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A MODIFIED CHRISTOFFEL FUNCTION AND ITS

ASYMPTOTIC PROPERTIES

JEAN B. LASSERRE

Abstract. We introduce a certain variant (or regularization) Λ̃µn of
the standard Christoffel function Λµn associated with a measure µ on a
compact set Ω ⊂ Rd. Its reciprocal is now a sum-of-squares polynomial
in the variables (x, ε), ε > 0. It shares the same dichotomy property
of the standard Christoffel function, that is, the growth with n of its
inverse is at most polynomial inside and exponential outside the support
of the measure. Its distinguishing and crucial feature states that for
fixed ε > 0, and under weak assumptions, limn→∞ ε

−dΛ̃µn(ξ, ε) = f(ζε)
where f (assumed to be continuous) is the unknown density of µ w.r.t.
Lebesgue measure on Ω, and ζε ∈ B∞(ξ, ε) (and so f(ζε) ≈ f(ξ) when
ε > 0 is small). This is in contrast with the standard Christoffel function
where if limn→∞ n

dΛµn(ξ) exists, it is of the form f(ξ)/ωE(ξ) where ωE
is the density of the equilibrium measure of Ω, usually unknown. At
last but not least, the additional computational burden (when compared
to computing Λµn) is just integrating symbolically the monomial basis

(xα)α∈Nd
n

on the box {x : ‖x − ξ‖∞ < ε/2}, so that 1/Λ̃µn is obtained

as an explicit polynomial of (ξ, ε).

1. Introduction

The Christoffel function Λµn : Rd → R+ and the Christoffel-Darboux
kernel are both associated with a measure µ whose support Ω ⊂ Rd is
here a compact set, and are indexed by a “degree” n. They originate in the
theory of approximation and orthogonal polynomials. Among its interesting
features:
• (1) The Christoffel function identifies the support of µ by a dichotomy of

its behavior as n grows, depending on whether the point is inside or outside
the support of the measure. Namely, inside the support the growth of its
reciprocal is at most polynomial in the degree n, and at least exponential
outside the support.
• (2) Under some regularity assumptions, the Christoffel function is also

related to the density f of µ w.r.t. Lebesgue measure on Ω. Indeed then(
d+n
d

)
Λµn → f/ωE pointwise in Ω (and uniformly on compact subsets of Ω)
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where ωE is a so-called equilibrium measure of Ω. However in general the
equilibrium measure is unknown, except in a few special cases of sets Ω with
special geometry; see e.g. [1, §9.7 ], [2, 3], [13].
• (3) Its explicit expression as a rational function, is easy to compute,

e.g. via the inverse of the moment matrix of µ (provided that its size is
reasonable and compatible with state-of-the-art linear algebra softwares).

As advocated in [8], in addition to being a mathematical object interesting
in its own, the Christoffel function (CF) turns out to also provide an efficient
and easy-to-use tool to help solve some problems in data analysis, e.g. outlier
detection, support inference, and density estimation. In such problems, the
underlying measure of interest µ is usually not available and one has rather
access to a finite sample of data points generated according to µ. Then in lieu
of the unknown µ, one uses the empirical measure associated with the cloud
of finitely many data points. Remarkably, and even though the geometry
of the support of the empirical measure is quite trivial, its associated CF is
still close (in a certain sense) to that of µ, and inherits interesting features
of µ that can be exploited in data analysis; see e.g. [4, 5, 8, 9].

Moreover, some recent works have revealed additional properties of the
CF, as well as connections (in the author’s opinion some even surprising)
with seemingless disconnected topics, e.g., convex duality, certificates of
positivity in real algebraic geometry, Pell’s equation, equilibrium measure
of a compact set; see [6, 7].

For more details on the Christoffel-Darboux kernel and the Christoffel
function, the interested reader is referred to e.g. [1, 8, 10, 11, 12, 13] and
many references therein.

Contribution. Our motivation is essentially concerned with point (2)
above. Indeed our main goal is to still recover the density f of µ asymptoti-
cally, but without the annoying factor ωE of the equilibrium measure because
it is unknown in general. But simultaneously, we also want to maintain the
support inference capability in (1) as well as an efficient computation (point
(3) above).

