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Universitat Rovira i Virgili
Tarragona, Spain

ramon.estalella@urv.cat

Carlos Olalla
Dept. d’Enginyeria Electrònica, Elèctrica i Automàtica
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Abstract—One of the open problems in the design of power
converters is related to the selection of components, and the ef-
fects that these choices may have, beyond steady-state properties,
in the dynamical behaviour of the system. This paper describes
a numerical method that may help in finding appropriate
components. The method is based on Lyapunov functions that are
efficiently manipulated to derive linear matrix inequality (LMI)
based conditions. With the proposed approach, the domain of
component values that verify given dynamical properties can be
estimated. The resulting parametric domain can then be used by
the practicing engineer to optimise other factors, such as weight,
cost or volume. The advantages of the proposed approach have
been illustrated with the design of two different input filters for
power converters operating as constant power loads.

I. INTRODUCTION

The design of power filters is an important part of the
design of switching power converters. These converters often
require input filters to reduce current and voltage ripple
and to comply with conducted electromagnetic interference
(EMI) regulations. Since input filters are typically designed
on top of existing converters, designers must consider the
possible interactions that may arise. Such interactions can not
only make a switching converter lose some of the dynamic
performance but even make it unstable.

The basis for what can be considered a conventional design
can be seen on [1]–[3]. This method allows to select the
parameters of the filter by using simplifications of the Nyquist
stability criteria. Although the method is straightforward to
apply, the simplifications might lead to conservative results.

This paper takes another route by using Lyapunov-based
methods. Such approaches allow to ensure stability and per-
formance properties of a dynamical system by solving linear
matrix inequalities (LMIs). Such numerical tools should help
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to find regions in the space of the aforementioned parameters
of the filter, ensuring design specifications. These specifica-
tions may include attenuation, stability, decay rate or damping
ratio, to name some. Within the resulting region of parameters,
the designer can choose appropriate components, according
to other restrictions such as weight, cost, volume, fitting to
commercial values, etc.

The paper follows the ideas in [4] to manipulate parameter-
dependent Lyapunov functions and derives some original LMI
conditions that are useful in the definition of the constraints.
Although the proposed methods could be used to design
different parts of a power converter, these ideas are illustrated
with two examples of input filter design for power conversion
systems behaving as constant power loads.

The paper is organized as follows. First, the basis for the
robust stability and performance is introduced in Section II.
Section III describes a bisection-based method to enlarge the
parametric space that satisfies the stability and performance
constraints. Section IV shows the case example of input filter
design and evaluates the robustness of the proposed approach.
Finally, conclusions are given in Section V.

II. NUMERICAL METHODS FOR ROBUST STABILITY AND
PERFORMANCE

The investigation of the domain of stability that we propose
is based on a convex combination of Lyapunov functions,
following the ideas in [4]. Besides of stability, transient
performance is addressed by robust pole placement.

A. Robust Stability
Consider the following continuous-time linear system

ẋ(t) = Ax(t) (1)

It has been proven that A is asymptotically stable if and only
if the LMIs

P > 0; A′P+PA < −I (2)



or equivalently, with W = P−1

W > 0; AW +WA′ < −I, (3)

admit a feasible solution. In (2) and (3), I is the identity matrix
of appropriate dimensions and A′ is the transpose of the state
matrix A. The bold notation in P and W indicates that these
are variables that must be found to prove stability.

In the case where A is not precisely known, and as long
as the unknown parameters appear linearly, it is possible to
define A as a polytope that contains the uncertain domain
of parameters. The polytope can be modeled as the convex
combination of its N vertices Aj as follows

A(p) =

N∑
j=1

λjAj ;

N∑
j=1

λj = 1; λj ≥ 0. (4)

where p represents the vector of parameters that are uncertain.
If there exists a common Lyapunov matrix W that verifies

(3) for all the vertices of the polytope (4), the stability of
the uncertain matrix A can be assured. Note that only by
verification of the vertices, the properties hold in the entire
domain of p. Also, this is only a sufficient condition for robust
stability and such approach often leads to conservative results.

