Store each attribute and its value if the attribute’s value

differs in the human’s belief from the robot’s belief.
2. For each stored attribute-value pair, build a commu-

nication action caφr,φh
(...) based on the schema de-

scribed earlier. They are considered equally costly.
3. At a given planning stage, e.g., the ground truth si,

follow the Breadth-First Search ordering. The source
is Bsi

φh
, and each caφr,φh

(...) changes and aligns ex-
actly one attribute while its updated value satisfies
the ground truth. Applying caφr,φh

(...) generates a
new belief state following state transition rules, i.e.,
Bsi,1

φh
= γ(Bsi

φh
, caφr,φh

(...)). It continues until the
first (updated) belief is selected to expand s.t. its re-
maining divergence is ineffective. The actions used
from the root until the current belief state are retrieved.

Once the above subroutine finishes, the retrieved action
set CA = {caiφr,φh

(...)} is utilized for belief alignment.

Agents may begin with different beliefs. Situation assess-
ment (SA) can update human belief state, but humans cannot
know inferable facts. So, we redefine Definition 3 to make



Figure 2: Shows the plans obtained in three scenarios: Each scenario presents two plans — on the left, obtained by the old solver,
and on the right, obtained via the proposed solver. The latter depicts more realistic and appropriate belief updates focusing on
two attributes. Case (A): the plans are the same, but the updates in the human belief are more realistic with our approach.
Case (B): the human has no certainty on SaltInPot, while ours decides to communicate to remove the ambiguity. And, Case (C):
the initial belief divergence induces an “invalid” plan, but our approach predicts that the human agent will assess the situation
and update their belief with all the facts without being communicated. (Other minor details are outlined in the figure.)

it sound w.r.t. our new planning approach. Assume at each
step (t = 0, 1, 2, ...), humans perform SA, while the robot
executes each communication action ca ∈ CA, such that the
human’s belief state updates immediately (takes 0 seconds).
Later, following the updated beliefs, the human’s or robot’s
regular primitive action is executed, and the effects only ap-
pear in the next step. Hence, the other two types of belief
updates happen post the action execution. And, continues.

Empirical Evaluation
Before we describe the two domains used for the exper-
iments and the results to compare the old and new ap-
proaches, we first make a high-level distinction between
the existing and new approaches. In principle, the existing
solver can handle agents’ individual belief divergences, but
“not during planning” unlike our approach. To achieve that,
the existing solver can use a cumbersome technique that in-
tervenes by updating the (collaborative) task networks of the
joint task model/specifications while using triggers.

Cooking Pasta Domain Suppose a stove and salt are
available in Kitchen (Places), and the pasta is either in
Kitchen or Room – they are adjacent. The agents have dif-
ferent roles and can only operate in the two places. Robot
adds salt to the pot and turns-on the stove. Human grabs the

pasta and pours it into the pot. The human can add pasta, but
only after salt gets added to the pot and the stove is ON.

Focus on the following two attributes: For a given state,
si ∈ S, fsi

SaltInPot ∈ {true, false} and fsi
stove ∈ {on, off} such

that only fsi
SaltInPot is inferrable, all others belong to OBS.

Preparing Box Domain A box filled with a fixed number
of balls and with a sticker pasted on is considered prepared
and needs to be sent. Both the agents can fill the box with
balls from a bucket, while only the robot can paste a sticker,
and only the human can send the box. The bucket can run
out of balls, so when there is only one ball left, the human
moves to another room to grab more balls and refill it. A
sticker pasted on the box is observable, while the number of
balls in the box is inferrable. Other attributes belong to OBS.

Experiments
Qualitative analysis in the first domain mentions subtleties
the old solver overlooks and how ours is aware of them,
updates belief, and effectively manages divergences. Then,
quantitative studies compare the solvers in both domains.

Qualitative Analysis Consider the first domain. We dis-
cuss the plans obtained in three different scenarios as shown
in Figure 2. Assume that both the agents are in Kitchen and
the pasta is in Room. Scenario (A) captures the agents’ plans



Domain Old Solver Our Solver
S NA IDL S Com

Cooking 18.6% 77.0% 23.0% 100% 54.9%
Box 25.0% 83.3% 16.7% 100% 68.8%

Average 21.8% 80.2% 19.9% 100% 61.9%

Table 1: In each domain: for the old solver, the success rate
(S), the ratio of failed plans due to a non-applicable action
(NA), and the ratio of failed plans due to an inactivity dead-
lock case (IDL), while for our solver, the success rate (S) and
the ratio of plans including a communication action (Com).

when the robot starts while Scenario (B) shows when the
human starts. Let us change the scenario: Suppose, in hind-
sight, the pasta is moved to kitchen such that the robot knows
it, while the human still has the old belief. For this, Sce-
nario (C) captures the plans obtained when the human starts.