To achieve these goals, we introduce the following variant (or regulariza-

tion) of the Christoffel function, namely the function Λ̃µn : Rd × R → R+

defined by:

(1.1) Λ̃µn(ξ, ε) := { inf
p∈R[x]n

{
∫
p2 dµ :

∫
B∞(ξ,ε)

p(x)
dx

εd
= 1 } ,

for all (ξ, ε) ∈ Rd×R+ and n ∈ N, where B∞(ξ, ε) := {x : ‖x−ξ‖∞ < ε/2}
(with Lebesgue volume εd).

As we will see, 1/Λ̃µn is obtained as an explicit polynomial of (ξ, ε), and
can be also seen as a a polynomial of ξ, parametrized by ε > 0 fixed. In
particular, we are interested in the asymptotic behaviors of Λ̃µn(ξ, ε) with

ε > 0 fixed, as well as Λ̃µn(ξ, 1/n), as n grows.
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More precisely, let Ω ⊂ Rd be compact with nonempty interior, and let µ
be a Borel measure on Ω with density f with respect to (w.r.t.) Lebesgue
measure on Ω. In particular, for every n ∈ N, the moment matrix Mn(µ) is

non singular. We prove that Λ̃µn in (1.1) has the following properties:

• 1/Λ̃µn is a sum of squares polynomial with explicit form:

(1.2) (ξ, ε) 7→ Λ̃µn(ξ, ε)−1 = ṽn(ξ, ε)TMn(µ)−1ṽn(ξ, ε) ,

where, with vn(x) being the vector of the monomial basis (xα)α∈Ndn ,

ṽn(ξ, ε) :=

∫
B∞(ξ,ε)

vn(x)
dx

εd
.

Importantly, each entry ṽn,α, α ∈ Ndn, of the vector ṽn, is obtained explicitly
as a polynomial in (ξ, ε).
• With ε > 0 fixed, and assuming that f is bounded and f > 0 on Ω,

(1.3) lim
n→∞

εd Λ̃µn(ξ, ε)−1 =

∫
B∞(ξ,ε)

1

f

dx

εd
= εd ‖

1B∞(ξ,ε)

εd f
‖2L2(µ) ,

for all ξ with B∞(ξ, ε) ⊂ Ω. Moreover, if f is continuous then

(1.4) lim
n→∞

ε−d Λ̃µn(ξ, ε) = f(ζε) ,

for some ζε ∈ B∞(ξ, ε), and so f(ζε) ≈ f(ξ) if ε is small enough.

• Finally, and as for the standard CF Λµn, the growth with n of Λ̃µn(ξ, ε)−1

(ε > 0 fixed) and Λ̃µn(ξ, 1/n)−1, is at most polynomial if ξ ∈ int(Ω) and at
least exponential if ξ 6∈ Ω.

So the extended CF Λ̃µn essentially shares same important features as the
standard CF with the advantage that the limit of ε−dΛ̃µn(ξ, ε) (ε > 0 fixed)
as n increases, is close to f(ξ) where f is the density of µ, a highly desirable
feature. Moreover, the additional price to pay to obtain its explicit form
(1.2) as a function of (ξ, ε), is rather negligible as it only requires the closed
form expression of

∫
B∞(ξ,ε) x

αdx, for all α ∈ Ndn.

Interpretation. For fixed ε > 0, the function ξ 7→ Λ̃µn(ξ, ε) has a simple
interpretation. Let f be the density of µ with respect to Lebesgue measure
on Ω and assume that f ≥ γ > 0 on Ω. Let `εξ be the linear functional

h 7→ `εξ(h) :=
∫
h dλ where λ is the uniform probability mesure on B∞(ξ, ε).

If ξ ∈ int(Ω) is such that B∞(ξ, ε) ⊂ Ω, then `εξ ∈ L2(µ) and is the

function x 7→ 1B∞(ξ,ε)(x)/τε f ∈ L2(µ) where τε = vol(B∞(ξ, ε)). Next,
let `εξ,n ∈ R[x]n be the orthogonal projection of `εξ on the finite-dimensional

subspace R[x]n of L2(µ). Then Λ̃µn(ξ, ε) = 1/‖`εξ,n‖2L2(µ) with limit (1.3) as
n→∞.