For less conservative results, the set of LMIs

WjA
′
j +AjWj < −I; j = 1, ..., N

WkA
′
j +AjWk +WjA

′
k +AkWj <

2

N − 1
I

j = 1, ..., N − 1; k = j + 1, ..., N

(5)

may be used. In (5), Wj corresponds to a convex combination
of positive definite matrices. The resulting Lyapunov function
is defined as in (4), such that W(p) depends on p.

W(p) =

N∑
j=1

λjWj ;

N∑
j=1

λj = 1; λj ≥ 0. (6)

Proof of the sufficiency of these LMIs is given on [4]. The
resulting parameter-dependent Lyapunov function provides
some degree of flexibility, and therefore the results are less
conservative than using a unique W for all vertices.

B. Robust Performance Constraints

The dynamical characteristics of the system to be designed
can be specified by pole placement techniques. First, it is pos-
sible to relate some properties to a circle in the complex plane
centered at the origin with radius ρ [5]. Other characteristics
can be related to a conic sector in the left-half plane with an
angle equal to θ [6]. Figure 1 shows these conditions in the
complex plane.

1) Circle of Radius ρ: The maximum natural frequency
of oscillation of the poles of a system can be constrained to
ρ. The LMI conditions that verify the location of the system
poles in a generic circular region have been derived in [5].
The LMIs for the particular case where the circle is centered
at 0+ 0j are shown in Eqs. (7) to (9), where Arj = Aj − ρI.

Re

Im

ρ

θ

Fig. 1: Region defined with the pole placement LMIs.

2) Conic Sector of Angle θ: As shown in [6], the dynamic
system (1) has its poles inside a conic sector of angle θ if and
only if there exists W > 0 such that(

sinθ(AW +WA′) cosθ(AW −WA′)
cosθ(WA′ −AW) sinθ(AW +WA′)

)
< 0 (10)

combining this LMI with the sufficient condition for
parameter-dependent Lyapunov functions described in [4], two
novel LMIs (11) and (12) have been derived. These LMIs
consider parameter-dependent Lyapunov functions (6) and are
one of the contributions of the paper.

C. Parameter Region

As stated in the introduction, the proposed algorithm does
not return a single parameter value, but rather a region or
a domain of values. As in [4], [5], consider the following
continuous-time linear system:

ẋ(t) =

(
A0 +

m∑
i=1

αiEi

)
x(t) (13)

where x ∈ Rn, A0 ∈ Rn×n is the nominal matrix of the
system, Ei ∈ Rn×n (i = 1, ...,m) are given matrices repre-
senting the perturbation directions and αi ∈ R (i = 1, ...,m)
are scalar values defining the amount of perturbations allowed.

The parameter dependent matrix in (13) is equivalent to the
representation in (4). Note that the sum of A0 with the different
Ei matrices multiplied by the scalar values in the vector αi

results in the vertices of the domain of A(p). It is worth to
remark, however, that this approach allows to consider the
influence of the parameters in p separately.

Each perturbation direction is related to a vector αi, which
contains two values (lower and upper) that are connected to the
range of possible parameter values. Thus, the vector is defined
as αi := [−αi, αi]. The aim is to maximise the domains
[−αi, αi] ∀i = 1, . . . ,m while ensuring stability and pole
placement conditions.

A stable initial A0 is assumed. In the case where pole
placement is required, also an initial A0 with its poles inside
the region is assumed.

