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Abstract—Pairwise testing (PT) exercises the interactions of
pairs of input parameters. The approach is classically defined
for a flat set of parameters, the number of which is fixed.
Such a definition does not fit well with applications that process
structured data like XML and JSON documents. This paper
revisits the PT concepts to accommodate hierarchical data
structures. The choices and pairs are created by considering the
multiplicity of data instances, their access paths and common
ancestors. The revised PT approach is implemented on top of on
a recent data generation tool, TAF. TAF mixes random sampling
and constraint solving to produce diverse data from XML-based
models. Our PT implementation interacts with TAF by inserting
pair coverage constraints into the models. It monitors overall
coverage progress by XPath queries on the data returned by
TAF. The approach is demonstrated for two data models: a 3D
scene for an agricultural robot, and a population of taxpayers
for a tax management system.

Index Terms—pairwise testing, combinatorial testing, software
testing, multiplicity, structured data model, test case generation

I. INTRODUCTION

Any software, service, or system, defines an input space
that cannot be exhaustively explored. Combinatorial testing [1]
is a widespread approach to select test cases in spaces
characterized by a set of parameters. The domains of the
parameters are partitioned into classes of values, forming the
choices for each parameter. Combinatorial testing then covers
tuples of choices coming from different parameters, in order
to exercise their interaction. Empirical studies have shown that
most of the interaction bugs involve the combination of a
few parameters. Hence, a widely used combinatorial testing
strategy is pairwise testing (PT), where the tuples are simply
pairs (checking 2-way interactions).

The PT algorithms classically consider a flat set of
parameters, the number of which is fixed. Such a definition
does not fit well with applications that process structured data
like XML and JSON documents. The input space consists of
data elements of various types, embedded into other elements
with multiplicity. This cannot easily be brought back to a flat
set of interacting parameters. For example, let us assume that
an XML input describes a population of person elements,
having some age and hobby attributes. The structure and
multiplicity cannot be ignored, since the interactions (age,
hobby) may be covered in the context of one person instance,
or of different ones. Moreover, there are various population
sizes to cover, and various possible shapes of persons (e.g.,

a person may or not have children). To further complicate
things, the shape and numerical content of the data may have
to satisfy semantic constraints. For instance, too young persons
cannot have children.

Our work revisits the PT concepts to accommodate
hierarchical data structures with constraints. The contributions
are the following:

• We formalize the PT problem for input data trees
labeled by element names. The definitions of choices and
pairs consider the multiplicity of elements, their access
paths and common ancestors. The coverage checks are
expressed by XPath queries on the data trees. To the
best of our knowledge, this is the first PT formalization
attempt in the context of rich inputs like XML documents.

• We demonstrate an implementation of the formalization
on top of a recent tool, TAF [2]. TAF mixes random
sampling and constraint solving to generate instances
of XML-based data models. We propose two PT algo-
rithms that leverage this tool: 1) unguided, where TAF
freely produces data instances and we monitor coverage
progress, and 2) guided, where we insert pair coverage
constraints into the data models to drive TAF. We also
study greedy variants of the algorithms, seeking to cover
the greatest number of new pairs at each iteration.

• The algorithms are applied to two examples of data
models with constraints: a 3D scene for an agricultural
robot, and a population of taxpayers for a tax
management system.

Section II discusses related work. Section III presents the
formalization of the PT problem, by successively revisiting
the concepts of test parameters, choices and pairs. Section IV
introduces the implementation on top of TAF, and Section V
gives the experimental results for the two case studies. Section
VI concludes the paper with future directions

II. RELATED WORK

Combinatorial testing (CT) uses a set of parameters to build
the test suite, which will contain combinations of choices
partitioning these parameters [1]. The CT algorithms generate
mathematical objects called covering arrays, which represent
test suites at an abstract level. The abstract test cases of the
suite, represented by the choices they cover, must then be
concretized to come up with real test cases.



There are various techniques to build a covering array [3]:
algebraic techniques, greedy algorithms, heuristic search, and
constraint satisfaction. Greedy algorithms can work one-
row-at-a-time, like AETG [4], or horizontally and vertically
expanding the solution, like IPOG [5]. Some CT tools support
(propositional) constraints, like ACTS [6] or PICT [7].

The most difficult aspect in the application of CT is
the modeling of the input domain, to come up with an
adequate abstraction in terms of parameters and choices. One
of the popular methods to help in the modeling task is
the Classification Tree Method [8] (CTM). CTM provides
a structured approach to identify and refine the important
characteristics of a system. Note that having a tree model does
not mean that the test cases themselves have a tree structure.
This is just a convenient abstraction to organize characteristics
down to parameters and choices. The tree must be flattened to
obtain a set of parameters with their choices, so that CT tools
can be used [9]. If the tree has constraints (e.g., a constraint on
the presence of related nodes), the flattening algorithm must
take care that the node-level constraints are translated into
parameter-level ones [10].

Some authors have studied the application of CT for
cases where the data is inherently structured, like ontologies
or XML documents. Klück et al. propose an algorithm to
flatten ontologies [11], so that they can be fed into a CT
tool. The flattening manages the inheritance and composition
relations, but does not consider other types of dependencies,
like the ones introduced by semantic constraints. Multiplicity
is managed by having a different variable for each possible
instance (hence m variables if the multiplicity is bounded
by m), with a special choice epsilon (ϵ) indicating that this
instance is absent and has no value. This processing of
multiplicity can only accommodate a small m. Borazjani et
al. [12] address input models that can have the structure of
graphs and apply CT to XML data. Rather than flattening the
structure, they propose a compositional approach with unit
and integration steps. During integration, the covering arrays
from the unit steps are merged to form larger arrays. The
compositional building of covering arrays has been further
formalized by Kampel et al. [13]. The formalization does not
address multiplicity, and the whole approach assumes that the
unit models are independent. Constraints relating them could
make the CT problem non-compositional.

