
HAL Id: hal-03916388
https://laas.hal.science/hal-03916388

Preprint submitted on 30 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic programming for the single unit hydro unit
commitment problem

Alexandre Heintzmann, Christian Artigues, Pascale Bendotti, Sandra Ulrich
Ngueveu, Cécile Rottner

To cite this version:
Alexandre Heintzmann, Christian Artigues, Pascale Bendotti, Sandra Ulrich Ngueveu, Cécile Rottner.
Dynamic programming for the single unit hydro unit commitment problem. 2022. �hal-03916388�

https://laas.hal.science/hal-03916388
https://hal.archives-ouvertes.fr

Dynamic programming for the single unit hydro unit

commitment problem

Alexandre Heintzmann1,2 Christian Artigues2 Pascale Bendotti1

Sandra Ulrich Ngueveu2 Cécile Rottner1

1EDF Lab Paris-Saclay, 7 Bd. Gaspard Monge, 91120 Palaiseau, France

{alexandre.heintzmann,pascale.bendotti,cecile.rottner@edf.fr}
2LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France

{alexandre.heintzmann,christian.artigues,sandra.ulrich.ngueveu@laas.fr}

Abstract

The Hydro Unit Commitment problem (HUC) specific to hydroelectric units is part of the

electricity production planning problem, called Unit Commitment Problem (UCP). More specifi-

cally, the case studied is that of the HUC with a single unit, denoted 1-HUC. The unit is located

between two reservoirs. The time is discretized in time periods. The unit operates at a finite

number of points defined as pairs of the generated power and the corresponding water flow. Sev-

eral constraints are considered. Each reservoir has an initial volume, as well as a maximum and

minimum volume per time period. The unit has both ramping and min-up/min-down constraints

limiting the flow rate variation between two consecutive time periods. At each time period, there

is an additional positive, negative or zero intake of water in the reservoirs. The case of a price-

taker revenue maximization problem is considered. An efficient A* algorithm is first proposed to

solve a simplified variant of the 1-HUC without ramping nor min-up/min-down constraints. The

algorithm is very efficient to solve difficult instances and is shown to have a more stable behavior

than CPLEX on realistic EDF instances. For the complete variant of the 1-HUC including both

the ramping and min-up/min-down constraints the A* algorithm, as well as standard resource-

constrained shortest path approaches are shown to be ineffective. The latter change is due to the

weakening of the dominance rules. To overcome this difficulty, we propose a two-phase algorithm

inspired by algorithms used in bi-criteria optimization. The first phase solves extremely fast sim-

ple shortest path problems while the second phase is based on a K-best solutions algorithm to

enumerate feasible solutions in a restricted search space. We compare the dedicated two-phase

algorithm with a mixed-integer linear program solved by CPLEX and show that the proposed al-

gorithm outperforms CPLEX on instances with 48 time periods, 20 operating points and a small

price variability.

1 Introduction

The single unit Hydro Unit Commitment (1-HUC) is defined as follows. Let a valley consist of a unit

and two reservoirs, the unit being located between the two reservoirs. The principle of hydroelectric

1

production is as follows: the water from the upstream reservoir flows into the downstream reservoir

through the unit, thus driving the turbines of the unit which in turn powers the generator to produce

electricity. The unit operates at a finite number of points in I = {1, . . . ,M}. Each operating point

i ∈ I is defined as a pair formed by a water flow Di and a generated power Pi. The operating points

are defined in a cumulative fashion, i.e., if a unit is at operating point i, then order constraints apply

involving all points j < i to also be operated. The time horizon is discretized into T time periods. At

each time period t, the unit turbines a water flow and produces an amount of energy that is considered

to be constant for the duration of the time period. Each reservoir n has a maximum capacity V
n

t and

a minimum capacity V n
t that are time-dependent. Water management policies require that reservoirs

should meet target volumes at some specified time periods. The latter requirement is captured in

the time-dependent minimum/maximum capacity. At each time period, the reservoir n receives an

additional intake of water An
t , being positive, negative or null.

The revenues take into account the unit value Φn of the water in each reservoir n at the end of the

time horizon, and the resale of the energy produced at a unit value Λt variable over time. The problem

consists in maximizing the total revenue, by turbining while satisfying the reservoir capacities at each

time period.

With xt,i the binary variable indicating whether the unit is at least at operating point i at time

period t, we obtain the following formulation:

max

T∑
t=1

M∑
i=1

ΛtPixt,i +Φ1
(T∑

t=1

(A1
t −

M∑
i=1

Dixt,i)
)
+Φ2

(T∑
t=1

(A2
t +

M∑
i=1

Dixt,i)
)

s.c. V 1
0 +

k∑
t=1

(A1
k −

M∑
i=1

Dixt,i) ≤ V
1

k, ∀k ≤ T (a1)

V 1
0 +

k∑
t=1

(A1
k −

M∑
i=1

Dixt,i) ≥ V 1
k, ∀k ≤ T (b1)

V 2
0 +

k∑
t=1

(A2
k +

M∑
i=1

Dixt,i) ≤ V
2

k, ∀k ≤ T (a2)

V 2
0 +

k∑
t=1

(A2
k +

M∑
i=1

Dixt,i) ≥ V 2
k, ∀k ≤ T (b2)

xt,i ≥ xt,i+1, ∀t ≤ T, ∀i ≤ M − 1 (c)

xt,i ∈ {0, 1}, ∀t ≤ T, ∀i ≤ M (d)

1.1 Rewriting the inequalities

In order to better handle the inequalities, we will rewrite the inequalities (a1), (a2), (b1) and (b2) as

follows:

2

k∑
t=1

M∑
i=1

Dixt,i ≥ V 1
0 +

k∑
t=1

A1
t − V

1

k, ∀k ≤ T (a1)

k∑
t=1

M∑
i=1

Dixt,i ≤ V 1
0 +

k∑
t=1

A1
t − V 1

k, ∀k ≤ T (b1)

k∑
t=1

M∑
i=1

Dixt,i ≤ V
2

k − V 2
0 −

k∑
t=1

A2
t , ∀k ≤ T (a2)

k∑
t=1

M∑
i=1

Dixt,i ≥ V 2
k − V 2

0 −
k∑

t=1

A2
t , ∀k ≤ T (b2)

There are redundancies between inequalities (a1) and (b2), and between inequalities (a2) and (b1).

Let us introduce βk and αk in the following way:

βk = max(V 1
0 +

k∑
t=1

A1
t − V

1

k , V 2
k − V 2

0 −
k∑

t=1

A2
t) ∀k ≤ T

αk = min(V 1
0 +

k∑
t=1

A1
t − V 1

k , V
2

k − V 2
0 −

k∑
t=1

A2
t) ∀k ≤ T

We can replace the inequalities (a1), (a2), (b1) and (b2) with the following inequalities:

k∑
t=1

M∑
i=1

Dixt,i ≥ βk ∀k ≤ T (a)

k∑
t=1

M∑
i=1

Dixt,i ≤ αk ∀k ≤ T (b)

Inequalities (a) are nested knapsack constraints, and we define (b) as a nested inverted knapsack

constraints.

1.2 Rewriting the objective function

Noting that the constraints of our problem are knapsack constraints with order constraints, we rewrite

the objective function to look like an objective function of a knapsack problem.

T∑
t=1

M∑
i=1

ΛtPixt,i +Φ1
(T∑

t=1

(A1
t −

M∑
i=1

Dixt,i)
)
+Φ2

(T∑
t=1

(A2
t +

M∑
i=1

Dixt,i)
)

=

T∑
t=1

M∑
i=1

ΛtPixt,i +Φ1
T∑

t=1

A1
t −

T∑
t=1

M∑
i=1

Φ1Dixt,i +Φ2
T∑

t=1

A2
t +

T∑
t=1

M∑
i=1

Φ2Dixt,i

=

T∑
t=1

M∑
i=1

(ΛtPi − Φ1Di +Φ2Di)xt,i +Φ1
T∑

t=1

A1
t +Φ2

T∑
t=1

A2
t

The objective function is therefore to maximize the value of each active operating point, plus a

constant.

3

Using (a), (b) and the rewritten objective function, we obtain a compact formulation:

max

T∑
t=1

M∑
i=1

(ΛtPi − Φ1Di +Φ2Di)xt,i +Φ1
T∑

t=1

A1
t +Φ2

T∑
t=1

A2
t

s.c.

k∑
t=1

M∑
i=1

Dixt,i ≥ βk ∀k ≤ T (a)

k∑
t=1

M∑
i=1

Dixt,i ≤ αk ∀k ≤ T (b)

xt,i ≥ xt,i+1 ∀t ≤ T, ∀i ≤ M − 1 (c)

xt,i ∈ {0, 1} ∀t ≤ T, ∀i ≤ M (d)

The 1-HUC can be represented graphically in two ways. Figure 1(a) illustrates the case where each

node represents, for a partial solution, the amount of volume debited up to a given time period. Figure

1(b) illustrates the case where each node represents, for a partial solution, the highest operating point

used at a given time period. In both cases the shaded node is the source node. The first case is similar

to the representation of a knapsack problem, while the second case looks like the representation of a

shortest (or longest) path problem. In both cases, the underlying algorithm for solving the problem via

dynamic programming is the shortest path algorithm. For the second representation, it is necessary

to keep the volume in memory so as not to generate invalid solutions.

V

T

(a) Graph with a node per volume and per time period

M

T

(b) Graph with a node per operation point and per

time period

Figure 1: Graphical representations of the 1-HUC

4

1.3 Additional constraints

In practice, the 1-HUC has additional constraints, among which the ramping and min-up/down con-

straints.

The min-up/min-down constraints are defined as follows [12]. Each unit stepping up (down, resp.)

point i must operate at point j ≥ i (j < i, resp.) for at least Li (li, resp.) time periods after stepping

up (down resp.). The associated constraints are as follows.

xt,i − xt−1,i ≤ xt′,i ∀t′ ∈ [t+ 1,min(t+ Li, T)],∀i,∀t ∈ [2, T] (e)

xt−1,i − xt,i ≤ 1− xt′,i ∀t′ ∈ [t+ 1,min(t+ li, T)],∀i,∀t ∈ [2, T] (f)

The ramping constraints indicate that the upward flow variation is at most RU per time period,

and symmetrically the downward flow variation is at most RD per time period. If a volume of water

v is discharged at a time period t, the volume of water discharged at time period t+1 must lie in the

interval [v −RD; v +RU]. These constraints can be expressed by the following inequalities.

M∑
i=1

Dixt,i −
M∑
i=1

Dixt−1,i ≤ RU ∀t ∈ [2;T] (g)

M∑
i=1

Dixt−1,i −
M∑
i=1

Dixt,i ≤ RD ∀t ∈ [2;T] (h)

In this paper, we consider the 1-HUC defined by the constraints (a) to (h).

2 Literature review

2.1 Dynamic programming for the Hydro Unit Commitment

In this first part, we focus on dynamic programming algorithms for the HUC, which are partly cited

in the survey of Raouia Taktak and Claudia D’Ambrosio [16].

In [2] a formulation to solve the HUC on instances of the Itaipù unit (Brazil, Paraguay) with

dynamic programming is described. This formulation minimizes a cost function that takes into account

the cost of starting and stopping the turbines, as well as the cost of the energy losses of the turbines.