The problem is written such that each perturbation direction
can be related to an uncertain parameter of the system. The
range of values for each parameter depends on: the initial
values (set on A0), the scale of the parameters (set on Ei) and



(
ArjWj +WjA

′
rj ArjWj

WjA
′
rj −ρWj ]

)
<

(
−I 0
0 0

)
; j = 1, ..., N (7)

 ArjWj +WjA
′
rj +ArjWk

+ArkWj +WjA
′
rk +WkA

′
rj

ArjWj +ArjWk +ArkWj

WjA
′
rj +WjA

′
rk +WkA

′
rj −ρ(2Wj +Wk)

 <
1

(N − 1)2

(
I 0
0 0

)
j = 1, ..., N ; k = 1, ..., N ; k ̸= j

(8)



ArjWk +ArkWj +WjA
′
rk

+WkA
′
rj +ArjWl +ArlWj

+WjA
′
rl +WlA

′
rj +ArlWk

+ArkWl +WlA
′
rk +WkA

′
rl

ArkWj +ArjWk +ArlWj

+ArjWl +ArlWk +ArkWl

WjA
′
rk +WkA

′
rj +WjA

′
rl

+WlA
′
rj +WkA

′
rl +WlA

′
rk

−2ρ(Wj +Wk +Wl)

 <
6

(N − 1)2

(
I 0
0 0

)

j = 1, ..., N − 2 ; k = j + 1, ..., N − 1 ; l = k + 1, ..., N

(9)

(
sinθ(AjWj +WjA

′
j) cosθ(AjWj −WjA

′
j)

cosθ(−AjWj +WjA
′
j) sinθ(AjWj +WjA

′
j)

)
< −I ; j = 1, ..., N (11)

(
sinθ(AjWk +AkWj +WjA

′
k +WkA

′
j) cosθ(AjWk +AkWj −WjA

′
k −WkA

′
j)

cosθ(−AjWk −AkWj +WjA
′
k +WkA

′
j) sinθ(AjWk +AkWj +WjA

′
k +WkA

′
j)

)
<

2

N − 1
I

j = 1, ..., N − 1 ; k = j, ..., N

(12)

the limits of αi, which are found by checking the feasibility
of the LMI conditions.

A problem particular to each system consists in finding the
state matrix A and defining the perturbation matrices E in
a way that it is possible to overcome the usually non linear
relationships between the elements in the original matrix A
and the parameters of the system. Perturbation matrices Ei

must be defined carefully, since the same parameter can appear
in several positions of the matrix.

Considering the developments shown in this section, we
derive the following proposition.

Proposition 1. For a given uncertain system (4), if there exist
positive definite matrices Wi, ∀i = 1, . . . , N , such that the
conditions (7), (8), (9), (11) and (12) are satisfied, then the
stability of matrix A(p) and its pole-placement performance
in the subset formed by the circle of radius ρ and the conic
sector of angle θ is guaranteed.

Proof 1. Directly follows from the elements given in Sections
II-A and II-B.

III. BISECTION ALGORITHM

Proposition 1 allows to verify if a range of parameters in
matrix A satisfy the conditions mentioned above. However the
objective of the paper is to find this range of parameters in
matrix A. Finding how large the perturbation amount can be
is the job of the bisection algorithm.

Given an initial feasible A0 matrix and perturbation direc-
tions Ei, the bisection algorithm finds a feasible range of[
−αi, αi

]
∀i = 1, ...,m.

An additional boolean vector ψi is used in order to define
the desired “direction of movement” for each αi. The vector
is defined as ψi := [ψi, ψi], ∀i = 1, ...,m. As an example,
for ψi = [0, 1], the search is restricted to positive values of
αi, and the corresponding vector

[
−αi, αi

]
is [0, αi].

The directionality can be useful to only increase or to only
decrease some particular parameter through αi. As an example
in the context of power electronics, the search for smaller
parameters may translate to smaller components and therefore
lower costs. Conversely, the search for larger parameters may
be related to parasitic elements, in order to assess the influence
of these undesired factors in the dynamic behaviour.

The search of the feasible domain is carried out in two steps.
First, the maximum independent non-symmetric domain for
each individual perturbation direction αi is found. This step is
noted as independent because only one perturbation direction
is tackled at a time. It is non-symmetric since the distances
between A0 and the limits of the stability domain are not
necessarily symmetric i.e. maximum and minimum αi values[
−αi, αi

]
do not necessarily have the same magnitude. Figure

2a shows the idea of these domains for case in which N = 2.
The domain is found by bisection, i.e.: testing the feasibility
or the unfeasibility of the LMI conditions.