In contrast to the flattening or compositional approaches, we
do not attempt to bring back the test generation problem to a
problem (or set of problems) that falls in the scope of CT tools.
Rather, we feel free to depart from the classical framework. It
allows us to provide a formalization fully tailored to models
with structure, a high degree of multiplicity, and constraints
relating arbitrary elements. We then demonstrate the feasibility
of an implementation. To accommodate constraints, it directly
generates concrete test data from the model with the help of
a powerful solver (e.g., an SMT solver).

Our formalization establishes a bridge between CT and a
large body of work on structured data like XML documents.
As a theoretical foundation for such documents, related work
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Fig. 1. UML class diagram of the Oz robot case study and running example
of the paper.

has studied tree data models, their specification and queries.
The specification uses schema languages, such as DTD,
W3C XML Schema, and RELAX NG. They have different
expressive powers to define structural shapes [14]. RELAX
NG has the full power of regular tree grammars, which define
tree languages that can be recognized by tree automata. XSD
is less expressive, restricted to a subset called single-type tree
grammars, and DTD is even less expressive. In our work, we
consider single-type tree models that do not contain recursive
definitions. The querying of trees has yielded the development
of languages like XPath [15], which we conveniently use for
checking the coverage provided by the generated data.

III. PAIRWISE TESTING WITH MULTIPLICITY AND
STRUCTURE

This section formalizes pairwise testing from structured data
models. It introduces a number of definitions and examples,
ended by the symbol ♢.

A. Data models under consideration

This paper uses the running example of an agricultural robot
named Oz [2]. The robot has to perform weeding missions
in crop fields. The UML class diagram in Figure 1 specifies
test cases for a simulation platform that creates virtual crop
fields. A test case is composed of a mission (tuned by a
set of parameters), a terrain with its heightmap, and a field
containing multiple rows of vegetables. OCL constraints (not
shown) further specify the shape and content of a test case.

This example illustrates the kind of test data that we
address: hierarchical data structures with multiplicity. The
data instances can be modeled as unranked labeled trees,
i.e., trees in which nodes can have an arbitrary number of
children and are labeled over an alphabet Σ (e.g., Σ =
{“Field′′, “Row′′, “length′′, . . . }). Leaf nodes carry a value,
e.g., a row length of 15.0 meters. Values are from basic types
such as integers, floating point numbers, strings, and Booleans.
Let U be the universe of all such values. We provide below a
formal definition for data instance trees (I-trees, for short).

Definition 1 (Data instance tree (I-tree)). A data instance over
an alphabet Σ and universe U can be defined as a finite tree
structure TΣ,U = (N,Leaf, Comp, λ, V al) where:



• N is the set of nodes, also called the tree domain.
Classically, we define N as a finite, prefix-closed subset
of N∗ (the sequences of natural numbers). Intuitively, the
sequences encode the position in the tree. The root node
is the empty sequence ϵ, its first child is 0, its second
one is 1, and 1 · 2 · 0 is a grand-grand child. Since the
sequences are prefix-closed, if n · i ∈ N then n ∈ N . We
further require that there is no gap in the numbering: if
n · i ∈ N , then n · j ∈ N for all j < i.

• Leaf and Comp form a partition of N . Leaf contains
all the nodes n such that n ·0 /∈ N , while Comp contains
the other nodes. The root is composite: ϵ ∈ Comp.

• λ : N → Σ is the node labeling function.
• V al : Leaf → U is the value function of leaf nodes. ♢

Query languages for data instance trees (e.g., XPath) refer
to the notion of access path, which we introduce below.

Definition 2 (Access path). The access path of a node in a
Σ-labeled tree is a sequence of labels recursively defined as
follows:

• path(ϵ) = λ(ϵ), i.e., the access path to the root is its
label.

• path(n·i) = path(n)·λ(n·i), i.e., the label of a non-root
node is appended to the access path of its parent. ♢

Note that several nodes may have the same access path.
In XPath queries, the access paths would be written with
the ’/’ separator, and a query like /Test case/F ield/Row
would return the set of all nodes having this access
path. Note also that the definition of I-trees does not
distinguish element attributes from atomic elements. They
may be distinguished by adopting the convention that attribute
labels start by the character ’@’, like in the XPath query
/Test case/F ield/Row/@length.

A data model M like the class diagram in Figure 1 restricts
the form of the I-trees which are valid test cases. Examples of
invalid I-trees would have zero or multiple field nodes under
the root (there must be one), or a row length with the value
“Hello World!” (must be a numerical value). The trees must
also satisfy OCL constraints, not visible in Figure 1. Likewise,
XML schemas (DTD, XSD, Relax-NG) or JSON schemas
specify permissible structures and values. They can be further
constrained, e.g., by schematron rules based on XPath [16].
All these modeling notations allow for validation against M :
given a candidate I-tree, it is decidable whether the tree is a
valid instance of M . We note L(M) the set of I-trees accepted
by M . It corresponds to the valid test input domain. If M
involves constraints, the existence of any valid I-tree may not
be decidable. As a special case, the existence of any valid tree
satisfying a test coverage requirement may not be decidable.
Hence, our formalization of pairwise testing cannot exclude
the production of infeasible pairs. But pair coverage analysis
should be possible thanks to validation procedures.

We leave open which modeling notations to use, but assume
that the expression of M can be split into two parts: some
structural declarations on the one hand, and constraints on

the other hand. E.g., M is a hierarchical class diagram plus
OCL constraints, or an XML schema plus schematron rules.
We note Mdcl the model without the constraints. Ignoring the
constraints yields more valid trees, hence L(Mdcl) ⊇ L(M).
The structural notation used for Mdcl usually has limited
expressiveness. For instance, regular tree grammars are the
common foundation of all XML schema languages [14].
We further require that Mdcl possesses the single-type tree
property: in the context of an element, the subelements with
the same label must be declared having the same type. E.g., a
crop field may contain multiple row instances, but there is a
single Row class defining them all. As a result, the access path
of an I-tree node (e.g., /Test case/F ield/Row) suffices to
determine an expected type (e.g., the unique Row definition
in this context). We finally require that Mdcl does not contain
recursive definitions: their consideration is delayed to future
work. Definition 3 recaps our requirements on the data model.