The only constraint is to satisfy the minimum and maximum number of turbines running at each

time period. This formulation differs from ours because there is no volume considered, therefore no

target volume, and there are limits on the number of turbines running at each time period, which is

a constraint we do not consider. Also, it is specified that the 18 turbines of Itaipù unit are identical,

while the operating points that we use are not necessarily identical. The dynamic programming

algorithm is not described and no heuristics are described.

In [10] a method for solving a nonlinear 1-HUC is described. The first non-linearity considered is

the effect of head on the efficiency of the unit, and on the maximum and minimum flow rate. The

second non-linearity considered is the power as a function of head and flow rate. For this 1-HUC, there

is a target volume to achieve. To solve this problem with dynamic programming, a state diagram

is constructed as follows. The volume is discretized into equidistant reachable volumes. The target

volume is relaxed to be reachable with the volume discretization. The state diagram is constructed by

5

generating the possibilities to reach the target volume from the initial volume, respecting the upper

and lower bounds on the volume at each time period. Starting from the state at the end of the time

horizon, the dynamic programming algorithm maximizes the value of the generated power. Unlike the

1-HUC we consider, the 1-HUC tackled in [10] does not contain operating points, but a discretization

of the volume. The number of volume possibilities is proportional to this discretization, while it

becomes exponential when using operating points. It is possible to have a much finer discretization

than the number of operating points, and one could consider that the two 1-HUC are equivalent if

the discretization is fine enough with respect to the flow rates of the operating points. However, in

the given results, it is specified that the discretization is 0.3% to 0.5% of the difference between the

minimum and maximum volume of the reservoir. That is, between 200 to 300 possibilities per time

step, whereas for the 1-HUC with operating points, only 5 operating points can lead to many more

possibilities if the reservoirs are large. Another difference is that the target volume can be relaxed,

which is not the case in our study. More precisely, it is assumed that 1-HUC instances are feasible.

If it were not the case due to conflicting constraints between target volume and operating on discrete

points, then target volume could be adjusted [15]. The last difference is that instances of our 1-HUC

do not necessarily have a target volume, so there may be a large number of possible volumes in the

time horizon. This would be the case if no water management requirements apply within the time

horizon. An algorithm starting from the last time period would not be applicable to our case, unless

it is used for any reachable volume, which is hardly possible. This dynamic programming algorithm

is used in [11] to find a scatter plot which is then used in a piecewise linear formulation.

In [1] a decomposition method for solving the HUC with shortest paths is described. The HUC

considered is a valley where each unit has a finite number of operating points. The topology of the

valley is not restricted to a chain, as each unit (resp. reservoir) can have a set of upstream and

downstream reservoirs (resp. units). For this HUC, the units can also involve pumps. To represent

pumping, the operating points can have negative flow and power. The operating points are considered

in a disjunctive fashion, namely the constraints indicate that a unit can only be at one operating point

per time period. Using negative values for operating points also ensures that a unit cannot pump and

turbine simultaneously. The constraints of this HUC take into account additional ramping constraints:

the flow variation is limited from one time period to another. This HUC also takes into account a target

volume for each reservoir, at the last time period. Note that the latter target volume is a minimal

bound, meaning there is no equality constraint. The criterion to be maximized is the valley efficiency,

taking into account: the price of the generated and purchased power (for pumping) at each time period

and the startup price of the turbines. The solution approach decomposes this HUC into multiple 1-

HUC. Each 1-HUC is solved either by a shortest path algorithm, or by a label algorithm adapted

from the one used to solve the Resource-Constrained Shortest Path Problem (RCSPP). Therefore,

a shortest path graph representation is used (see Figure 1(b)). The difference between the RCSPP

and the 1-HUC lies in the resource constraints : there are both an upper and a lower bound on the

amount of volume in the reservoir in the 1-HUC, whereas only an upper bound in the RCSPP. A first

difficulty is that the volume can increase and decrease over time, especially if the instance considered

is a pumped storage power station that can transfer energy by pumping water from the downstream

reservoir to the upstream reservoir. A fictitious volume is defined, by increasing the flow rate of the

operating points by the maximum flow rate that can be pumped in a single time period. A similar

6

shift is done for the operating points, which now have non-negative water flows. In order to keep the

problem the same, the bounds on the volume have also to be increased. Note that this modification

is not necessary in the case of a unit that can only involve turbines. The evolution of the fictitious

volume is then monotonous and increasing with time. The dominance rule is the following: label l1

dominates label l2 if l1 has a lower cost and a lower fictitious volume than l2. A second difficulty is

that this dominance rule can only be applied in the case where l1 and l2 have already turbined enough

water to meet the minimum volume on future time periods. Indeed, in the case where the minimum

volume is not reached, then a partial solution corresponding to less resource and better value at a

time period t may be required to turbine on very uneconomic time periods between t and T to satisfy

the lower bound. The algorithm defined allows to obtain the Pareto-optimal paths, considering the

volume and the cost as the two criteria to be minimized. The authors stated that the number of

partial solutions can be very large as long as the target volume is not reached.

There are also other HUC related problems solved by dynamic programming. In [4] the Hydro Unit

Load Dispatch problem (HULD) is presented, where given a quantity of water, the goal is to optimize

the distribution of this water through the different turbines. A dynamic programming algorithm and

population-based optimization tools are presented. However this problem does not have any of the

additional constraints of ramping and of min-up/down.

2.2 Shortest path with resource constraint

As the HUC can be seen as a shortest path problem with a resource bounded both from below and

above, we are interested in the solution methods for the RCSPP (Resource Constraint Shortest Path

Problem).

There are works on the RCSPP to solve the thermal problem on EDF instances [8]. In that paper

it is indicated that the resource has an upper bound but no lower bound. However, as specified in [1],

the difficulty of HUC comes from the lower bound on the volume, which prevents the use of dominance

rules.

In the survey [17] a state of the art for different shortest path variants is described. More specif-

ically, it is indicated that there is little work on the RCSPP with equality constraints, or window

constraints (as is the case with the HUC). Three papers are cited, namely [14] with a heuristic, [3]

with an integer formulation and [21] with a dynamic programming algorithm. As we look for an exact

algorithm, we will focus on the three-phase algorithm described in [21]. This algorithm considers a

given acyclic graph, where for each node there is an upper and a lower bound on the resource. The first

step is to improve these bounds, so as to keep only intervals that can lead to a feasible solution. The

second and third steps are the two steps of the algorithm described for the RCSPP in a subsequent

paper from the same authors [20]. The second step lies in extending the graph, so that if there are

two different paths to a node, then two nodes will exist in the new graph, one for each possible path.

The extended graph becomes substantially similar to the graph of Figure 1(a). The problem is then

solved by dynamic programming, in pseudo-polynomial time. This method seems to be efficient in

particular as for the described instances, the resource is an integer which seems to be relatively small

from the size of the extended graphs.

7

capacity C 0 1 2 3 4 5 6 7 8 9 10

n wn vn

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 4 0 0 4 4 4 4 4 4 4 4 4

2 4 6 0 0 4 4 6 6 10 10 10 10 10

3 3 5 0 0 4 5 6 9 10 11 11 15 15

4 5 6 0 0 4 5 6 9 10 11 11 15 15

5 6 10 0 0 4 5 6 9 10 11 14 15 16

Table 1: Example of the knaspack dynamic programming algorithm

2.3 Unit Commitment dynamic programming

A dynamic programming algorithm for a single Unit Commitment (1-UC) with ramp and min up/down

constraints is presented in [7]. The difference between the 1-UC and the 1-HUC is that there is no

resource in the former. The dynamic programming algorithm presented is based on a graph with a

source vertex and several groups of T vertices. For each odd group, node t indicates that the unit is

turned on at time period t. For each even group, node t indicates that the unit is turned off at time

period t. The arcs connect the vertices of a group to the next groups, from a time period t to a time

period t′ > t. Finding a path in this graph allows one to find an on-off schedule for the unit.

3 Dynamic programming for the simplified 1-HUC

The simplified 1-HUC is the core structure of the 1-HUC, i.e., without the ramp constraints and the

min-up/down constraints. The constraints taken into account are (a) to (d).

3.1 Basic dynamic programming for the knapsack problem

There exists a classical dynamic programming algorithm for the binary knapsack problem, of pseudo-

polynomial complexity O(nC), with n the number of variables and C the capacity of the knapsack.

Let KP (n,C) denote the knapsack problem with n variables and capacity C. The idea of this

algorithm is to find the optimum of KP (n,C) from either KP (n − 1, C) without selecting item n

or KP (n − 1, C − wn) by selecting the item n. We can then make a two-dimensional table of size

(n+1)× (C+1), where cell (n”, C ′) contains the value of the optimal solution of KP (n”− 1, C ′− 1).

We fill the first row with zeros, because the considered knapsacks do not contain any item. Once the

table is filled using the dynamic programming algorithm, we can start from cell (n,C), and backtrack

up to the first row of the table as illustrated in the following example.

Example : Let KP (5, 10), the weights w = [2, 4, 3, 5, 6] and the values v = [4, 6, 5, 6, 10]. Table 1 is obtained

with the dynamic programming algorithm. Starting from the cell n′ = 5, C′ = 10, the dotted arrows

represent the computed cells. The bold arrows represent the path to obtain the optimal solution.

To adapt this algorithm to the case of the 1-HUC, we need to take into account the order con-

straints, the knapsack constraints, the inverted knapsack constraints and items with negative value.

8

3.2 Incorporating order constraints

Let us denote PKP (n,C) the knapsack problem with order constraints, with n items distributed in

groups and a capacity C. Order constraints are such that each item has at most one successor and

at most one predecessor, as for the 1-HUC. Let H(i) be the chain up to the item i. An idea to

adapt the propagation rules is the following: The optimum of PKP (n,C) is either the optimum of

PKP (n−1, C), without selecting the item n or the optimum of PKP (n−|H(n)|, C−
∑

n′∈H(n) wn′),

by selecting the item n. Thus, selecting item n implies selecting all the items in its chain, so we cannot

have an invalid solution. We notice that for a chain H(i), there are exactly |H(i)|+ 1 possibilities to

select j items, with j ∈ [0; i]. Now, there is only one possibility to select j items, and that is to select

the first j items of the chain. We could then reduce the number of lines to one line for each chain.

There would be now |H|+ 1 arcs corresponding to choose j ∈ [0, |H|] items of the chain, rather than

2 arcs per line. In the case of the 1-HUC, a chain corresponds to a time period.

Example : Let us take the case of a knapsack with order constraints as in the 1-HUC. Consider an instance

with 2 groups of 3 items, ignoring weights and values for simplicity purpose. Table 2b (Table 2a, resp.)

displays the arcs of the second group, (without, resp.) taking into account the order constraints There

are four paths in Table 2a, whereas there are three in Table 2b, thus highlighting that there is one

infeasible path with respect to the order constraints in Table 2a. Note that the number of feasible paths

corresponds to the number of items in the second group, and that the paths never cross. We can then

aggregate the lines of the same group to obtain Table 2c.