• Scenario (A): Although the solvers generate similar
plans, they update the human’s belief differently if and
when the human and robot are co-present. E.g., turn-
ing on the stove ideally (realistically) does not affect
the human’s mental state, which is not the case for the
old solver. It considers agents omniscient, so the human
knows everything immediately once achieved. Our solver
predicts it when the human returns to the kitchen and as-
sesses that the stove is ON, and their belief gets updated.

• Scenario (B): Human leaves the kitchen. Practically,
they are unaware of the changes achieved in the environ-
ment by the robot’s actions: turn-on & add-salt. The old
solver generated a similar plan as in Sce. (A) where the
human already knew that the stove was ON, and salt was
added. However, an appropriate situation assessment and
inference based on action observability together guaran-
tee that, when returning to the kitchen, the human as-
sesses that the stove is ON. Moreover, the robot predicts
that the human cannot know the SaltInPot fact and that
it is a relevant divergence that needs to be handled via
communication.

• Scenario (C): With the old solver, the human moves to
Room to grab the pasta, but in reality, being an illegal
action w.r.t. the robot’s belief or the ground truth, it fails.
In our case, the human agent assesses the environment
to update their belief state, knowing the pasta is in the
kitchen. Hence, no communication is required.

Quantitative Studies The HATP/EHDA framework’s cur-
rent solver and ours are tested and compared on two domains
in Table 1. We consider (in box domain) three boxes to be
prepared and sent. While in both, we generated 512 differ-
ent initial states, including 448 (87.5%) with divergent ini-
tial agents’ beliefs and 64 states where both agent beliefs are
fully aligned initially. Overall, 2048 plans were generated.

With the old approach, a planning failure occurs due to:
(a) an action of a plan not applicable in another agent’s belief
state, including the ground truth; (b) if an inactivity deadlock
occurs, which is assumed to be the case after a succession of
at least four WAIT and (or) IDLE actions. A deadlock oc-
curs when the human has a belief divergence and waits for

a never-happening robot’s action, e.g., waiting for add salt,
but SaltInPot is already achieved. For the old solver, the suc-
cess rate (S), the ratios of the number of failed plans due to
a inapplicable action (NA) and an inactivity deadlock (IDL)
appear in the table. For ours, the success rate (S) is shown
and the ratio of successful plans including a communication
action is presented under Com.

As the existing solver does not handle belief divergence
in planning, the applicability of actions was never an issue
w.r.t. another agent’s belief. Therefore, if the IDL case oc-
curs, it is understood that the task specification is erroneous
w.r.t. the old problem specification.

Our solver always finds legal plans, and on average, ap-
prox. 62% of them use communication. Thus, the robot
doesn’t need to communicate systematically as assessing sit-
uations handles a major part of the divergences (87.5% of the
scenarios have divergent beliefs initially). For the old solver,
if no initial belief divergence exists, it always finds a le-
gal plan, considering the agents omniscient. E.g., Fig. 2(A).
However, sometimes, this causes problems in practice. Sce-
narios beginning with distinct beliefs induce actions often
not applicable in another agent’s belief state (or the ground
truth), evident by the (average) 21.8% success rate.

Discussion
Formalizing run-time observability conventions is crucial
for planning as ignoring them may lead to problems in prac-
tice. E.g., Fig. 2(B) showing human knowing SaltInPot, is
ambiguous in reality. We describe a far more realistic way to
estimate the evolution of human belief during planning, us-
ing the situation assessment discussed in Qualitative Analy-
sis. Explicit reasoning on the human mental state detects and
prevents ambiguous situations with communication while
also prohibiting the robot from being too verbose, as shown
in Quantitative Studies. Compared to the old process, this
produces consistent and more robust plans overall.

However, our approach does not refute something be-
lieved by an agent through situation assessment without as-
sessing its exact true value. E.g., for some si ∈ S , if the
human wrongly believes that the pasta is in Kitchen. The
situation assessment does not help refute this, while the hu-
man is in Kitchen. The reason is that fsi

PastaNotInKitchen(...) is
not modeled explicitly as an attribute. Such issues do not
affect the solver’s completeness as far as the situation as-
sessment is concerned. Moreover, our solver handles them
as a relevant divergence to be aligned. Thus, the human is
just communicated with correct updates.

Summary
Building on earlier work, we presented a new method to
model execution-time observability conventions appropriate
for HRI and to use them to estimate the evolution of the hu-
man mental state. It is based abstractly on situation assess-
ment and action observability criteria. A new planning ap-
proach is described, utilizing this better estimation of human
mental state to plan for more robust and consistent human-
robot joint activities such that a relevant belief divergence is
tackled by explicitly modeled communication actions.
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