Definition 3 (Data model over Σ and D). Let Σ be an
alphabet, U a universe of values, and D a set of value domains
in P(U). Our work considers data models M over Σ and D,
composed of a structural declaration part Mdcl and a set of
constraints C such that:

• Mdcl specifies a single-type tree language over Σ.
• Mdcl does not contain recursive definitions.
• For each domain d ∈ D mentioned in Mdcl, it is decidable

whether any candidate value u ∈ U is in d.
• For each constraint c ∈ C, it is decidable whether any

candidate I-tree TΣ,U satisfies c. ♢

B. Test parameters revisited

In combinatorial testing, test parameters are first
identified, then their value domains are partitioned into
choices, and finally the choices of the various parameters are
combined. We need to define which parameters should be
considered in the data models.

Informally, we will consider all elements declared having
a basic type as parameters, i.e., all atomic elements and
attributes. For example, a row length is a test parameter.
Moreover, we account for the multiplicity of elements: the
number of rows is also a parameter. The test coverage will
then require I-trees with various sizes and contents.

We extract the parameters from M by processing its
structural declaration part Mdcl. Mdcl may have a design
pattern where some reusable definitions are factorized (e.g.,
inherited classes in UML, global complexType definitions in
XSD). The processing has first to expand all the references
to reusable definitions, yielding nested element declarations.
In this “Russian doll” design pattern, the structure of the
model mirrors the one of the data instances, which is
convenient for our purposes. We then have a second processing
step, which extracts information from the “Russian doll”.
In the content definition of elements, we only keep the
information needed for the identification of test parameters:
which subelements may appear under which element, with
which possible multiplicity, and with which value domain



(for atomic elements). It yields a test data specification tree
(S-tree). An S-tree is very much like an I-tree, but leaf
nodes carry value domains rather than values and we add a
multiplicity meta-attribute to all nodes. Definition 4 introduces
the structure of an S-tree. Definition 5 provides its relation with
Mdcl, giving correctness requirements for the S-tree extraction.

Definition 4 (Structure of a test data specification (S-tree)).
An S-tree over alphabet Σ and universe of domains D is a
structure TΣ,D = (N,Leaf, Comp, λ, Type, µ) where:

• N , Leaf , Comp and λ are the same as in Definition 1.
Note that the nodes of the S-tree have access paths using
Definition 2.

• Type : Leaf → D is the function assigning value
domains to leaf nodes.

• µ : N → P(N) is the function assigning a set of
multiplicity values to each node. The multiplicity set of
the root ϵ must be the singleton {1}. ♢

Definition 5 (Correctness of the S-tree wrt Mdcl). Let
M be a data model over Σ and D, and let Mdcl be
its structural declaration part, defining the tree language
L(Mdcl) ⊇ L(M). The extraction of an S-tree TΣ,D =
(N,Leaf, Comp, λ, Type, µ) from Mdcl must satisfy the
following properties:

• Preservation of the single-type property of Mdcl – Two
different nodes in TΣ,D cannot have the same access path.

• Access paths are untouched – An access path p exists in
TΣ,D if and only if there exists an I-tree IT ∈ L(Mdcl)
in which a node has this access path.

• Value domains are untouched – A value v exists, such
that v ∈ Type(n) for some node n of TΣ,D, if and only
if there exists an IT ∈ L(Mdcl) where v appears under
the access path of n.

• Multiplicity is untouched – A value m exists, such that
m ∈ µ(n.i) for some non-root node n.i of TΣ,D, if and
only if there exists an IT ∈ L(Mdcl) where a node has
the same access path as n and exactly m children labeled
λ(n.i). ♢

For our running example, where Mdcl is the class
diagram shown in Figure 1, the extraction of an S-tree is
straightforward. There is no inheritance relation to expand, and
the notation directly gives the multiplicity of the composition
relations. In other notations like XML schemas, the structural
constructs may involve regular expressions. For example, Mdcl

could define an element containing subelements A, B, C with
the following pattern: A2B + BC∗. The S-tree extraction
would have to interpret the regex to retrieve the correct
multiplicity sets, i.e. {0, 2} for A, {1} for B and N for C.

We derive the set of test parameters from the S-tree nodes
having a variable multiplicity or carrying values (leaf nodes).
Note that the root cannot yield any parameter: it is not a leaf
and its multiplicity is always 1. We encode a parameter by a
quadruplet. The first three components uniquely identify the
parameter, while the fourth one gives its value domain. The
identifying triplet consists of 1) a Boolean value indicating

the parameter category (true for multiplicity parameter or
false for content of a leaf node), 2) its access path split into
the parent path (context) and 3) the name of the element of
interest. For example, the row multiplicity parameter has the
id triplet (true, Test case.F ield, Row) and the value domain
N1. This is formalized in Definition 6.

Definition 6 (Set of Test parameters from an S-tree). Let
TΣ,D = (N,Leaf, Comp, λ, Type, µ) be an S-tree. The set
PARAM ⊆ B× Σ+ × Σ×D is the one built as follows.

• For each non-root node n.i ∈ N such
that card(µ(n.i)) > 1, create a parameter
(true, path(n), λ(n.i), µ(n.i)).

• For each leaf node n.i ∈ Leaf , create a parameter
(false, path(n), λ(n.i), T ype(n.i)). ♢

C. Choices revisited

The value domains of parameters are now partitioned into
choices. For example, the row multiplicity domain is split into
three choices: a small number of rows (say, < 5), a medium
one (from 5 to 50) and a large one (> 50). Since we want the
coverage of choices to be checkable, we require their definition
to explicitly embed a check. The check is a single-variable
predicate, written with the usual Boolean, relational and
arithmetic operators, and possibly other operators (e.g., on
strings). We assume that the choice predicates demonstrably
partition the value domain d of the parameter. A choice is then
encoded like a parameter, but with a predicate replacing the
value domain (e.g., x < 5 replaces N1).