3.3 Incorporating nested (inverted) knapsack constraints

The bounds αt and βt from inequalities (a) and (b) can directly be taken into account by pruning

infeasible nodes in the dynamic programming scheme. However, tightening these bounds may lead to

more efficient schemes. First note that αt and βt are not bounds on the flow beginning at time period

t, they are bounds on the sum of the flows from time period 1 to t inclusive. If the gap between βt and

αt is large, then the dynamic programming will develop a large number of arcs, sometimes leading

to infeasible solutions. For example, in the case of the HUC, it is very frequent to have αt bounds

very large compared to the flows, and negative βt bounds. However, as the flow rates (weights for a

knapsack) are positive, we know that a lower bound of 0 and an upper bound equal to the maximum

flow rate will never be violated by a feasible solution. We can therefore introduce the bounds α′
t and

β′
t in the following way:

α′
t = min(αt, t

M∑
i=1

Di)

β′
t = max(βt, 0)

By using bounds α′
t and β′

t, we can drastically reduce the possibilities, but there are still cases

where dynamic programming can build arcs leading to infeasible solutions. Suppose that at time

period t close to zero we have a target volume Ct. Suppose that α′
t+1 < Ct. Then if the dynamic

programming starts from time period T , there could be an arc to a solution with less than Ct amount

of water flowed at time period t + 1. Such a solution would be infeasible. Indeed since flows are

positive, it is impossible to flow Ct at time period t, and less than Ct at time period t+ 1.

9

C 0 1 2 3 4 5 6 7 8 9 10

t n

0 0

1

1 2

3

4

2 5

6

(a) Dynamic programming without order

C 0 1 2 3 4 5 6 7 8 9 10

t n

0 0

1

1 2

3

4

2 5

6

(b) Dynamic programming with order

C 0 1 2 3 4 5 6 7 8 9 10

t

0

1

2

(c) Dynamic programming with one line per group

Table 2: Dynamic programming example with and without order constraints

10

Following this logic, we can compute the bounds of a time period from the bounds of the other

time periods, following the rules below.

• if t > t′ then the maximal total flow until time period t is at most α′
t′ + (t− t′)

∑M
i=1 Di

• if t < t′, then the maximal total flow until time period t is at most α′
t′

• if t > t′ then the minimal total flow until time period t is at least β′
t′ .

• if t < t′ then the minimal total flow until time period t is at least β′
t′ − (t′ − t)

∑M
i=1 Di.

Let us define α̃t and β̃t as follows:

α̃t = min(min
t′<t

(α′
t′ + (t− t′)

M∑
i=1

Di) , min
t′>t

(α′
t′))

β̃t = max(max
t′<t

(β′
t′) , max

t′>t
(β′

t′ − (t′ − t)

M∑
i=1

Di))

Tight bounds α∗
t and β∗

t are calculated as follows:

α∗
t = min(α′

t, α̃t)

β∗
t = max(β′

t, β̃t)

Example : Let us consider an instance with T = 6 time periods. This instance has a constant inflow of water

into the upstream reservoir, increasing the αt and βt bounds over time. This instance has two target

volumes: for t = 3 and t = 6. Let Ct be the target volume at time period t. Let α be the maximum of αt,

t ≤ T and β the minimum of βt, t ≤ T . Suppose that β > D, with D the maximum total water flow that

can be delivered in 6 time periods and α < 0.

By applying the tighter bounds we can see that we drastically reduce the possibilities, thus the number of

arcs potentially developed by dynamic programming, as illustrated in Table 3.

3.4 A* Algorithm for the simplified 1-HUC

The A* algorithm works in the following way. We define a structure for the nodes, containing the

following information:

• f : value of the objective function of the partial solution for reaching the node from a source

• h: value of the optimistic heuristic on the partial solution for reaching a target from the node.

We initialize a list of open nodes, containing the starting point. Then iterating as long as the list

is not empty, we select a node which maximizes f + h, called current node. If the current node is

a target, we save it if the value f is better than the that of the best solution found. Otherwise, we

delete the current node from the list of open nodes and add its neighbors to the list.

11

C α 0 C3 C6 D β

t

0

1 X X X X

2 X X X X

3 X X X X X X X X X X X X X X

4 X X X X

5 X X X X

6 X X X X X X X X X X X X X X

(a) Table with bounds αt and βt

C α 0 C3 C6 D β

t

0

1 X X X X X X X X X X X X X

2 X X X X X X X X X X X X

3 X X X X X X X X X X X X X X

4 X X X X X X X

5 X X X X X X X

6 X X X X X X X X X X X X X X

(b) Table with bounds α′
t and β′

t

C α 0 C3 C6 D β

t

0

1 X X X X X X X X X X X X X

2 X X X X X X X X X X X X

3 X X X X X X X X X X X X X X

4 X X X X X X X X X X X X

5 X X X X X X X X X X X X

6 X X X X X X X X X X X X X X

(c) Table with bounds α∗
t and β∗

t

Table 3: Reducing the dynamic programming search space using bounds on the flows

12

3.4.1 Optimistic heuristic

To use A* for our problem, we must define an optimistic heuristic, i.e., one that overestimates the

value of the objective function because we are solving a maximization problem. To do this, we can

calculate a linear relaxation, in several steps. Step 1: Start with a solution that contains no items.

Step 2: Sort the items in descending order of profitability, i.e., w.r.t. ratio value/weight. Step 3:

As long as there is a lower bound αt not respected, look for the lower bound not respected for the

smallest time period t. Look for the most profitable item for time periods at most t. If this item is of

positive profitability, take it as much as possible provided the upper bounds are respected. If this item

is of negative profitability, take it as little as possible to try to respect the lower and upper bound.

Step 4: As long as there is an item of positive profitability, take it as much as possible provided the

upper limits are verified.

The returned solution is a linear relaxation of our problem, because steps 3 and 4 do not necessarily

select whole items. However we can slightly improve the returned solution. An integer solution is

necessarily of a weight which is a combination of the weights of the items. Therefore the weight of an

integer solution is necessarily a multiple of the greatest common divisor (GCD) of the weights of the

items. When the heuristic selects an item in a fractional way, we can increase or reduce the fraction

so that the weight of the returned solution remains a multiple of the GCD of the weights of the items.

Note that since the weights are the same from one time period to another, we can quickly compute

the GCD by considering only the weights of a single time period.

3.4.2 Reduction of the number of open nodes

We have bounds at each time period, so we can use them when we add nodes to the list of open nodes.

Indeed, a node which does not respect one of these bounds cannot lead to a feasible solution, so it is

not necessary to add it.

Suppose that two nodes represent a partial solution at time period t with the same total water

flow. By induction, the partial node with the smallest value f cannot lead to an optimal solution, so

it can be removed from the list.

The nodes in the list of open nodes are not necessarily for the same time period. It is possible that

a node u of a time period t joins the path of a node v of a time period t′ > t. If value f of node u is

smaller than value f relative to the path of node v at time period t, then an optimal solution cannot

be obtained by passing through u. If the converse is true, then we can construct a new node w, taking

the path from u to time period t, then the path from v at time period t+ 1 to t′, and remove u and

v from the list.

3.4.3 Implementation

The implementation is done in C++. A simple way to quickly find the current node from the list

of open nodes is to have this list sorted. This list is subject to a lot of changes. Let us note n the

size of the list. Regularly using a sorting algorithm of complexity nlog(n) can become cumbersome,

especially since this list can be relatively long. A more efficient way to keep this list sorted is to insert

new nodes at the location that keeps the list sorted. As the list remains sorted, finding the location

13

can be done with a dichotomy of complexity log(n). Note that the same idea is used to sort the items

to compute the heuristic.

3.5 Instances and results

A set of 8 instances is constructed, all of them are realistic and derived from EDF instances. Instances

1 to 3 have 4 operating points, instances 4 to 6 have 7 and instances 7 and 8 have 8. All instances have

T = 96 time periods. After data conversion, the flow rates and powers are on the order of 103 to 104,

with volumes on the order of 107. Instances 1, 4, and 7 have a binding maximum volume at the last

time period. Instances 2 and 5 have a minimum binding volume at the last time period. Instances 3,

6 and 8 have a target volume at the last time period. Note that the target volumes are not equality

constraints, they are maximum and minimum volumes that are very close, e.g. with a difference of

2000. In the case of an equality constraint, we often find an infeasibility which is instantly found by

the MILP solver CPLEX.

To have a reference, we solve these 8 instances with CPLEX, version 12.8, on a single thread

in default setting. A time limit of one hour is fixed. We also solve these 8 instances with the A*

algorithm, on a single thread. Table 5 gives the value of the objective, the gap and the computation

time to solve these instances with both CPLEX and A* algorithm. If CPLEX proves optimality, the

gap is noted ”opt”.

CPLEX A*

instance value gap time (s) value time (s)

1 -25434.5 opt 2832 -25434.5 2

2 43009 opt 470 43009 2

3 3550.82 opt 1167 3550.82 2

4 2457.41 opt 66 2457.41 12

5 111105 opt 64 111105 33

6 -1713.3 opt 509 -1713.3 16

7 5687.49 0.3% 3600 5687.49 227

8 16576.2 opt 59 16576.2 293

15 -71650.7 opt 91 -71650.7 191

16 -525454 opt 1385 -525454 212

17 44418.8 opt 939 44418.8 277

18 -20335.4 0.59% 3600 -20322.1 733

19 -103439 opt 131 -103439 136

Table 4: Performance of CPLEX and our algorithm on difficult instances for CPLEX

We notice that CPLEX reaches twice the maximum time of 3600 seconds, while our algorithm

requires at most 733 seconds. The following time averages use the time limit of 3600 seconds when

the instance is not solved, so for CPLEX the average time is an underestimate.

For CPLEX, the average resolution time is:

• 1145 seconds on the difficult instances

14

CPLEX A*

instance value gap time (s) value time (s)

21 -25436 opt 0 -25436 0

22 42991.1 opt 0 42991.1 0

23 3694.51 opt 0 3694.51 0

24 2457.41 opt 2 2457.41 4

25 11142 opt 3 111142 9

26 -1467.01 opt 0 -1467.01 2

27 5939.75 opt 4 5939.75 253

28 16725.4 opt 0 16725.4 15

35 -71505.4 opt 0 -71505.4 41

36 -525253 opt 18 -525253 43

37 44644.4 opt 0 44644.4 6

38 -20158.6 opt 1 -20158.6 150

39 -103343 opt 0 -103343 31

Table 5: Performance of CPLEX and our algorithm on easy instances for CPLEX

• 2 seconds on the easy instances

• 574 seconds on all instances

For our algorithm, the average resolution time is:

• 164 seconds on the difficult instances

• 42 seconds on the easy instances

• 103 seconds on all instances

4 Methods for solving the complete 1-HUC

The full 1-HUC takes into account the ramping and min-up/down constraints. The constraints con-

sidered are (a) to (h).

4.1 Extension of the A* algorithm to ramping and min-up/down con-

straints

On the one hand, these additional constraints seem to be advantageous for CPLEX. The reason is

that these new constraints can break symmetries: if a very profitable time period t is between two

unprofitable time periods t−1 and t+1, then the linear relaxation will not consider turbining at t as a

possibility for an optimal solution, because it would be necessary to turbine on one of the unprofitable

time periods. It will then be preferable to turbine on successive profitable time periods.

On the other hand, these constraints seem to be disadvantageous for the A* algorithm. First,

these constraints make us lose several of the dominance properties between two solutions with the

15

same total water flow at the same time period. Indeed, we must now verify that two solutions with

both the same total water flow, and the same time period can get access to the same operating points

at the next time period. If for two partial paths all these characteristics are identical, then we can

apply dominance properties. Second, a greedy algorithm with continuous variables as used previously

does not scale well with the additional constraints, and will not necessarily produce an optimistic

solution. The heuristic used is the greedy heuristic with continuous variables without the additional

constraints, but this heuristic gives poor quality bounds. In the end the A* algorithm is not efficient

for the full 1-HUC.