The resulting feasible domains are used as a scaling param-
eter to obtain the simultaneous non-symmetric domain. Using
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Fig. 2: Bisection algorithm domains examples

the previous domain as a scaling parameter helps in dealing
with the case when there is a big discrepancy in the possible
range of movement between directions. Simultaneous means
that all the Ei are used simultaneously to create the polytope
to be tested by the LMIs. Again, this domain is found by
bisection. Now the bisection only works on a single scalar
value of α and the individual αi are obtained as a product of
α and the scaling parameter. Figure 2b shows an example of
how the final polytope may look like.

The algorithm described above can be posed as follows:

Algorithm 1.
1. Define the problem description: matrices A0, Ei, ψi and
requirements ρmax, θmax.
2. Obtain the independent non-symmetric domains.
∀ i = 1, ...,m

if ψi = true, max(αi) subject to LMIs (7), (8),
(9), (11), (12).

else αi = 0.
if ψi = true, max(αi) subject to LMIs (7), (8),

(9), (11), (12).
else αi = 0.

3. Obtain the simultaneous non-symmetric domain.
max(α) subject to LMIs (7), (8), (9), (11), (12).

4. Each individual αi is obtained by α and the scaling
parameter.

This final domain is used to obtain the range of feasible
parameters of the system. Any combination of the αi obtained
is feasible. This is also true for the parameters of the system
if they are independent with respect to each other.

IV. CASE EXAMPLE: ROBUST FILTER DESIGN

The basis for what can be considered conventional filter
design can be seen on [1]–[3]. These conventional methods

v̂g

H(s)

Input
Filter

ConverterZ0(s) Zi(s)

T (s)

Controller

d̂

v̂

(a) Generic filter plus closed loop converter.
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P
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(b) LC filter with parallel Rf and Lb branch, loaded by a CPL.

Fig. 3: Generic and simplified models

rely on simplifications of the stability criteria that might lead to
conservative results. Figure 3a shows a typical representation
of the design problem, a power converter with a control loop
and an input filter. In Figure 3b, the converter is simplified
as a constant power load (CPL), and the filter is a third order
case. The tools described above are used to perform input filter
design for two different filters.

Reducing the size of the filter is one of the objectives,
which is in accordance with decreasing the capacitance and the
inductance of the elements in the filter. A feasible oversized
filter can be used as a starting point for the search of the
feasible domain of parameters. As illustrated in Figure 4 the
feasible domain depends on the initial system A0.

Therefore, a recursive approach that runs Algorithm 1 and
finds new matrices Adnew is proposed. This iterative process
will be finished when the range of the filter parameters (Pi)
obtained is lower than some given threshold ∆pi

. A final
bisection search will be performed, with the objective of
finding the largest possible region of parameters satisfying the
dynamical properties. This final search will start at the most
favourable point found and go in the opposite direction in
order to find a large parameter region. The algorithm used is
defined on Algorithm 2.

Algorithm 2.
1. Set the specifications of the problem.
2. Check A0 feasibility with αi = 0. Otherwise an error is
returned.
3. Run Algorithm 1 to obtain the αi.
4. Compute Adnew with an average value of αi.
5. If (Piold − Pinew > ∆i) → A0 = Adnew and go back to 3,
else obtain A0 with the maximum values of αi.
6. Run Algorithm 1 with ψi = 1− ψi.
7. Compute the final parameter region A0 and αi.
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Fig. 4: Example of the domain obtained by the bisection
algorithm with A0 and the domain obtained with Adnew.