Definition 7 (Set of Choices). Let PARAM ⊆ B×Σ+×Σ×
D be a set of parameters. Given any parameter p ∈ PARAM ,
let PREDx(p) be the set of choice predicates proposed for
partitioning its value domain. The set CHOICE ⊆ B×Σ+×
Σ×

⋃
p PREDx(p) is the one built as follows:

• for each parameter p = (b, ctx, label, d), for each
predicate pr ∈ PREDx(p), create the choice
(b, ctx, label, PREDx(p)). ♢

Due to the multiplicity of elements, the coverage of choices
may have different meanings. Let us assume that we have a
choice for small row lengths (say, ≤ 20.0m). Is the choice
covered when all rows have a small length, or does the
existence of one small row suffice? This work adopts the
existential interpretation, which seems more natural to us.

How to check whether an I-tree covers a choice depends on
the used notation. Many query languages are based on XPath,
so we use this notation as an example. Example 1 shows how
to build an existential XPath query from a choice.

Example 1 (XPath query for checking choice coverage). Let
c = (b, ctx, label, prx) be a choice. We assume that the ctx
expression has the ’/’ separator between labels.
If b = true (multiplicity parameter), we produce a string str
= “count(” . label . “)”, where count() is the Xpath function
for counting nodes. Otherwise str = label.
Then, we substitute str for x in prx: pr = prx[str/x].
And finally we build the query:



“count( ” . ctx . “[” . pr. “] ) > 0”.
For the choice of a small number of rows, this yields:
starting from c = (true, Test case/F ield,Row, x < 5), the
string str = “count(Row)” is produced,
then pr = “count(Row) < 5”, and finally
“count(/Test case/Field[count(Row) < 5]) > 0”.
This query searches for the set of field nodes that have a small
number of row children, and then checks that the node set is
not empty. Similarly, the choice of a small row length gives:
“count(/Test case/Field/Row[@length ≤ 20.0]) > 0” ♢

D. Pairs revisited

This paper focuses on pairwise testing, i.e. on the coverage
of pairs of choices. For example, a pair requires both a small
row length and a high roughness of the terrain, or a small row
length combined with a small number of rows. In the usual
applications of pairwise testing, the pairs combine all possible
choices from any two different test parameters. Then, given
an input data, the coverage of the pair (c1, c2) conjoins two
independent checks: for the coverage of c1 and the one of c2.

The creation and checking of pairs are more complicated
in our case, because the parameters are embedded into a data
structure with multiplicity. First, the existence of self pairs
becomes possible, which come from the same parameter. E.g.,
multiple rows are possible, hence multiple row lengths occur
and we may create pairs testing their interaction. Second, it
is less clear how to check for pair coverage. Assume we have
a pair (small row length, low vegetable density). Do we
mean that the same row has to cover both choices, or can each
choice occur independently? The question can be reformulated
in terms of the lowest (i.e., farthest from the root) common
ancestor of the two covering nodes. In an I-tree, a length node
and a vegetable density node can have two types of lowest
common ancestor (LCA): Field or Row. If we admit any of
them for the coverage of the pair, the checks of the choices can
be independent. If we admit only Row, then the checks are no
longer independent: we must search for a row that covers both
choices at the same time. Another example is the self pair of
two small row lengths. The LCA must be a Field (since a row
has a single length). Again, the checks cannot be independent:
we need a single check, asking for at least two small rows in
a field.

From what precedes, self pairs and LCAs are new aspects
that justify revisiting the notion of pairs. We provide below
a generic formalization of pairwise strategies in terms of
two meta-parameters: Self , determining whether or not to
create self pairs, and Select() determining how to select the
permitted LCAs of a pair. We will later give examples of LCA
selection functions and XPath coverage checks.

The formalization first introduces the notion of divergence
point in the context of a choice (or more generally a
parameter), where the context is the access path of its parent
(cf. Definition 7). Divergence points are where multiplicity
may cause several branches in the I-tree. For example,
a row length has the context Test case/F ield/Row, and
Test case/F ield is a divergence point. Under a field node,

there may be branches for the first row instance, the second
one, and so on. A row multiplicity parameter also has the
context Test case/F ield/Row, but there is no divergence
point. Indeed, there is a single number of rows in the field.
Definition 8 formalizes this. Note how the recursive definition
of the set of divergence points (sdiv, updated as sdiv′)
considers multiplicity parameters (Boolean b is true) like
parameters that have at most one instance.

Definition 8 (Divergence point). Let c be a choice
(bc, ctxc, labelc, predc) created from an S-tree T =
(N,Leaf, Comp, λ, Type, µ).
Let node : Σ+ → N be the function returning the node of T
having a given access path. The functions exists since access
paths are unique in the S-tree (Definition 5).
Let div : B × Σ+ × Σ × P(Σ+) → P(Σ+) be the recursive
function defined as follows: div(b, ctx, label, sdiv) ={

sdiv′ if node(ctx) is the root node ϵ,
div(false, ctx′, label′, sdiv′) otherwise,

Where:
• sdiv′ = sdiv if b = true or µ(node(ctx.label) ⊆ {0, 1},
• sdiv′ = sdiv ∪ {ctx} otherwise,
• ctx′ ∈ Σ+ and label′ ∈ Σ are such that ctx =ctx′.label′.

The set of divergence points of c is DIV (c) =
div(bc, ctxc, labelc, ∅). Since it contains prefixes of ctxc, the
“is-a-prefix-of” string relation, noted ≺, is a strict total order
on DIV (c). ♢

Definition 9 uses divergence points to determine the set of
possible LCAs for a pair of choices. This is the set from which
Select() will extract a subset of allowed LCAs. Basically, the
longest common prefix of the contexts of the choices is a
possible LCA, and so are all common divergence points. For
example, the row length and row vegetable density can be
under the same row element (prefix), or under the same field
(divergence point) but not the same row. We must however
take care of the special case of self pairs. For them, it would
be meaningless to consider the common prefix if this is not
a divergence point. For example, there is nothing such as a
common row parent for two row length choices: each row has
a single length. Definition 9 explicitly handles this.