4.2 A new algorithm based on a bi-criteria approach

A new idea is to consider the volume at the last time period as an objective function, which leads to

a bi-criteria problem.

We adapt the graph shown in Figure 1(b) to incorporate the additional constraints. To reduce

the number of turbine on-off cycles, min-up and min-down constraints with a duration of Li = li =

2, i ≤ M , time periods are considered in realistic HUC instances. We then define a graph, where

for each time period we have 2M nodes, indicating the operating point of the time period t, as well

as if this operating point is higher or lower than time period t − 1. In this way, we build only valid

arcs, satisfying the constraints of ramping and min up/down on 2 time periods. In total this graph

contains at most T.2M nodes.

With the volume as a criterion, we come up with a two-criteria shortest path problem. The idea

is to adapt a two-phase method, initially introduced for the two-criteria knapsack problem [18]. This

classical method is particularly efficient in bi-criteria (or even tri-criteria) when the mono-criterion

problem is easy to solve. In the bi-criteria case, the two-phase method is as follows. The first step is

to aggregate the bi-criteria objective function into a mono-criteria objective function, using a convex

combination. By varying the parameters of the convex combination, we can generate all the Pareto-

supported solutions, i.e., the solutions that form the convex envelope of the solutions, in the sense

of the optimization. Knowing these solutions, the space of Pareto-optimal solutions is drastically

reduced. The second step is to use an enumeration algorithm, e.g. K-best or Branch and Bound, to

obtain the remaining Pareto-optimal solutions.

The rationale behind adapting the two-step method is that the Pareto-optimal solutions are by

definition not comparable, while in our case they can be. The thing is that we want to maximize

only the value, not the volume used. Therefore, the first step is not to generate all the supported

solutions, but only the ones that are close to the solution maximizing the value, while respecting the

target volume constraints. For the second step of the algorithm, we rely on the solutions found in the

first step to generate only solutions in a reduced subspace until generating the optimal solution.

We can see that depending on the instance, the Pareto front can have two forms. The first form

occurs when it is not profitable to turbine: then the Pareto front will represent trade-offs between the

volume and the objective function. The second form occurs when it is profitable to turbine, then the

Pareto front will be represented by a single solution, the one where the maximum has been turbined.

In the latter case, we will consider the volume as a cost. Thus, the more one turbines, the higher the

cost associated with the volume. Therefore turbining a lot or very little produces two incomparable

solutions forming a Pareto front. In the remainder of this section, the first case will be used and the

16

second case will be referred to as the case of an ”inverted instance”. All the procedures are adapted

to handle both cases.

4.2.1 First phase

For the first phase, one difficulty is due to the volume and the value of the objective function not

having the same scale. However, we do not want to change the scale of the volume, because the

HUC is a problem very sensitive to the order of magnitude used for the volume in realistic instances

[15]. When using MILP solvers – like CPLEX – based on floating-point arithmetic, changing the

volumes scale can lead to numerical errors, thus leading to either infeasibility or loss of accuracy. To

overcome this scale disparity issue, we introduce two coefficients, δV and δf which will be respectively

the coefficient assigned to the volume and the coefficient assigned to the objective function value.

These coefficients are used to aggregate the two criteria into a mono-criterion function. The goal of

the first phase is to compute values of δV and δf such that two neighboring supported solutions have

the same value for the aggregated function. Moreover, one of these solutions must not satisfy the

minimum volume constraints while the other must satisfy them. In the case of an inverted instance,

we will apply the same reasoning with the maximum volume. Thus, when we enumerate solutions in

the second phase with coefficients δV and δf , the enumerated solutions will be close to the optimal

solution.

To calculate δV and δf , the procedure is as follows. We compute a shortest path solution maximiz-

ing the volume (δV = 1 and δf = 0), and a solution maximizing the objective function value (δV = 0

and δf = 1). Then, we keep δf = 1, and we compute δV such that these two solutions have the

same value for the aggregate function. We recalculate a shortest path with these values. We iterate

until the new solution found is one of the two solutions already obtained. In the case of an inverted

instance, we just have to change the sign of δV so that the volume becomes a cost in the aggregate

function.

We have some first promising results for this method. Table 6 shows the computation time of

step 1, as well as the values of 2 different solutions. SINF (resp. SSUP) represents the solution with

the worse (resp. best) value of the two solutions.

Note: The generated solutions are not necessarily valid. Indeed, there are two cases for a generated

solution to be invalid: either it does not satisfy a target volume of the last time period, or it does not

satisfy one of the maximum or minimum volume on a time period different from the last time period.

However, it is possible to know in advance when we are guaranteed to obtain a feasible solution.

Indeed, one of the solutions is feasible if all the volume bounds, except the lower bound on the volume

at the last time period, are respected by any solution. Since we know that one of the solutions satisfies

the lower bound on the volume at the last time period, it necessarily respects all the bounds on the

volume. In the inverted case, the same applies to the upper bound on the volume at the last time

period. If this condition is not verified, then it is not guaranteed that any of the returned solutions

is feasible. This condition is easily checked and verifiable upfront: it is enough to check if turbining

at the maximum at each time period, or turbining at the minimum at each time period, allows for

violation of one of the constraints on the volume.

17

instance time (s) SINF SSUP gap(%)

1 0.014 -31243.9 -25785.5 21.2

2 0.017 42321.9 42933.5 1.4

3 0.019 1759.74 3809.39 53.8

4 0.026 -1036.31 1748.99 159.2

5 0.034 107997 108244 0.2

6 0.028 -4257.77 -1786.71 138.3

7 0.042 2703.96 4610.37 41.3

8 0.046 9518.06 15048.3 36.7

15 0.063 -88211.3 -68376.3 29.0

16 0.065 -644199 -600284 7.3

17 0.077 41292.6 42171.9 2.1

18 0.058 -47615.8 -31083.5 53.2

19 0.081 -194428 -185439 4.8

Table 6: Time and value of the solutions obtained by the first step of the algorithm

4.2.2 Second phase

In bi-criteria optimization, this second phase is applied when all pairs of solutions from the first phase

produce a triangle in the solution space, in which all Pareto-optimal solutions are found. However,

we have a different case from the classical bi-criteria for several reasons. First, it is possible that both

solutions returned by the first step are infeasible solutions for the 1-HUC. Thus, it is possible that

no 1-HUC feasible solution is in the triangle formed by these two solutions, or even that no 1-HUC

feasible solution is Pareto-optimal in bi-criteria. Second, we are only looking for a single optimal

solution and, consequently, we will only focus on the solution space around the two solutions returned

by the first step.

There are several options for solving the second phase of the two-phase algorithm. We first enu-

merate the different possibilities, and then we present the implemented approach.

Pareto front enumeration A common method is a Pareto front enumeration approach, for which

there exists different algorithms. The reasons for preferring this method are as follows. First, we only

look for a solution in a particular area, which should be smaller in our case than in the classical case.

Second, by directing the enumeration, we can expect to quickly generate Pareto-dominated solutions

in the search area. This would be interesting in the case where no solution exists in the restricted area

defined by the two infeasible solutions from the first step. Compared to the classical case, we would

have a compromise: on the one hand, we are looking for a potentially Pareto-dominated solution,

therefore in a larger area than one of the triangles of the classical case; on the other hand we have

only one search area, contrary to the classical case where we have several triangles.

Nonlinear metric A second method would be to consider a nonlinear metric, like the Chebychev

norm [13], the Choquet integral or the Lorenz dominance. A nonlinear metric can be more computa-

tionally demanding, and should not be a priority as long as there are other good options that could

18

be obtained more efficiently. Moreover, an optimal 1-HUC solution is not necessarily Pareto-optimal,

we should check if these algorithms can be adapted to our case.

Interactive algorithm Another classical method is to use an interactive algorithm. This type

of algorithm will produce a Pareto-optimal solution, and then ask a decision-maker his preferences

towards this solution: if the solution suits him or if the solution favors/disfavors too much one of the

criteria. The algorithm will then produce a new solution by taking into account the preferences of

the decision maker. In our case, we could automate the responses of the decision maker because for

any instance we want to maximize the value while respecting the limits on the volume. The problem

with an interactive method is that we have to add at each iteration bounds on the values of one or

more objectives. Adding these constraints would bring us back to the case of an upper and/or lower

constrained shortest path, which can become difficult to solve.

Robust shortest path Another approach could be to consider the robust shortest path, considering

the volume and the objective function value as objective function values in two different scenarios.

There are pseudo polynomial algorithms for two robust shortest path problems [19]

• The shortest path minimizing the objective in the worst case scenario (thus minimizing the

maximum of the criteria if we see the scenarios as criteria)

• The shortest path minimizing the maximal deviation in the worst case scenario to the objective

of a given target solution.

In both cases, the algorithm is pseudo-polynomial because it is linear in the size of the objective of

the scenarios. However, we know that for the HUC the volume and the value of the objective function

can be very large without being integer, therefore this method could be ineffective.

Scalarization Another idea would be to scalarize the volume and value of the objective func-

tion. Let A and B be the two solutions obtained by the first phase, with A.volume<B.volume and

A.value>B.value. We could scalarize the volume and the value such that A.volume=B.value. We

would then try to find a solution C that maximizes min(C.volume,C.value). According to this metric,

point A and B have the same value, and any point of the triangle constructed by A and B would have

a better value. We would then replace A or B by C and we could iterate until convergence. However

we see two difficulties: maximizing the worst criterion does not seem to be solvable by dynamic pro-

gramming, thus requiring the use of a solver, and scalarizing the volume can lead to floating point

computation errors on the volumes [15].

Heuristics One could also consider heuristics:

• Local Branching to obtain solutions close in term of decision to those of the phase 1 but which

would be inside the triangle containing the optimal.

• Repair a solution in the same way as CPLEX when given an infeasible MIP start.

• Approximate enumeration of the Pareto front

19

Pulse algorithm For numerical experiments, a first approach has been tested using the Pulse

algorithm described in [5]. This algorithm generates the Pareto front of a bi-criteria shortest path

problem. The idea is to use a DFS to traverse the feasible solutions, and use multiple checks to

remove subpaths that cannot lead to a Pareto-optimal path. In the literature, this algorithm obtains

the Pareto-optimal front in a few seconds for graphs with 300,000 nodes and 1,000,000 arcs. As our

instances have at most 40 000 nodes, this algorithm would seem to be efficient. Moreover, we do

not want to generate the complete Pareto front, we want at most to generate the Pareto front in

the triangle obtained by the 1st phase, and at least one unique solution of this triangle that would

maximize the value of the objective function while respecting the volumes. In our case, despite the

information given by the two points calculated in the first phase, the paths start to be eliminated

in almost all cases when we are at time period 80 or more, which leads to a combinatorial explosion

before partial solutions could be pruned.

The K-best solutions algorithm of [6] The K-best solutions algorithm is another possible solu-

tion enumeration algorithm. An algorithm for digraphs , of complexity O(m + nlogn + k) has been

proposed by [6]. The idea is to solve the shortest path. From the obtained solution, for each arc of

the solution, this arc is removed from the initial graph, and then the problem is solved to obtain an

optimal solution on this new graph. The same process is repeated for the new solutions, starting with

the best solutions obtained, until the K best solutions are obtained. We implemented this algorithm,

but, because of the particular structure of our graph (2 nodes per operating point), it produces a large

number of similar solutions, and is not efficient.