A. Case Example: LC Filter with parallel L-R damping
branch

In this filter topology, shown in Figure 3b, the aim is
to reduce the filter parameters while being able to obtain a
parameter region from which a designer can extract viable
filter parameters. The damping is given by a L-R branch in
parallel with the filter inductance. The losses are low since the
DC power does not involve the damping resistor. Such system
has the following state space representation A matrix:

A =

 0 0 −1
Lf

0
−Rf

Lb

−1
Lb

1
Cf

1
Cf

β
Cf

 ,with x =

iLf

iLb

vCf

 (14)

as the state vector, and β = P
V 2 , P being the set power and V

the voltage on the CPL. The following perturbation matrices
will be defined:

E1 =

0 0 −1
Lfsc

0 0 0
0 0 0

 ; E2 =

 0 0 0
0 0 0
1

Cfsc

1
Cfsc

β
Cfsc


E3 =

0 0 0

0
−Rf0

Lbsc

−1
Lbsc

0 0 0


(15)

This means that the uncertain model will have N = 23 = 8
vertices. The suffix “sc” is short for “scaling”. All the param-
eters with this suffix are used in order to keep the perturbation
values as close as possible to each other. The designed filter
parameters can be obtained by

Ades = A0 +

k∑
i=1

αiEi (16)

where Ades and A0 have the same structure as A. The initial
parameters of the filter in A0 are noted with the suffix “0”,
whereas the range of parameters that has been found is noted
with the suffix “d”.

Param. Initial Values Parameter Ranges Selected Values
Lf/µH 500 7.82 - 246e6 10
Cf/µF 100 21.3 - 83.4 33
Lb/µH 150 1.96 - 2.91 2.2

TABLE I: LC with parallel RL branch numerical example

In the case at hand, each of the parameters in the filter only
depends on one particular αi and Ei (they are independent
from each other), thus they can be found as follows:

Lfd = (−Adj(1, 3))
−1

=

(
1

Lf0

+ α1
1

Lfsc

)−1

(17)

Cfd = (Adj(3, 1))
−1

=

(
1

Cf0

+ α2
1

Cfsc

)−1

(18)

Lbd = (−Adj(2, 3))
−1

=

(
1

Lb0

+ α3
1

Lbsc

)−1

(19)

For this particular filter, only one search is performed, imple-
menting the three perturbation directions simultaneously. Note
that, since α1, α2 and α3 are vectors of dimension 2, a range
for each parameter Lf , Cf and Lb is found. The damping
resistance Rd is obtained as the optimum value for damping
the filter according to [7]. The search has been programmed
such that after each run of the bisection algorithm a new Rd

is obtained which will be used to update the A0 matrix.
For the numerical example, performance conditions have

been set to: attenuation of at least −0 dB at the switching
frequency of fsw = 250 kHz and a damping ratio of at least
ζ = 0.3.

The attenuation is enforced with the use of ρ, since the
poles of the system are in agreement with the magnitude
asymptotes of the input-to-output current transfer function.
Limiting the frequency of the poles sets a minimum distance
between them and the switching frequency fsw, at which a
specific attenuation is desired. For a given attenuation atten,
and a slope of the high frequency asymptote of the filter
dB/Oct, ρ is found as follows:

ρ =
2πfsw
2p

; p =
atten

dB/Oct
(20)

Then, the minimum damping ratio is enforced through the
conic region of angle θ. For a given minimum damping ratio
ζ, θ is found as follows:

θ = cos−1(ζ). (21)

Table I shows numerical values tested for this type of
filter, including the initial values from which Algorithm 2
has started, the resulting range of filter parameters and finally
a possible filter option. Note that the initial system is well
oversized. The methods described above are able to reduce the
overall size of the components and provide the designer with a
range of parameters. From that range, the design engineer can
choose the most suitable values according to parameters other
than stability or dynamical performance. It can be seen that
all of the parameters have a range that allows to easily find
commercially available components. The huge upper range of
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Lf indicates that in practice there is not limit on how large
that inductor can be.

Figure 5 shows the frequency response of the final filter
(as well as the maximum and minimum values). Attenuation
at fsw is higher than the specifications. It is also possible to
check that the damping is higher than the specifications.