Definition 9 (Set of possible LCAs for a pair of
choices). Let c1 = (b1, ctx1, label1, pred1) and c2 =
(b2, ctx2, label2, pred2) be two choices. Let isSelf(c1, c2)
be the predicate: b1 = b2 ∧ ctx1 = ctx2 ∧ label1 = label2.
Let prefix be the longest common prefix of ctx1 and ctx2.
The set of possible LCAs for the pair is the following one:
LCAS(c1, c2) ={

DIV (c1) if isSelf(c1, c2),
(DIV (c1) ∩DIV (c2)) ∪ {prefix} otherwise.

Like the sets of divergence points, the sets of possible
LCAs are totally ordered by ≺. Each non-empty set has a
well-defined least element, and a greatest one. ♢



We are now equipped to define a pairwise strategy in a very
generic way. It creates pairs of choices, which may contain
self pairs or not, and associates a set of permissible LCAs to
them. In Definition 10, we encode this as the production of
quadruplets of the form (ch1, ch2, set of possible LCAs, set of
permitted LCAs). In this way, the encoding not only makes it
explicit which LCAs are desired, but also which LCAs do not
count for coverage (retrieved by making the set difference).

Definition 10 (Pairwise strategy with meta-parameters Self
and Select()). Let Self ∈ B be the Boolean parameter of the
strategy, where a value true indicates that self pairs are to be
created, and false that they are not.
Let Select : P(Σ+) → P(Σ+) be the selection function of
the strategy. Its input must be a non-empty, totally-ordered set
of access paths, from which it extracts a non-empty subset.
Let CHOICE be the set of choices according to Definition 7.
The strategy creates a set PAIRS, where each element of the
set is in CHOICE×CHOICE×P(Σ+)×P(Σ+). The set
is the one obtained from the following procedure:

• For each c1 ∈ CHOICE, for each c2 ∈
CHOICE such that ¬isSelf(c1, c2), create the pair
(c1, c2, LCAS(c1, c2), Select(LCAS(c1, c2))).

• If Self = true, for each c ∈ CHOICE such that
LCAS(c, c) ̸= ∅, create the pair (c, c, LCAS(c, c),
Select(LCAS(c, c))). ♢

Let us now discuss examples of Select() functions:
• Don’t care – all possible LCAs are permitted. Select()

is the identity function.
• Closest-possible – Select(S) returns the greatest element

of S. E.g., a row length and vegetable density must be
covered in the context of a same row. Intuitively, the
strategy considers that the closer the nodes are in an
I-tree, the stronger their semantic interaction is.

• Close-enough – The strategy relaxes the closest possible
constraint, but still considers a boundary LCA for
closeness acceptance. For example, the possible LCAs
are lca1 ≺ lca2 ≺ lca3, and the strategy only retains the
LCAs starting from lca2. For a boundary lcab, Select(S)
returns {lca ∈ S | lcab ⪯ lca}. Intuitively, the strategy is
useful when constraints make the closest-possible strategy
infeasible for some pairs.

• Arbitrary LCA – The strategy selects one arbitrary LCA
for each pair of choices. E.g., for some reason, we want
the small row length and high vegetable density to occur
in different rows, hence the LCA must be a field.

Depending on the strategy, the coverage checks can become
quite complex. Examples 2 to 4 illustrate cases of increasing
difficulty using XPath queries.

Example 2 (XPath queries for checking coverage when no
LCA is removed). We discuss cases where Select() retains
the entire set of possible LCAs, either because it is the don’t
care strategy or because the set is a singleton.
For a non-self pair, each choice can be independently checked,
where the XPaths queries are like in Example 1.

For self pairs such that the choices are actually different
(same parameter, but different choice predicates to check), two
independent checks still do the job. But for self-pairs with
the same predicate (e.g., a small row length in both cases),
it would not work to repeat the same existential check twice.
Rather, we count the number of occurrences of the choice, and
checks whether it is > 1. ♢

Example 3 (XPath queries when distant LCAs are removed).
The closest-possible and close-enough strategies only remove
LCAs that are lower (according to ≺) than a boundary LCA.
The boundary may be the greatest LCA (closest possible
strategy), or another LCA. We consider pairs for which at
least one lower LCA is removed (otherwise, see Example 2).
Let ctx1 and ctx2, be the contexts of the choices of the pair,
and l1 and l2 their labels. The boundary LCA is a prefix of both
contexts, so we have: ctx1 = lcab.suf1 and ctx2 = lcab.suf2,
where the suffixes can be empty.
The individual queries for the choice coverage have the general
form: count ( / ctx [ predicate(label) ] ) > 0.
We can manipulate the choice queries to get a single check:
count ( / lcab [ pred1(suf1/l1) ] [ pred2(suf2/l2) ] ) > 0.
This check requires the coverage of the pair in the context of
lcab and its descendants. ♢

Example 4 (XPath queries for an arbitrary LCA). We
discuss the case where the selected LCA is not the greatest
one (otherwise, see Example 3). The XPath checks become
convoluted. We provide hints on how to do, with the help of
an example: a pair (small row length, low vegetable density).
The possible LCAs are:
Test case/F ield ≺ Test case/F ield/Row.
The target LCA is the field. The key is to split the common
context according to the first node after the target (here, Row).
We would like to find at least two different rows, such as one
has a small length and the other has a low vegetable density.
Unfortunately, XPath is not convenient for this.
We may proceed by three checks performed in parallel. If any
one succeeds, then the pair is covered. Each check may involve
several queries. The three checks are:

1) Count the number of rows that cover both choices. If
the number is > 1, we’re done.

2) Search for a row that covers the first choice but not the
second one. Search for a row that covers the second
choice. If both searches succeeds, we’re done.