Selected approach We then propose a new algorithm, which presents some similarities to the

K-best solutions algorithm of [9] with complexity O(Kn3), where n the number of nodes in the

graph. Contrary to the bi-criteria methods, the search area has not necessarily the form of a triangle.

Indeed, as indicated previously, it is possible that the two returned solutions are not valid, and that

no feasible solution is located in the triangle formed by these solutions. Figure 2 illustrates a case

where the triangle would not contain any feasible solution. As long as no feasible solution is found,

the search area will be defined by a semi-infinite polygon. The figure on the top of Figure 3 describes

a search space bounded by: the maximum volume at the last time period; the minimum volume at

the last time period, and the tangent passing through the two solutions of the first phase. This space

is not bounded on the left, because we do not know a minimum value for the feasible solutions. If

a feasible solution is found, we will define two spaces: a semi-infinite rectangle and a polygon. The

figure on the bottom of Figure 3 describes these two search spaces. The polygon is bounded in this

case by: the minimum volume at the last time period; the value of the feasible solution found, and

the tangent passing through the two points of the first phase. Note that if the maximum volume is

very low, then the top of this triangle would be cut off by the bound on the volume, hence this area

is a polygon, not necessarily a triangle. The rectangle is bounded by: the tangent passing through

the two solutions of the first phase, and the tangent passing through the nadir point of the polygon.

The nadir point of the polygon is the point of the polygon being worse or equivalent, on all criteria,

than the other points of the polygon. The reason for using two zones is because we will rely on the

rectangle to remove partial solutions, and on the polygon/triangle to remove complete solutions.

20

The algorithm is as follows. First, the coefficients δV and δf are retrieved to obtain the optimization

direction, as well as the feasible solution, if any. The longest paths are no longer computed in pre-

processing, but are computed and stored only if they are necessarily during enumeration. In the worst

case, the longest path is computed for each node, and in practice it is necessary to compute the longest

path only for a small set of nodes, which reduces the total computing time. Note that these longest

paths are optimistic heuristics, because we do not take into account the bounds on the volume on

time periods different from T . Third, we create a list L, which will contain solutions that we will call

hybrid (as explained in the algorithm). This list is initialized with the shortest path from the source

to the last time period and the algorithm proceeds as follows:

• The first hybrid solution of L is removed. This solution is noted S = (u1, u2, ..., uT) with ut the

node of time period t.

• We assume without loss of generality that S was obtained by fixing the first k decisions: u1, ..., uk

(k = 0 at initialization). For any t > k and vt ̸= ut such that (ut−1, vt) is an arc of the graph,

we proceed with the following loop:

– Create a new fixed path: u1, ..., ut−1, vt.

– Check that we have not already created a fixed path to vt with the same volume and a

larger value (in which case we will not be able to generate the optimal solution).

– Check that the new fixed path satisfies the volumes from time period 1 to t.

– Check that the volume turbined by the fixed path is still consistent with the bounds on the

volume at the last time period.

– Form a new hybrid solution with the created fixed path complemented by the longest path

of vt until the last time period (we compute it if it has not already been computed).

– If the new hybrid solution is feasible and with a better value than the feasible solution found,

i.e., in the polygon/triangle, then update the two search areas with this new solution.

– Otherwise, if the solution is not completely fixed and is with a better value than the nadir

point of the search area, then add it to L, keeping L sorted by decreasing solution value.

– Remove from L any hybrid solution whose value is smaller than the nadir point of the

search area, i.e., which are not in the rectangle.

• Stop if L is empty.

In the case of an inverted instance, the procedure is identical, except that since δV is negative, the

volume becomes a cost. Then, the direction of optimization and the search areas will be reversed

horizontally in Figure 3.

We underline the following differences between our algorithm and that of [9]. We compute longer

paths in preprocessing, which is a direct improvement of the algorithm because in the case of K-better,

we go from a complexity O(Kn3) to O(n3 + K). The algorithm stops when it has converged (K is

not known in advance). We have specific constraints to satisfy, namely the bounds on the volume at

each time period. As we are at the frontier between the mono-criteria and the bi-criteria, we have

additional steps that take into account the management of the triangle containing the optimum and

21

40 50 60 70 80
20

30

40

50

60

70

V minT

V maxT

value

v
ol
u
m
e

Feasible solutions
Solutions of the first phase

Figure 2: Pathological case to use a triangle

the list of the paths fixed pareto-optimum for each node. When a solution is fixed, in the algorithm

of [9], only the fact of not selecting ut is fixed, whereas in our algorithm we create a new fixed path

for all vt accessible from ut−1.

5 Numerical results

This section describes an experimental comparison between CPLEX and the proposed two-phase

algorithm. The version of CPLEX used is 12.8, and in both cases with a single thread. The first phase

of the algorithm, to generate the first triangle, is not shown because as can be seen in Table 6, this

step takes less than 0.1 seconds for each instance. Five sets of instances are used :

• A first set containing 13 instances derived from EDF instances with 96 time periods and between

4 and 22 operating points.

• A second set of instances containing 105 instances, generated with the Hydro Instance Generator

(HIG) provided online by Dimitri Thomopulos (HIG1), with 48 time periods, and 20 operating

points. The prices and inputs are derived from the Italian market. This instance set contains one

instance per month, between April 2004 and December 2012, thus allowing for diversification.

• A third instance set containing 105 instances built from the HIG instances. The modification

made is on the prices: for each time period, we randomly choose the price Λt in the interval

[0.95Λ1; 1.05Λ1].

• A fourth set of instances containing 70 EDF instances, with 96 time periods, and 3 to 10

operating points.

1https://people.unipi.it/dimitri thomopulos/libraries/hig/

22

40 50 60 70 80
20

30

40

50

60

70

V minT

V maxT

Direction of optimization

value

v
ol
u
m
e

Feasible solutions
Solutions of the first phase

40 50 60 70 80
20

30

40

50

60

70

V minT

V maxT

Direction of optimization

value

v
ol
u
m
e

Feasible solutions
Solutions of the first phase
Feasible solution found

Figure 3: Representation of the solution search space during the algorithm

23

• A fifth set of instances, containing the same 70 EDF instances, with prices from one iteration of

the Lagrangian decomposition2.

On the EDF instance sets 1 and 4, the prices have been generated randomly as for HIG instance set

3.

Table 7 compares for each instance set the performance of CPLEX and the proposed two-phase

algorithm in terms of the number of instances solved to optimality with a time limit of 3600 seconds.

For each set and each algorithm Table 7 provides the number of unsolved instances (#fail), the average

time on solved instances (avg-t-res) and the average time on all instances (avg-t) where unsolved

instances count for 3600 seconds.

Table 7 reveals that instance set 3, that we built by modifying the prices used in the HIG generator

instances, is particularly difficult for CPLEX, with a failure rate of almost 30% and an average solving

time of 97.4 s for solved instances, while for our algorithm the failure rate is almost 5% with an average

CPU time of 167.7 s for solved instances. We can then assume that instances with similar prices on the

time periods will tend to be more difficult for CPLEX. This phenomenon can be explained by a large

number of symmetric fractional solutions with nearly identical values. CPLEX cuts will eliminate

some symmetries, but not all, thus leading to a large number of branches.

The detailed results are given in Table 8 for instance set 1, Tables 9–17 for instance set 2, Tables

18–26 for instance set 3, Tables 27–28 for instance set 4 and Tables 29–30 for instance set 5. For

each instance the tables give the objective function value (value) obtained by CPLEX and by the

two-phase algorithm. They also provide the number of iterations (#iter) and the CPU time (time)

of the second phase for the two-phase algorithm as well as the final gap (gap), the CPU time (time)

and the number of nodes (node) for CPLEX.

For EDF instance set 1 (Table 8), the results show that CPLEX has an unstable behavior: on some

instances it solves the problem almost instantaneously, while non negligible CPU times are observed

on instances 1, 3, 15 and 18 (from 15 to 95 seconds) and even very large CPU times on instances

16 and 19 (2045 seconds and time limit reached with a 1.4% gap, respectively). In comparison, the

two-phase algorithm has a much more stable behavior with CPU time (from 0.83 to 15.5 seconds) and

outperforms CPLEX on these 6 instances.

For instance set 2 generated with the HIG generator (Tables 9–17), CPLEX solves all instances

under 5 seconds with a large majority of instances being solved in a negligible CPU time and a few

branch and bound nodes. The two-phase algorithm performs reasonably well as a majority of instances

are solve under 2 seconds but in some cases the required CPU time is much larger (up to 40 seconds

for instance 20040505).

As already mentioned, for instance set 3 corresponding to HIG instances with modified prices,

CPLEX reaches 30 times the CPU time limit with a strictly positive gap out of the 105 instances and

has an important CPU time for 9 other instances (from 11 to 1728 seconds). On all these instances,

our algorithm is generally much faster.

For EDF instance sets 4 and 5 with 3 to 10 operating points, CPLEX performs extremely well,

independently on the prices. In comparison, our algorithm is slower on some more difficult to solve

instances where the time limit is reached.

2At EDF the prices of the HUC come from a Lagrangian decomposition of the global unit commitment problem

including all production unit types

24

Note that a hybrid algorithm has also been tested where first CPLEX’s heuristic finds a feasible

solution, then the latter is used for the two-phase algorithm as a warm-start. However, the results in

terms of number of iterations and computational times are exactly the same with or without warm-

start.

6 Conclusion

In this paper, we have proposed an efficient A* algorithm to solve a simplified variant of the single

unit hydro unit commitment problem incorporating lower and upper bounding constraints on the

cumulative water flow. The algorithm is shown to have a more stable behavior than CPLEX on

realistic EDF instances.

For the complete variant of the 1-HUC including both the ramping and min-up/min-down con-

straints the A* algorithm as well as the standard resource-constrained shortest path approaches are

shown to be ineffective. Such a change is induced by the weakening of the dominance rules.

To overcome this difficulty, we have proposed a two-phase algorithm inspired by the algorithms

used in bi-criteria optimization. The first phase solves extremely fast simple shortest path problems

while the second phase is derived from a K-best solutions algorithm to enumerate feasible solutions

in a restricted search space.

We have compared this algorithm with the MILP solution approach using CPLEX on several sets of

instances. We have exhibited instances with a small range of price variation, that are very challenging

for CPLEX. For these instances, the two-phase algorithm is generally more efficient. In the case of a

larger range of variation, CPLEX solves the instances almost instantaneously, whereas the algorithm

in two phases takes a few seconds. These results show a better robustness in terms of performance of

the two-phase algorithm compared to CPLEX.

One may argue that instance set 3 with a small price variability is artificially too hard. In practice,

the values are not nearly identical throughout the time horizon. One could imagine a more realistic

case with three subsets of time periods: time periods with high prices in the peak hours, time periods

with low prices in the off-peak hours, and transient time periods with medium prices. In this kind of

setup, the number of time periods is large enough for the the number of symmetric fractional points

to increase dramatically.

As the two approaches appear to be complementary on most instances, a practical approach would

be to launch CPLEX for a few second and, in case optimality has not been proven, launch the two-

phase algorithm.

An interesting perspective would be to include the proposed algorithms in the subproblem of

decomposition schemes to solve the HUC on valleys with several units.