B. Case Example: LC Filter with RC Parallel Damping

The schematic for this type of filter can be seen on Figure
6. For this case the state matrix of the system is

A =


−RL

Lf

−1
Lf

0
1
Cf

β
Cf

− 1
RdCf

1
RdCf

0 1
RdCb

−1
RdCb

 ,with x =

iLf
(t)

vCf
(t)

vCb
(t)


(22)

as the state vector, and β = P
V 2 . The perturbation matrices are

defined as:

E1 =

−RL
Lfsc

−1
Lfsc

0

0 0 0
0 0 0

 ,

E2 =

 0 0 0
1

Cfsc

β
Cfsc

− 1
RdCfsc

1
RdCfsc

0 0 0

 ,

E3 =

0 0 0
0 −1

RdscCf

1
RdscCf

0 0 0

 ,

E4 =

0 0 0
0 0 0
0 1

RdscCbsc

−1
RdscCbsc

 .

(23)

In order to show the versatility of the method, we employ
a different approach in this case. Algorithm 2 is employed
twice, for two different sets of parameters of the filter. The
first time, the algorithm finds a range for the values of Lf and
Cf (E1 and E2). The second time, the algorithm looks for the
maximum admissible range of values of Rd and Cb (E3 and
E4). Since only two perturbation matrices are applied at the
same time the resulting uncertain model will have N = 22 = 4
vertices. The range of parameters is obtained by:

Lfd = −Ad(1, 2)
−1 = −

(
1

L0
+ α1

1

Lsc

)−1

(24)

Cfd = Ad(2, 1)
−1 =

(
1

C0
+ α2

1

Csc

)−1

(25)

Rdd
= (CfAd(2, 3))

−1
=

(
1

Rd0
1
+ α3

1

Rdsc

)−1

(26)

Cbd = (Rdd
Ad(3, 2))

−1
=

(
Rdd

Rd0Cb0

+ α4
Rdd

RdscCbsc

)−1

(27)

Tables II and III show the results of the example design.
The performance conditions are an attenuation of −80 dB at
the frequency of 250 kHz and a damping ratio of ζ = 0.3.

As it can be seen in the table, the initial values of the filter
are oversized to L = 470 µH, C = 800 µF, Rd = 1Ω, and
Cb = 2000 µF. The first search returns a range of values
from which the designer can choose: L ∈ 73.2 − 1890 µH
and C ∈ 59.3 − 162 µF. Once these components are chosen
to be L = 220 µH and C = 100 µF, the second search returns
another range of values for Rd and Cb: Rd ∈ 0.67−1.5Ω and
Cb ∈ 458 − 410e9 µF. In practice, such a large upper bound
means that there is no limit in choosing a large capacitor
Cb. Notice that since the parameters Rd and Cb depend on
each other (27) even though the alpha region is an orthogonal
plolytope the filter parameter region is not. In order to show
a range of parameters that are all compatible with each
other, the region previously mentioned has been conservatively
constrained to be orthogonal. It could be the case that this
simplification limits the values too much, in that case it would
be necessary to look at the non-orthogonal region.

Figure 7 shows the magnitude frequency response of the
possible and chosen filter values. It can be seen that the



Param. Initial values Result. Range First Selection
Lf/µH 470 73.2 - 1890 220
Cf/µF 800 59.3 - 162 100
Rd/Ω 1 1 1
Cb/µF 2000 2000 2000

TABLE II: Filter values after Lf and Cf iteration

Param. First Selection Result. Range Final Selection
Lf/µH 220 220 220
Cf/µF 100 100 100
Rd/Ω 1 0.67 - 1.5 0.7
Cb/µF 2000 458 - 410e9 940(2x470)

TABLE III: Filter values after Rd and Cb iteration

attenuation at fsw = 250 kHz is better than the specification of
−80 dB set by the design constraints. The damping constraints
are also met.