3) Same as 2), by permuting the first and second choices.
♢

E. Adding constraints

The construction of the pairs is from an S-tree, which
ignores semantic constraints and even some structural ones
(e.g., the regular expressions in the content models of XML
schemas). Some of these constraints may involve disjunctive
cases, like a content model having to match the pattern
A2B+BC∗, or a logical constraint of the form pred1∨pred2.
We leave open whether such cases should generate new
parameters and choices, like predicate parameters with truth



value choices. The risk is to get many pairs that are either
redundant with existing pairs or infeasible. The improvement
in the coverage may not be worth the combinatorial growth. In
the case studies we performed, we opted for a compromise: we
automatically generate predicate parameters and choices from
the constraints, but do not combine them with the others. They
yield single choice coverage requirements. Other strategies
could have been possible.

Once the list of pairs and single choices is ready, we need
a means to produce the covering test cases. The next sections
present a solution using a generation tool that mixes random
sampling and constraint solving. It allows us to demonstrate
an implementation of our (so far, theoretical) PT framework.

IV. INTEGRATION WITH A TEST CASE GENERATOR (TAF)

TAF (Test Automation Framework) [2] is a recent tool
for generating data structures with constraints. It is open-
source [17]. The data models must be written in a tool-specific
language based on XML. We briefly present this language that
fits well into our formalization assumptions. Next, we describe
how to implement pairwise testing on top of TAF.

A. TAF input models

The TAF inputs models are called templates. Listing 1
gives a snippet of the template for Oz, our running example.
It contains four types of XML elements: Root, Node (for
composite elements, like a row), Parameter (for attributes, like
a row length), and Constraint. The parameters can be of type
Boolean, string, real, and integer. All value domains must be
bounded. Numerical parameters (real and integer) are declared
with a min-max range of values. For instance, the row length
(Line 6) is between 10.0 and 100.0m. Strings are actually
enumerated types, like the set {“cabbage”, “leeks”} for the
vegetable parameter (Line 3). The parameters and nodes
have a nb instances (number of instances) meta-attribute for
multiplicity. It has the integer type. A field element (Line 2)
has a single instance. The multiplicity of rows (Line 4) is in
the range min=1, max=100.

If one ignores constraints, the structure of declarations is
simple. It satisfies the single-type tree property. It specifies
bounded data instance trees, both horizontally (bounded
multiplicity) and vertically (no recursive definition). The
language only allows for a Russian doll design pattern (nested
declarations, no reusable definitions). The extraction of an
S-Tree from a TAF template is direct.

Constraints add expressiveness. For example, the constraint
in Line 16 relates the number of rows to a mission parameter.
The logical operators have a function notation, e.g., IMPLIES
(-,-). This is to facilitate the communication with the backend
solver, Z3 [18]. The navigation operator is ‘\’, as in the
path expression “ ..\field\row.nb instances”. Constraints may
have universal or existential quantifiers. In Lines 10-12, the
quantified variable i allows the expression of a universal
property of rows: consecutive rows must have the same length
+/-10%. Other constraints not shown in the snippet concern the

content pattern of a field (for n rows, it must have n+1 weed
areas and n− 1 inner widths).

TAF outputs an XML file for each generated data instance. It
gives us an I-tree, to which we apply XPath coverage queries.

1 <root name="test_case">
2 <node name="field" nb_instances="1">
3 <parameter name="vegetable" type="string" values=

"cabbage;leek"/>
4 <node name="row" min="1" max="100">
5 <parameter name="length" type="real"
6 min="10.0" max="100.0"/>
7 < .../>
8 </node>
9 <.../>

10 <constraint name="interval" types="forall"
11 expressions="row[i]\length INFEQ 1.1*row[i

-1]\length;row[i]\length SUPEQ 0.9*row[i-1]\length"
12 quantifiers="i" ranges="[1, row.nb_instances

-1]"/>
13

14 <node name="mission" nb_instances="1">
15 <parameter name="is_first_track_outer" type="

boolean"/>
16 <constraint name="first_track" expressions="

IMPLIES(..\field\row.nb_instances EQ 1, .\
is_first_track_outer EQ True)"/>

17 </node>
18 < .../>
19 </root>

Listing 1. Snippet of the TAF XML template for the robot Oz

B. Implementation of pairwise testing on top of TAF

We have developed a parser of TAF templates, which
extracts an S-tree and calculates the choices and pairs.
For demonstration purposes, the choices are created by a
systematic procedure. The definition range of a numerical
parameter is uniformly split into three subranges, low,
medium, and high. For a number of instances, we consider
specifically the value zero if it is in the range, and split
the rest of the domain into low, medium, and high values.
Enumerated types yield one choice per defined value. The
pairs are then formed according to the closest-possible LCA
selection strategy with self-pairs.

We also add single choices extracted from the constraints.
The constraint expressions are parsed and put in a disjunctive
normal form. Then, each expression OR(cond1, ..., condn)
yield n single choices such that condi (i = 1, .., n) is true.
We do not try to combine the truth values of the conditions
(e.g., cond1 is true and the others false), nor do we combine
these choices with the parameter choices to form pairs. If the
constraint has quantifiers, we interpret all of them as if they
were existential. We produce an existential Xpath check for
each choice.

We consider several algorithms for the generation of
covering test cases.

The first one is unguided. Since TAF has a randomized
generation procedure, it produces different valid cases each
time it is called. Then, the simplest algorithm is to ask TAF to
produce a test case, apply coverage checks, and retain the test
case if it covers new elements (new pairs or single choices).
The procedure is repeated until all elements are covered or a
maximal number of iterations is reached.



1 <constraint name="sentence_286" types="exist;exist"
2 expressions="AND(.\field[a]\row[b]\length SUPEQ 10.0, .\

field[a]\row[b]\length INFEQ 40.0, .\field[a]\row[b]\
vegetable_density SUPEQ 0, .\field[a]\row[b]\
vegetable_density INFEQ 3)"

3 quantifiers="a;b"
4 ranges="[0, .\field.nb_instances-1]; [0, .\field[a]\row.

nb_instances-1]" />

Listing 2. A coverage constraint added under the root of the Oz template.
Note how the path prefixes with common indexes a, b enforce the desired
LCA (here, a row).

Fig. 2. Flowchart of the guided generation with k trials.