25

Two-phase algorithm CPLEX

instance set #fail avg-t-res (s) avg-t (s) #fail avg-t-res (s) avg-t (s)

1 0 3.0 3.0 1 187.4 449.8

2 0 2.1 2.1 0 0.1 0.1

3 5 167.7 331.2 30 97.1 1094.9

4 1 0.1 51.6 0 0.0 0.0

5 2 0.4 103.3 0 0.1 0.1

Table 7: Performance of CPLEX and the two-phase algorithm on the 5 sets of instances

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

1 -27098.1 2573 0.83 -27098.1 opt 15.0 34237

2 42332.8 2830 0.91 42332.8 opt 1.0 8434

3 2474.97 6285 2.05 2474.97 opt 65.0 68998

4 1551.19 358 0.59 1551.19 opt 0.0 660

5 108119.0 858 1.0 108119.0 opt 0.0 842

6 -2557.29 366 0.58 -2557.29 opt 0.0 630

7 3025.79 4759 2.38 3025.79 opt 0.0 110

8 13898.3 15264 15.52 13898.3 opt 0.0 256

15 -81463.8 6459 5.59 -81463.8 opt 28.0 11017

16 -622053.0 909 2.35 -622053.0 opt 2045.0 110200

17 41734.1 24 1.61 41734.1 opt 0.0 0

18 -32135.6 596 2.98 -32135.6 opt 95.0 14163

19 -185788.0 311 2.27 -185788.0 1.4% 3599.0 187073

Table 8: Second phase of the two-phase algorithm and CPLEX comparison for EDF inspired instances

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20040405 12517.5 2264 1.91 12517.5 opt 0.0 162

20040505 29528.8 35714 40.86 29528.8 opt 5.0 12305

20040605 6387.36 283 1.41 6387.36 opt 0.0 0

20040705 3300.02 12 1.35 3300.02 opt 0.0 0

20040805 2059.17 14 1.26 2059.17 opt 0.0 0

20040905 171.11 27 0.23 171.11 opt 0.0 0

20041005 150.2 6 0.09 150.2 opt 0.0 0

20041105 2305.81 64 1.34 2305.81 opt 0.0 2

20041205 33048.0 1301 2.58 33048.0 opt 0.0 0

Table 9: Second phase of the two-phase algorithm and CPLEX comparison for the year 2004

26

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20050105 7257.47 141 1.39 7257.47 opt 0.0 8

20050205 3444.13 166 1.35 3444.13 opt 0.0 39

20050305 2990.66 71 1.37 2990.66 opt 0.0 0

20050405 3065.66 22 1.34 3065.66 opt 0.0 0

20050505 8014.0 293 1.43 8014.0 opt 0.0 42

20050605 3682.13 14 1.31 3682.13 opt 0.0 0

20050705 4152.13 103 1.36 4152.13 opt 0.0 9

20050805 435.4 47 0.37 435.4 opt 0.0 0

20050905 128.75 14 0.09 128.75 opt 0.0 0

20051005 15050.9 124 1.27 15050.9 opt 0.0 0

20051105 55498.5 1793 2.16 55498.5 opt 0.0 0

20051205 17538.7 521 1.52 17538.7 opt 0.0 0

Table 10: Second phase of the two-phase algorithm and CPLEX comparison for the year 2005

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20060105 18455.6 2222 2.33 18455.6 opt 0.0 138

20060205 12605.8 553 1.5 12605.8 opt 0.0 62

20060305 23526.5 525 1.65 23526.5 opt 0.0 11

20060405 14607.8 422 1.59 14607.8 opt 0.0 10

20060505 6071.94 18 1.37 6071.94 opt 0.0 0

20060605 3205.81 39 1.22 3205.81 opt 0.0 0

20060705 1103.54 59 0.44 1103.54 opt 0.0 0

20060805 1146.48 75 0.66 1146.48 opt 0.0 0

20060905 0.0 1 0.02 0.0 opt 0.0 0

20061005 211.18 10 0.15 211.18 opt 0.0 0

20061105 1819.43 44 0.78 1819.43 opt 0.0 0

20061205 2144.53 85 0.74 2144.53 opt 0.0 0

Table 11: Second phase of the two-phase algorithm and CPLEX comparison for the year 2006

27

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20070105 3090.91 23 1.21 3090.91 opt 0.0 0

20070205 2931.72 59 1.0 2931.72 opt 0.0 0

20070305 2953.03 34 1.12 2953.03 opt 0.0 0

20070405 2828.1 26 1.32 2828.1 opt 0.0 0

20070505 18005.1 253 1.34 18005.1 opt 0.0 0

20070605 22707.1 352 1.37 22707.1 opt 0.0 57

20070705 3541.29 19 0.99 3541.29 opt 0.0 0

20070805 816.28 64 0.51 816.28 opt 0.0 0

20070905 2702.08 93 0.87 2702.08 opt 0.0 0

20071005 797.0 29 0.36 797.0 opt 0.0 0

20071105 0.0 1 0.02 0.0 opt 0.0 0

20071205 965.6 36 0.44 965.6 opt 0.0 0

Table 12: Second phase of the two-phase algorithm and CPLEX comparison for the year 2007

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20080105 13811.4 87 1.34 13811.4 opt 0.0 5

20080205 29256.8 528 1.42 29256.8 opt 0.0 17

20080305 17781.6 117 1.36 17781.6 opt 0.0 0

20080405 3115.64 13 1.36 3115.64 opt 0.0 0

20080505 4184.53 18 1.32 4184.53 opt 0.0 0

20080605 13380.2 145 1.4 13380.2 opt 0.0 40

20080705 12684.5 11 1.27 12684.5 opt 0.0 0

20080805 3578.89 342 1.47 3578.89 opt 0.0 28

20080905 977.46 95 0.52 977.46 opt 0.0 0

20081005 444.88 11 0.22 444.88 opt 0.0 0

20081105 40692.3 1071 1.85 40692.3 opt 0.0 33

20081205 36132.2 3298 2.71 36132.2 opt 0.0 327

Table 13: Second phase of the two-phase algorithm and CPLEX comparison for the year 2008

28

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20090105 31586.4 428 1.56 31586.4 opt 0.0 80

20090205 33859.8 10877 7.26 33859.8 opt 0.0 1002

20090305 46407.6 2008 2.25 46407.6 opt 0.0 65

20090405 17634.1 223 1.39 17634.1 opt 0.0 0

20090505 26569.4 897 1.83 26569.4 opt 0.0 100

20090605 4834.36 19 0.75 4834.36 opt 0.0 0

20090705 3267.37 25 1.37 3267.37 opt 0.0 0

20090805 797.0 43 0.44 797.0 opt 0.0 0

20090905 243.67 10 0.16 243.67 opt 0.0 0

20091005 0.0 1 0.02 0.0 opt 0.0 0

20091105 8370.58 262 1.41 8370.58 opt 0.0 61

20091205 14565.7 376 1.52 14565.7 opt 0.0 0

Table 14: Second phase of the two-phase algorithm and CPLEX comparison for the year 2009

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20100105 57958.7 12513 10.29 57958.7 opt 0.0 3

20100205 49927.9 94 1.52 49927.9 opt 0.0 0

20100305 35705.1 7020 3.74 35705.1 opt 0.0 967

20100405 62384.1 9963 10.74 62384.1 opt 0.0 8

20100505 44429.5 13400 8.02 44429.5 opt 0.0 548

20100605 17730.4 1128 1.77 17730.4 opt 0.0 84

20100705 6313.58 300 1.44 6313.58 opt 0.0 166

20100805 25993.5 1146 1.66 25993.5 opt 0.0 77

20100905 1304.98 89 0.89 1304.98 opt 0.0 0

20101005 34125.4 2085 2.01 34125.4 opt 0.0 11

20101105 774.65 189 0.69 774.65 opt 0.0 0

20101205 47296.7 3972 2.8 47296.7 opt 0.0 1337

Table 15: Second phase of the two-phase algorithm and CPLEX comparison for the year 2010

29

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20110105 36407.1 537 1.64 36407.1 opt 0.0 0

20110205 19617.9 16963 19.2 19617.9 opt 4.0 6350

20110305 23295.7 1914 2.19 23295.7 opt 0.0 90

20110405 18279.1 399 1.49 18279.1 opt 0.0 14

20110505 7135.28 650 1.6 7135.28 opt 0.0 67

20110605 19742.4 6215 3.67 19742.4 opt 0.0 307

20110705 3516.78 14 1.34 3516.78 opt 0.0 0

20110805 1089.12 28 0.59 1089.12 opt 0.0 0

20110905 10067.6 178 1.33 10067.6 opt 0.0 35

20111005 300.52 6 0.16 300.52 opt 0.0 0

20111105 36427.5 887 1.9 36427.5 opt 0.0 0

20111205 1017.47 54 0.59 1017.47 opt 0.0 0

Table 16: Second phase of the two-phase algorithm and CPLEX comparison for the year 2011

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20120105 1579.88 63 0.8 1579.88 opt 0.0 0

20120205 1825.14 58 0.66 1825.14 opt 0.0 0

20120305 4585.41 12 1.38 4585.41 opt 0.0 0

20120405 7632.36 86 1.34 7632.36 opt 0.0 0

20120505 3248.93 72 1.36 3248.93 opt 0.0 0

20120605 7439.4 377 1.47 7439.4 opt 0.0 33

20120705 1593.24 280 0.93 1593.24 opt 0.0 158

20120805 967.57 16 0.37 967.57 opt 0.0 0

20120905 19063.0 760 1.7 19063.0 opt 0.0 124

20121005 0.0 1 0.02 0.0 opt 0.0 0

20121105 13041.4 18 1.43 13041.4 opt 0.0 0

20121205 14196.4 486 1.62 14196.4 opt 0.0 120

Table 17: Second phase of the two-phase algorithm and CPLEX comparison for the year2012

30

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20040405 3886.13 65097 94.88 3886.13 0.88% 3590.0 408368

20040505 13223.9 177213 3600.81 13223.9 0.37% 3598.0 4056598

20040605 4887.96 54400 57.68 4887.96 0.3% 3591.0 462352

20040705 1116.43 1619 1.92 1116.43 opt 0.0 766

20040805 875.4 864 1.63 875.4 opt 0.0 342

20040905 176.98 145 0.29 176.98 opt 0.0 0

20041005 107.38 49 0.11 107.38 opt 0.0 0

20041105 1058.68 2111 2.1 1058.68 opt 0.0 246

20041205 16773.9 310548 2331.01 16773.9 0.13% 3598.0 5121037

Table 18: Second phase of the two-phase algorithm and CPLEX comparison for the year 2004 with

modified prices

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20050105 2051.01 2004 2.08 2051.01 opt 0.0 0

20050205 1952.33 3412 2.56 1952.33 opt 0.0 1236

20050305 1961.75 133 1.49 1961.75 opt 0.0 325

20050405 1058.66 617 1.62 1058.66 opt 0.0 111

20050505 3734.6 30982 22.87 3734.6 opt 1257.0 156059

20050605 1754.9 1262 1.82 1754.9 opt 0.0 775

20050705 1203.8 2091 2.07 1203.8 opt 0.0 740

20050805 367.96 49 0.43 367.96 opt 0.0 0

20050905 95.12 49 0.11 95.12 opt 0.0 0

20051005 5382.32 25520 17.64 5382.32 0.26% 3579.0 366291

20051105 42942.1 35862 30.2 42942.1 opt 0.0 0

20051205 7733.77 17597 11.08 7733.77 0.19% 3589.0 475558

Table 19: Second phase of the two-phase algorithm and CPLEX comparison for the year 2005 with

modified prices

31

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20060105 7686.79 98925 200.21 7686.79 0.78% 3581.0 504252