C. Influence of Initial Conditions

One of the possible problems of the proposed approach is
its sensitivity to different initial conditions in A0. Although
there is no guarantee that the proposed method will achieve
good results in all possible cases, the results have been found
to present reasonable robustness to changes in A0. In order to
illustrate this point, a few tests are shown. The tests compare
the results in the previous section with results obtained with
different A0.

The example from Section IV-A has been recalculated with
smaller and larger initial parameters. The results are given
on Table IV. First, it can be seen how the lower bound for
Lf , Cf and Lb is relatively similar. Also, for different initial
conditions the final ranges of values present differences, but
they still allow the designer to choose similar or even smaller
components.

The case in Section IV-B has been tested against initial
conditions with values 40 % higher or lower than those in the
original A0. The resulting ranges can be seen in Table V. The
resulting region still allows the designer to choose the same
final values. In addition, it can be seen how the case that allows
the lowest bound in Rd is also the case that exhibits a higher
lower bound in Cb. This illustrates the trade-off between the
different ranges in the components.

D. Numerical Complexity

The method proposed in the paper employs LMIs that are
efficiently solved by interior-point methods. The complexity
of the problem can be computed in terms of the number of
parameters to be evaluated m and the size of the Lyapunov
matrices, which is linked to the number of states in A, i.e. n.
Additionally, since the algorithms rely on a feasibility test, the
precision tolerance of the bisections also plays a role.

In the examples demonstrated above, conventional comput-
ers at the time of write-up of the paper, using MATLAB with
YALMIP [8] and MOSEK [9] can solve Algorithm 1 with
running times in the order of seconds up to one or two tens
of seconds. Then, Algorithm 2 calls Algorithm 1 around ten
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response of the filter.

Original initial values
Param. Initial values Parameter ranges
Lf/µH 500 7.82− 246e6
Cf/µF 100 21.3− 83.4
Lb/µH 150 1.96− 2.91

Halved initial values
Param. Initial values Parameter ranges
Lf/µH 250 5.78− 17.92
Cf/µF 50 17.9− 24.2
Lb/µH 75 1.93− 2.76

Doubled initial values
Param. Initial values Parameter ranges
Lf/µH 1000 6.88− 217
Cf/µF 200 27.44− 110
Lb/µH 300 1.53− 2.03

TABLE IV: Comparison of different initial points for the LC
filter with parallel RL branch

times per design cycle which gives a rough estimate of how
long the whole procedure can take.

V. CONCLUSIONS

This paper presented a numerical approach to physical
parameter selection by means of uncertain models. LMIs have
been used to implement performance conditions which force a
minimum attenuation and damping of the system. A modified
bisection algorithm has been used in order to find a region of
parameters compatible with the performance conditions. It has
been shown that it is possible to start with large parameters
and iterate to find parameter regions with smaller overall
parameters until certain tolerance conditions are met.

It is important to keep in mind that this approach may lead
to conservative results and thus it does not guarantee the most
optimised values. Nevertheless it gives the designer a tool to
quickly estimate a feasible set of parameters.

A couple of design examples have been shown. Two differ-
ent filter topologies have been used in order to implement the
numerical methods described. Any filter value defined inside
the found parameter region can be chosen according to other
design criteria such as cost, size or other arbitrary criteria.



Original initial values
Param. Initial values Resulting range
Lf/µH 220 220
Cf/µF 100 100
Rd/Ω 1 0.67 - 1.5
Cb/µF 2000 458 - 410e9

Initial values reduced by 40 %
Param. Initial values Resulting range
Lf/µH 220 220
Cf/µF 100 100
Rd/Ω 0.6 0.59 - 2.02
Cb/µF 1200 907 - 258e9

Initial values increased by 40 %
Param. Initial values Resulting range
Lf/µH 220 220
Cf/µF 100 100
Rd/Ω 2 0.67 - 1.4
Cb/µF 4000 432 - 436e9

TABLE V: Filter values after Lf and Cf iteration, with double
initial values
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