The second one is guided. Since TAF handles constraints,
we can insert covering constraints into the template. For
instance, Listing 2 shows the constraint for the pair (small row
length, small vegetable density), automatically translated into
the TAF language. The iterative building of a test suite is then
as follows: select a pair (or single choice) remaining to cover,
insert its coverage constraint into the original template and ask
TAF to return a test case. If TAF fails to return one, the pair
is put into a list of likely infeasible pairs, made available for
manual inspection. If it returns one, then the overall coverage
is monitored and all newly covered elements are removed from
the To-do list. The procedure is iterated until the list is empty.
The resulting test suite covers all the elements that TAF could
satisfy.

Both the guided and unguided generation can be extended
by a greedy procedure that tries to minimize the size of the test
suite. It consists in requesting k test cases at each iteration,
and retaining the one that covers the greatest number of new
elements. This optimization is loosely inspired by the AETG
algorithm [4], which also tries different test cases. In the
unguided generation, the k cases are freely produced by TAF,
with the hope that many new pairs will occur in at least one
of them. In the guided generation, the k test cases all cover a
target pair, plus hopefully many other ones. The guided-greedy
procedure is shown in Figure 2. Note that k = 1 corresponds
to the original algorithm without optimization.

V. CASE STUDIES

To demonstrate the approach, two case studies are used.
Both have their template available in the TAF repository [17].
The first one, Oz, is the running example of this paper. It
comes from an industrial case study, where an agricultural
robot was tested in simulation [19]. The second one,
Taxpayer, describes the data for an income tax management
application [20]. The UML class diagram of Oz can be seen in
Figure 1, and the one of Taxpayer in Figure 3. The Oz template
has 7 composite elements, 15 parameters, and 5 constraints.

Physical_person

- birth_year: Integer

- disability_rate: Float

- disability_type: Disability

<<Enumeration>>
Disability

None
Vision
A
...

Child

Address

- country: Country

Tax_payer

- is_resident: Boolean

<<abstract>>
Income

- is_local: Boolean

OtherEmploymentPension

<<Enumeration>>
Country

LU
FR
BE
DE
OTHER

Tax_card

1 1..3

10..3 1

0..1

1 1..3

Fig. 3. UML class diagram of the Taxpayer management application case
study.

TaxPayer has 9 composite elements, 12 parameters and 7
constraints. Since TAF only supports composition relations,
the inheritance is flattened in the template, and associations
are modeled by unidirectional compositions.

A. Experiments applying the PT algorithms

Table I shows the number of pairs and single choices
automatically created from each template. A preliminary run
of the guided generation algorithm allowed us to identify the
infeasible pairs, which were confirmed by a manual analysis.

For each case study, we performed experiments to compare
the coverage and test suite size supplied by the various
generation algorithms. The code is available in a replication
package [21].

The unguided generation allows TAF a max number of 100
iterations to get a covering suite. It is combined with a greedy
optimization with k trials, where k = 1 (TAF baseline), 3,
5, 7. The guided approach, inserting covering constraints into
the templates, is also combined with a greedy optimization.
In total there are 16 experiments: 8 for each case study—4
unguided and 4 guided—, with “k” of values 1, 3, 5, 7. Each
experiment was repeated 50 times (so 50 runs). In each run,
the timeout given to TAF to generate a valid test case was 120s
in the case of Oz and 200s for Taxpayer, decided empirically.
To keep the overall time of the 50 runs tractable, we filtered
out the infeasible pairs. Hence, the unsatisfied pairs at the end
of a run are all satisfiable.

Tables II and III show the results we obtained. The
first four columns, labeled TAF, correspond to the unguided
approach where TAF freely produces test cases. The next four
correspond to the guided generation. The tables display the
supplied coverage, the mean generation time of a run, the mean
number of unsatisfied pairs (if any) and the mean size of the
produced test suite (i.e., the number of tests cases it contains).

The next sections analyze the coverage and test suite size
in greater detail.



TABLE I
PAIRS AND SINGLE CHOICES CREATED FROM THE TEMPLATES

# Pairs # Feasible pairs # Single choices
Oz 1328 1245 2
TaxPayer 2016 1946 13

TABLE II
OZ: MEAN COVERAGE PERCENTAGE (COV %), GENERATION TIME (GEN T)

IN SECONDS, NUMBER OF UNSATISFIED PAIRS, AND NUMBER OF TEST
CASES IN THE RETURNED TEST SUITE.

Oz TAF
k=1

TAF
k=3

TAF
k=5

TAF
k=7 k=1 k=3 k=5 k=7

Cov% 97.3 97.8 98.4 98.5 100 100 100 100
gen
t (s)

171.8 152.8 164.8 184.8 39.2 39.5 41.3 44.2

unsat
pairs

33.1 27.0 20.1 18.9 0.0 0.0 0.0 0.0

# tc 21.5 18.4 17.6 17.0 22.6 18.7 17.6 17.0

TABLE III
TAXPAYER: MEAN COVERAGE PERCENTAGE (COV %), GENERATION TIME

(GEN T), AND NUMBER OF TEST CASES IN THE RETURNED TEST SUITE.
THE NUMBER OF UNSATISFIED PAIRS IS OMITTED, BECAUSE THE VALUE IS

ALWAYS ZERO

Tax-
payer

TAF
k=1

TAF
k=3

TAF
k=5

TAF
k=7 k=1 k=3 k=5 k=7

Cov% 100 100 100 100 100 100 100 100
gen
t (s)

42.2 49.4 61.5 62.6 27.6 40.7 51.3 54.2

# tc 9.3 7.2 6.8 6.2 7.9 5.8 5.4 5.3

B. Coverage

A first observation is that TAF produces sufficiently diverse
data for all PT algorithms to be effective. The coverage rate
is nearly 100% in each case. However, for Oz, the unguided
approaches with k=1,3,5,7 has a mean number of unsatisfied
pairs equal to 33.1, 27.0, 20.1, 18.9, compared to the guided
approaches having none. It justifies the use of the guided
approach to ensure coverage.