20060205 4742.65 8682 5.36 4742.65 opt 72.0 53290

20060305 10680.5 67710 94.52 10680.5 0.65% 3588.0 609400

20060405 5045.19 40840 33.51 5045.19 opt 1338.0 116491

20060505 1768.57 562 1.62 1768.57 opt 0.0 61

20060605 1301.88 530 1.43 1301.88 opt 0.0 47

20060705 563.37 99 0.51 563.37 opt 0.0 0

20060805 837.09 241 0.79 837.09 opt 0.0 0

20060905 0.0 1 0.03 0.0 opt 0.0 0

20061005 162.57 97 0.2 162.57 opt 0.0 0

20061105 646.93 301 0.96 646.93 opt 0.0 0

20061205 800.24 289 0.88 800.24 opt 0.0 41

Table 20: Second phase of the two-phase algorithm and CPLEX comparison for the year 2006 with

modified prices

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20070105 1225.35 625 1.45 1225.35 opt 0.0 99

20070205 635.06 86 1.15 635.06 opt 0.0 0

20070305 852.4 289 1.27 852.4 opt 0.0 0

20070405 1094.31 1019 1.75 1094.31 opt 0.0 468

20070505 11947.6 26613 23.58 11947.6 opt 644.0 1324359

20070605 6718.4 69450 96.34 6718.4 0.64% 3588.0 558376

20070705 1043.11 2 1.12 1043.11 opt 0.0 0

20070805 821.58 97 0.59 821.58 opt 0.0 0

20070905 933.4 385 1.05 933.4 opt 0.0 69

20071005 290.66 97 0.43 290.66 opt 0.0 0

20071105 0.0 1 0.02 0.0 opt 0.0 0

20071205 563.49 49 0.5 563.49 opt 0.0 0

Table 21: Second phase of the two-phase algorithm and CPLEX comparison for the year 2007 with

modified prices

32

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20080105 5836.94 1425 1.82 5836.94 opt 0.0 0

20080205 11199.1 47802 53.1 11199.1 0.49% 3581.0 697934

20080305 9773.13 607 1.5 9773.13 opt 0.0 0

20080405 2152.27 532 1.43 2152.27 opt 0.0 187

20080505 1863.69 967 1.57 1863.69 opt 0.0 145

20080605 5254.42 4607 3.15 5254.42 opt 9.0 5874

20080705 7010.51 2249 2.18 7010.51 opt 0.0 1600

20080805 2356.18 1867 1.83 2356.18 opt 0.0 620

20080905 1030.11 97 0.59 1030.11 opt 0.0 0

20081005 439.4 97 0.28 439.4 opt 0.0 0

20081105 16733.6 47607 49.57 16733.6 0.19% 3597.0 9324661

20081205 18404.1 234766 1379.83 18404.1 0.41% 3575.0 1213461

Table 22: Second phase of the two-phase algorithm and CPLEX comparison for the year 2008 with

modified prices

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20090105 18608.6 65982 81.84 18608.6 0.13% 3590.0 793652

20090205 21859.7 302830 2169.11 21859.7 0.35% 3593.0 3153436

20090305 16731.6 168860 813.64 16731.6 0.21% 3598.0 6247636

20090405 8875.95 135092 325.61 8875.95 1.12% 3588.0 352367

20090505 9617.4 146973 478.24 9617.4 0.22% 3588.0 1021343

20090605 2181.47 2845 2.4 2181.47 opt 1.0 2069

20090705 1611.24 1008 1.6 1611.24 opt 0.0 695

20090805 540.51 119 0.52 540.51 opt 0.0 0

20090905 243.83 97 0.2 243.83 opt 0.0 0

20091005 0.0 1 0.02 0.0 opt 0.0 0

20091105 3049.89 21426 13.9 3049.89 opt 1472.0 176885

20091205 11145.3 59213 76.52 11145.3 opt 526.0 1325266

Table 23: Second phase of the two-phase algorithm and CPLEX comparison for the year 2009 with

modified prices

33

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20100105 45235.5 11336 6.23 45235.5 opt 0.0 993

20100205 35352.3 174260 3600.86 35352.3 0.26% 3598.0 5662872

20100305 17660.8 280980 2244.37 17660.8 0.21% 3598.0 6502525

20100405 52130.7 263023 3600.7 52130.7 0.06% 3592.0 859733

20100505 29643.9 175084 3600.83 29644.1 0.2% 3587.0 1371664

20100605 14339.9 80099 120.43 14339.9 0.67% 3584.0 508552

20100705 4319.06 3080 2.7 4319.06 opt 1.0 2211

20100805 19259.8 275280 1601.24 19259.8 0.55% 3579.0 1101538

20100905 1126.92 337 1.06 1126.92 opt 0.0 0

20101005 16738.1 110896 272.41 16738.1 0.17% 3598.0 9117219

20101105 573.24 193 0.78 573.24 opt 0.0 0

20101205 35573.6 257868 1608.74 35573.6 opt 0.0 497

Table 24: Second phase of the two-phase algorithm and CPLEX comparison for the year 2010 with

modified prices

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20110105 25522.0 176173 3600.85 25522.0 0.29% 3598.0 4627763

20110205 16692.6 281983 1448.87 16692.6 0.55% 3585.0 1012552

20110305 18458.5 70311 119.83 18458.5 0.29% 3587.0 1325052

20110405 13405.5 69166 124.72 13405.5 0.3% 3599.0 7889852

20110505 5111.46 10340 6.35 5111.46 opt 49.0 20192

20110605 18259.0 156836 607.93 18259.0 0.44% 3577.0 735088

20110705 2689.1 867 1.67 2689.1 opt 0.0 121

20110805 974.48 160 0.67 974.48 opt 0.0 0

20110905 7047.18 6306 4.44 7047.18 opt 11.0 20848

20111005 263.97 97 0.2 263.97 opt 0.0 0

20111105 25420.0 16190 9.29 25420.0 opt 0.0 0

20111205 874.17 97 0.69 874.17 opt 0.0 0

Table 25: Second phase of the two-phase algorithm and CPLEX comparison for the year 2011 with

modified prices

34

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

20120105 1077.32 289 0.95 1077.32 opt 0.0 0

20120205 1069.02 241 0.79 1069.02 opt 0.0 0

20120305 2016.67 934 1.68 2016.67 opt 0.0 143

20120405 4376.02 3520 2.62 4376.02 opt 1.0 1407

20120505 2997.37 723 1.63 2997.37 opt 0.0 477

20120605 3858.07 10168 5.93 3858.07 opt 174.0 28800

20120705 1496.09 385 1.04 1496.09 opt 0.0 5

20120805 928.86 97 0.43 928.86 opt 0.0 0

20120905 13474.6 47333 49.65 13474.6 0.4% 3584.0 634456

20121005 0.0 1 0.04 0.0 opt 0.0 0

20121105 5490.87 4090 2.7 5490.87 opt 0.0 0

20121205 7078.94 12080 6.71 7078.94 opt 1728.0 171382

Table 26: Second phase of the two-phase algorithm and CPLEX comparison for the year 2012 with

modified prices

35

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

7-0806 - 9421 2.75 - opt 0.0 0

8-0609 4876.22 18 0.16 4876.22 opt 0.0 0

9-0206 9244.58 1519 0.53 9244.58 opt 0.0 377

9-0210 11750.4 1714 0.5 11767.6 opt 0.0 736

9-0410 12642.4 2550 0.91 12647.3 opt 0.0 1801

9-0414 9259.54 1083 0.46 9276.1 opt 0.0 159

9-0605 12600.0 1211 0.53 12600.0 opt 0.0 45

9-1013 0.0 1 0.01 0.0 opt 0.0 0

18-0605 21995.5 1 0.01 21995.5 opt 0.0 0

18-0609 192178.0 1 0.01 192178.0 opt 0.0 0

18-0811 18971.0 1 0.01 18971.0 opt 0.0 0

19-0414 250666.0 1 0.01 250666.0 opt 0.0 0

19-0609 22348.8 1 0.01 22348.8 opt 0.0 0

20-0206 95899.9 1 0.0 95899.9 opt 0.0 0

20-0210 102449.0 1 0.01 102449.0 opt 0.0 0

20-0605 125212.0 1 0.01 125212.0 opt 0.0 0

20-0806 -5402.14 1 0.01 -5402.14 opt 0.0 0

20-0811 1492.99 1 0.01 1492.99 opt 0.0 0

21-0414 24791.1 1 0.01 24791.1 opt 0.0 0

21-1013 3079.3 1 0.01 3079.3 opt 0.0 0

22-0206 70339.8 1 0.01 70339.8 opt 0.0 0

22-0210 100831.0 1 0.01 100831.0 opt 0.0 0

22-0410 29023.1 1 0.01 29023.1 opt 0.0 0

22-0605 531174.0 1 0.02 531174.0 opt 0.0 0

22-0806 1590.04 1 0.01 1590.04 opt 0.0 0

22-1010 3160.17 1 0.01 3160.17 opt 0.0 0

23-0811 30152.2 1 0.01 30152.2 opt 0.0 0

23-1010 588.49 1 0.01 588.49 opt 0.0 0

23-1013 4528.74 1 0.01 4528.74 opt 0.0 0

24-0206 269050.0 1 0.01 269050.0 opt 0.0 0

24-0414 1786550.0 1 0.01 1786550.0 opt 0.0 0

24-0609 316690.0 1 0.01 316690.0 opt 0.0 0

24-0806 52840.1 1 0.01 52840.1 opt 0.0 0

25-0210 459095.0 1 0.01 459095.0 opt 0.0 0

25-0410 792737.0 1 0.01 792737.0 opt 0.0 0

Table 27: Second phase of the two-phase algorithm and CPLEX comparison on EDF instances with

default prices

36

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

26-0806 42336.3 1 0.01 42336.3 opt 0.0 0

26-1010 41206.6 1 0.01 41206.6 opt 0.0 0

26-1013 40192.6 1 0.01 40192.6 opt 0.0 0

27-0206 71323.3 1 0.01 71323.3 opt 0.0 0

27-0414 45201.6 1 0.0 45201.6 opt 0.0 0

27-0605 4628520.0 1 0.01 4628520.0 opt 0.0 0

28-0210 35630.3 1 0.02 35630.3 opt 0.0 0

28-0410 28466.4 1 0.02 28466.4 opt 0.0 0

28-0609 4646940.0 1 0.01 4646940.0 opt 0.0 0

28-0811 914930.0 1 0.01 914930.0 opt 0.0 0

29-0605 21648.4 1 0.01 21648.4 opt 0.0 0

29-1010 25714.9 1 0.01 25714.9 opt 0.0 0

29-1013 25059.9 1 0.01 25059.9 opt 0.0 0

30-0609 15452.5 1 0.01 15452.5 opt 0.0 0

31-0806 935608.0 1 0.01 935608.0 opt 0.0 0

32-0206 226313.0 1 0.01 226313.0 opt 0.0 0

32-0414 379220.0 1 0.01 379220.0 opt 0.0 0

33-0210 204167.0 1 0.01 204167.0 opt 0.0 0

33-0410 703224.0 1 0.01 703224.0 opt 0.0 0

34-0206 95178.2 1 0.01 95178.2 opt 0.0 0

34-0414 171476.0 1 0.01 171476.0 opt 0.0 0

34-0811 -2612.74 1 0.01 -2612.74 opt 0.0 0

34-1010 837867.0 1 0.02 837867.0 opt 0.0 0

34-1013 1040800.0 1 0.02 1040800.0 opt 0.0 0

35-0210 77822.2 1 0.01 77822.2 opt 0.0 0

35-0410 87091.2 1 0.01 87091.2 opt 0.0 0

35-0609 16093.3 368 0.17 16119.0 opt 0.0 0

36-1010 4976.64 1 0.01 4976.64 opt 0.0 0

36-1013 4914.43 1 0.01 4914.43 opt 0.0 0

37-0806 -3209.93 1 0.01 -3209.93 opt 0.0 0

39-0206 64146.1 4139 2.15 64146.1 opt 0.0 0

39-0414 16373.1 1 0.01 16373.1 opt 0.0 0

40-0210 84971.2 328786 3600.7 84971.2 opt 0.0 1000

40-0410 33343.4 231 0.38 33343.4 opt 0.0 0

42-1013 1766.71 1 0.01 1766.71 opt 0.0 0

Table 28: Second phase of the two-phase algorithm and CPLEX comparison on EDF instances with

default prices

37

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

7-0806 - 9007 2.92 - opt 0.0 0

8-0609 11721.7 161 0.18 11721.7 opt 0.0 0

9-0206 13830.5 265 0.21 13830.5 opt 0.0 140

9-0210 18267.6 465 0.29 18267.6 opt 0.0 998

9-0410 20367.3 793 0.35 20367.3 opt 0.0 1287

9-0414 14908.0 178 0.22 14908.0 opt 0.0 358

9-0605 27196.6 131 0.17 27196.6 opt 0.0 46

9-1013 0.0 1 0.01 0.0 opt 0.0 0

18-0605 23453.2 1 0.29 23453.2 opt 0.0 0

18-0609 192178.0 1 0.01 192178.0 opt 0.0 0

18-0811 18971.0 1 0.01 18971.0 opt 0.0 0

19-0414 250666.0 1 0.01 250666.0 opt 0.0 0

19-0609 23684.9 1 0.29 23684.9 opt 0.0 0

20-0206 95899.9 1 0.01 95899.9 opt 0.0 0

20-0210 102449.0 1 0.01 102449.0 opt 0.0 0

20-0605 125212.0 1 0.01 125212.0 opt 0.0 0

20-0806 -5402.14 1 0.01 -5402.14 opt 0.0 0

20-0811 6099.47 12 0.3 6099.47 opt 0.0 0

21-0414 26210.2 1 0.29 26210.2 opt 0.0 0

21-1013 3079.3 1 0.01 3079.3 opt 0.0 0

22-0206 70604.8 1 0.2 70604.8 opt 0.0 0

22-0210 101147.0 1 0.19 101147.0 opt 0.0 0

22-0410 32197.8 1 0.3 32197.8 opt 0.0 0

22-0605 531256.0 1 1.14 531256.0 opt 0.0 0

22-0806 5226.07 4 0.3 5226.07 opt 0.0 0

22-1010 3160.17 1 0.01 3160.17 opt 0.0 0

23-0811 32911.5 1 0.67 32911.5 opt 0.0 0

23-1010 588.49 1 0.01 588.49 opt 0.0 0

23-1013 4528.74 1 0.01 4528.74 opt 0.0 0

24-0206 269050.0 1 0.01 269050.0 opt 0.0 0

24-0414 1786550.0 1 0.01 1786550.0 opt 0.0 0

24-0609 318115.0 1 1.04 318115.0 opt 0.0 0

24-0806 52840.1 1 0.01 52840.1 opt 0.0 0

25-0210 459095.0 1 0.01 459095.0 opt 0.0 0

25-0410 792737.0 1 0.01 792737.0 opt 0.0 0

Table 29: Second phase of the two-phase algorithm and CPLEX comparison on EDF instances with

lagrangian prices

38

Two-phase algorithm CPLEX

instance value #iter time value gap time (s) #nodes

26-0806 43553.0 1 0.68 43553.0 opt 0.0 0

26-1010 41206.6 1 0.01 41206.6 opt 0.0 0

26-1013 40192.6 1 0.01 40192.6 opt 0.0 0

27-0206 71559.6 1 0.46 71559.6 opt 0.0 0

27-0414 45201.6 1 0.0 45201.6 opt 0.0 0

27-0605 4632360.0 1 0.11 4632360.0 opt 0.0 0

28-0210 35630.3 1 0.02 35630.3 opt 0.0 0

28-0410 29356.2 1 1.4 29356.2 opt 0.0 0

28-0609 4656880.0 1 0.22 4656880.0 opt 0.0 0

28-0811 922252.0 1 0.67 922252.0 opt 0.0 0

29-0605 28855.2 1 0.83 28855.2 opt 0.0 0

29-1010 25943.4 1 0.73 25943.4 opt 0.0 0

29-1013 25611.8 1 0.7 25611.8 opt 0.0 0

30-0609 24340.9 1 0.81 24340.9 opt 0.0 0

31-0806 938766.0 1 0.4 938766.0 opt 0.0 0

32-0206 231193.0 1 0.91 231193.0 opt 0.0 0

32-0414 396255.0 1 0.38 396255.0 opt 0.0 0

33-0210 219105.0 1 0.87 219105.0 opt 0.0 0

33-0410 703336.0 1 0.13 703336.0 opt 0.0 0

34-0206 96963.1 1 0.76 96963.1 opt 0.0 0

34-0414 171476.0 1 0.01 171476.0 opt 0.0 0

34-0811 1807.23 7 0.15 1807.23 opt 0.0 0

34-1010 840307.0 1 1.63 840307.0 opt 0.0 0

34-1013 1048060.0 1 1.27 1048060.0 opt 0.0 0

35-0210 81240.0 1 0.77 81240.0 opt 0.0 0

35-0410 87091.2 1 0.01 87091.2 opt 0.0 0

35-0609 25960.7 1 0.15 25960.7 opt 0.0 0

36-1010 5966.28 1 0.76 5966.28 opt 0.0 0

36-1013 6116.11 1 0.76 6116.11 opt 0.0 0

37-0806 -2311.6 1 0.15 -2311.6 opt 0.0 0

39-0206 71455.2 321189 3601.21 71807.8 opt 0.0 144

39-0414 25697.9 1 0.3 25697.9 opt 0.0 0

40-0210 97332.2 298913 3601.14 97437.8 opt 6.0 7642

40-0410 45116.0 1 0.32 45116.0 opt 0.0 0

42-1013 4306.73 3 0.3 4306.73 opt 0.0 0

Table 30: Second phase of the two-phase algorithm and CPLEX comparison on EDF instances with

lagrangian prices

39

References

[1] Wim van Ackooij, Claudia d’Ambrosio, Dimitri Thomopulos, and Renan Spencer Trindade.

“Decomposition and shortest path problem formulation for solving the hydro unit commitment

and scheduling in a hydro valley”. In: European Journal of Operational Research 291.3 (2021),

pp. 935–943.

[2] Alicia Arce, Takaaki Ohishi, and Sérgio Soares. “Optimal dispatch of generating units of the

Itaipú hydroelectric plant”. In: IEEE Transactions on power systems 17.1 (2002), pp. 154–158.

[3] John E Beasley and Nicos Christofides. “An algorithm for the resource constrained shortest path

problem”. In: Networks 19.4 (1989), pp. 379–394.

[4] Chun-tian Cheng, Sheng-li Liao, Zi-Tian Tang, and Ming-yan Zhao. “Comparison of particle

swarm optimization and dynamic programming for large scale hydro unit load dispatch”. In:

Energy Conversion and Management 50.12 (2009), pp. 3007–3014.

[5] Daniel Duque, Leonardo Lozano, and Andrés L Medaglia. “An exact method for the biobjec-

tive shortest path problem for large-scale road networks”. In: European Journal of Operational

Research 242.3 (2015), pp. 788–797.

[6] David Eppstein. “Finding the k shortest paths”. In: SIAM Journal on computing 28.2 (1998),

pp. 652–673.

[7] Wei Fan, Xiaohong Guan, and Qiaozhu Zhai. “A new method for unit commitment with ramping

constraints”. In: Electric Power Systems Research 62.3 (2002), pp. 215–224.

[8] Markus Kruber, Axel Parmentier, and Pascal Benchimol. Resource constrained shortest path

algorithm for EDF short-term thermal production planning problem. 2018. doi: 10.48550/

ARXIV.1809.00548. url: https://arxiv.org/abs/1809.00548.

[9] Eugene L Lawler. “A procedure for computing the k best solutions to discrete optimization

problems and its application to the shortest path problem”. In:Management science 18.7 (1972),

pp. 401–405.

[10] Juan I Pérez-Dı́az, José R Wilhelmi, and Luis A Arévalo. “Optimal short-term operation sched-

ule of a hydropower plant in a competitive electricity market”. In: Energy Conversion and

Management 51.12 (2010), pp. 2955–2966.

[11] Juan I Pérez-Dı́az, José R Wilhelmi, and José Ángel Sánchez-Fernández. “Short-term opera-

tion scheduling of a hydropower plant in the day-ahead electricity market”. In: Electric Power

Systems Research 80.12 (2010), pp. 1535–1542.

[12] Deepak Rajan, Samer Takriti, et al. “Minimum up/down polytopes of the unit commitment

problem with start-up costs”. In: IBM Res. Rep 23628 (2005), pp. 1–14.

[13] Ted K Ralphs, Matthew J Saltzman, and Margaret M Wiecek. “An improved algorithm for

solving biobjective integer programs”. In: Annals of Operations Research 147.1 (2006), pp. 43–

70.

[14] Celso C Ribeiro and Michel Minoux. “A heuristic approach to hard constrained shortest path

problems”. In: Discrete Applied Mathematics 10.2 (1985), pp. 125–137.

40

[15] Youcef Sahraoui, Pascale Bendotti, and Claudia d’Ambrosio. “Real-world hydro-power unit-

commitment: Dealing with numerical errors and feasibility issues”. In: Energy 184 (2019), pp. 91–

104.

[16] Raouia Taktak and Claudia D’Ambrosio. “An overview on mathematical programming ap-

proaches for the deterministic unit commitment problem in hydro valleys”. In: Energy Systems

8.1 (2017), pp. 57–79.

[17] Lara Turner. “Variants of the shortest path problem”. In: Algorithmic Operations Research 6.2

(2011), pp. 91–104.

[18] Marc Visée, Jacques Teghem, Marc Pirlot, and L. Ekunda Ulungu. “Two-phases method and

branch and bound procedures to solve the bi–objective knapsack problem”. In: Journal of Global

Optimization 12.2 (1998), pp. 139–155.

[19] Gang Yu and Jian Yang. “On the Robust Shortest Path Problem”. In: Computers & Opera-

tions Research 25.6 (1998), pp. 457–468. issn: 0305-0548. doi: https://doi.org/10.1016/

S0305-0548(97)00085-3. url: https://www.sciencedirect.com/science/article/pii/

S0305054897000853.

[20] Xiaoyan Zhu and Wilbert E Wilhelm. “A three-stage approach for the resource-constrained

shortest path as a sub-problem in column generation”. In: Computers & Operations Research

39.2 (2012), pp. 164–178.

[21] Xiaoyan Zhu and Wilbert E Wilhelm. “Three-stage approaches for optimizing some variations

of the resource constrained shortest-path sub-problem in a column generation context”. In:

European journal of operational research 183.2 (2007), pp. 564–577.

41