For Taxpayer, all the approaches quickly achieve 100%
coverage. For Oz, it is interesting to analyze the evolution
of the coverage at each iteration of the generation. Figure 4
displays the cumulative coverage at each iteration. The shown
experiments are the guided approach with k=1 and k=7, and
the unguided approach with k=1 (TAF baseline). The guided
approach with k=7 has the steepest growth in coverage and
reaches 100% coverage with fewer iterations than the other
approaches. The guided k=1 approach also arrives at 100%
coverage, but needs more iterations. The unguided approach
has the slowest growth. It also has the highest variability,
as shown by the shaded areas in Figure 4 that visualize the
interquartile ranges.

C. Test suite size

Minimizing the test suite size is important if the tests have
to run every time new code is pushed.

The effect of k in the reduction of the test suite size can
be seen in Figures 5 and 6, where the first four boxplots are
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Fig. 4. Oz: comparison of the cumulative coverage with the unguided TAF
approach with k=1 (TAF baseline) and the guided approach with k=1 and
k=7. The shaded areas represent the interquartile range. The y-axis is limited
to the upper part of the diagram for better readability. The guided approach
median lines are prolonged to make the comparison visually easier. We do
not show k=3 and k=5 for the guided approach, because their diagrams would
fit between the diagrams of k=1 and k=7.

for the unguided approach (TAF) with k=1,3,5,7, and the four
next for the guided one. Note that it may seem that, for Oz,
the unguided approach found the minimum of all sizes (14).
However, let us recall that the coverage is not 100% in that
case. Actually, the minimal size of all found covering suites
is 15.

Inside each family of approaches (unguided or guided), the
higher the k, the lower the median size tends to be, and also the
lower the minimal size found over 50 runs, and the lower the
maximal size. The shift toward smaller values also surfaces by
looking at mean values. From Tables II and III, the tendency
seems clear: inside each family of approaches, the mean test
suite size always decreases when k increases.

We applied a Mann-Whitney U test to determine the
statistical significance of the improvement in the mean test
size. The first four rows of Table IV shows the p-values when
comparing two guided approaches with different values of k .
E.g., the first row compares the mean test sizes supplied by the
guided approaches for k=1 and 3. The last two rows compares
guided and unguided approaches for the same k. For example,
“k=1, TAF1” means the guided approach with k=1 versus the
unguided one (TAF) with k=1. The comparison is done for
TaxPayer only, because it would not make sense to compare
test sizes for different coverage results. In each row, we also
provide the Common-Language Effect Sizes (CLES).

The p-values are almost always inferior to 0.05, meaning
that it is highly unlikely that the effect is caused by chance.
There is just one case in which the p-value is greater than
0.05: Taxpayer when comparing k=5 and k=7 (p-value=0.12).
The Common-Language Effect Sizes (CLES) show that there
are no small effect sizes (>0.2), there are some medium effect
sizes (>0.5), and the others are all large effect sizes (>0.8).
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Fig. 5. Oz: Boxplots with TAF unguided with k=1,3,5,7 and guided with
k=1,3,5,7.
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Fig. 6. TaxPayer: Boxplots with TAF unguided with k=1,3,5,7 and guided
with k=1,3,5,7.

The lowest effect size (CLES=0.5596) is related to Taxpayer
when comparing k=5 and k=7, which has also the highest
p-value. The first row of the table shows that, for the guided
approach, the move from the no-optimization case (k=1) to
a limited optimization (with only k=3 trials) already has a
significant beneficial impact.

We conclude that, for the case studies, the guided generation
with few optimization trials is a practical approach to produce
covering test suites of small sizes.

VI. CONCLUSION

This paper has presented a formalization of pairwise testing
in the case of structured data models with constraints and
multiplicity. We identified two major differences with the
usual “flat” case. First, self pairs become possible, where
the parameter of an element occurs in different instances of
this element, and we want to test the interactions between

TABLE IV
STATISTICAL ANALYSIS OF THE MEAN TEST SUITE SIZES. NOTATION K=I

MEANS GUIDED, WITH I EQUAL TO THE K UNDER ANALYSIS. TAFI MEANS
UNGUIDED WITH K=I.

Oz Taxpayer
P-value CLES P-value CLES

k=1, k=3 6.98E-16 0.96 3.93E-11 0.8674
k=3, k=5 0.000005 0.7488 0.010377 0.6212
k=5, k=7 0.001993 0.6564 0.119922 0.5596
k=1, k=7 2.45E-18 0.9966 3.89E-15 0.9392
k=1, TAF1 N/A N/A 0.000045 0.7246
k=7, TAF7 N/A N/A 2.86E-17 0.9762

these instances. Second, the tested pairs will not be the same
depending on the lowest common ancestor (LCA) of the
covering element instances. We proposed several strategies to
select the LCAs that will count for coverage. We also provided
an XPath formalization of the pair coverage analysis.

As a proof-of-concept demonstration, we implemented
pairwise testing on top of a data generation tool, TAF. TAF
has an input language based on XML and accommodates
constraints. We automatically created the pairs to cover and
their coverage checks, according to our formalization. We
then proposed several generation strategies to build covering
test suites with the help of TAF. We applied them to two
case studies from real world applications, and successfully
produced test suites with 100% coverage of the feasible pairs.
A practical approach is to insert the covering constraints into
the data models. This guided approach helps to cover pairs
that are hard to cover with the native randomized generation
of TAF. Moreover, the size of the resulting test suite can
be significantly reduced by combining the guided approach
with a simple greedy optimization: a few candidate test cases
are generated to cover a pair, from which we retain the one
providing the highest overall coverage progress.

Future directions include conceptual extensions to the
framework as well as alternative implementations. An
extension would be to account for recursive definitions, with
new parameters related to the depth of the recursion, and
new self pairs between elements at a different depth. The
generalization to n-way testing may also be considered, but
would most probably be limited to don’t care LCA selection
strategies. Otherwise, the LCA analysis and coverage checks
could become cumbersome. Alternative implementations of
the generation would add techniques that have been found
useful in classical PT, like optimizing the order of the pairs
(for the guided approach) or starting from pre-existing seed
tests.
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