Λ̃µn(ξ, ε) can be seen as an ε-regularization of Λµn(ξ), where instead of
working with the point evaluation at ξ (i.e., the Dirac measure δξ which is
not in L2(µ)), one rather works with the element `εξ of some neighborhood

N (δξ, η) of δξ (in the weak-? topology of the space of finite Borel signed
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measures) because it can also be considered as an element of L2(µ). In

doing so with ε > 0 fixed, limn→∞ ε
−dΛ̃µn(ξ, ε) exists (which is not the case

for Λµn(ξ)) and is close to f(ξ) if ε is small and f is continuous, a highly
desirable feature.

2. Main result

2.1. Notation and definitions. Let R[x] denote the ring of real polyno-
mials in the variables x = (x1, . . . , xd) and R[x]n ⊂ R[x] be its subset of
polynomials of total degree at most n. Let Ndn := {α ∈ Nd : |α| ≤ n} (where

|α| =
∑

i αi) with cardinal s(n) =
(
d+n
d

)
. Let vn(x) = (xα)α∈Ndn be the vec-

tor of monomials up to degree n, and let Σ[x]n ⊂ R[x]2n be the convex cone
of polynomials of total degree at most 2n which are sum-of-squares (in short
SOS). For every p ∈ R[x]n write

x 7→ p(x) = 〈p,vn(x)〉 , ∀x ∈ Rd ,

where p ∈ Rs(n) is the vector of coefficients of p in the monomial basis
(xα)α∈Nd . For a real symmetric matrix A = AT the notation A � 0 (resp.
A � 0) stands for A is positive semidefinite (p.s.d.) (resp. positive definite
(p.d.)).

The support of a Borel measure µ on Rd is the smallest closed set A such
that µ(Rd \ A) = 0, and such a set A is unique. With S ⊂ Rd compact,
denote by C (S) the Banach space of real continuous functions on S equipped
with the sup-norm. Its topological dual C (S)∗ is the Banach space M (S) of
finite signed Borel measures on S, equipped with the total-variation norm.

Moment matrix. Let µ be a finite Borel measure on Rd with all moments
µ = (µα)α∈Nd assumed to be finite. The (degree-n) moment matrix Mn(µ)
associated with µ is the real symmetric matrix with rows and columns in-
dexed by Ndn (hence of size s(n)), and with entries

Mn(µ)(α,β) :=

∫
xα+β dµ = µα+β , α,β ∈ Ndn .

Obviously, Mn(µ) � 0 for all n since

〈p,Mn(µ)p〉 =

∫
p2 dµ ≥ 0 , ∀p ∈ R[x]n .

Christoffel function. We here assume that Mn(µ) � 0 for all n ∈ N, and
therefore the inverse Mn(µ)−1 is well-defined for all n ∈ N. In particular this
is true in our case of interest, i.e., when the support Ω ⊂ Rd of µ is compact
with nonempty interior and µ has a density w.r.t. Lebesgue measure on Ω.

The (degree-n) Christoffel function Λµn : R → R+, associated with µ, is
defined by:

x 7→ Λµn(x)−1 := vn(x)TMn(µ)−1vn(x) , ∀x ∈ Rd .



A REGULARIZED CHRISTOFFEL FUNCTION 5

Alternatively, if (Pα)α∈Nd ⊂ R[x] is a family of polynomials which are or-
thonormal with respect to µ, then

(2.1) Λµn(x)−1 =
∑
α∈Ndn

Pα(x)2 , ∀x ∈ Rd .

The Christoffel function has also a variational formulation. Namely:

(2.2) Λµn(ξ) = inf
p∈R[x]n

{
∫
p2 dµ : p(ξ) = 1 } , ∀ξ ∈ Rd .

Problem (2.2) is a quadratic convex optimization problem that can be solved
efficiently. Its unique optimal solution p∗ ∈ R[x]n reads:

x 7→ p∗(x) :=

∑
α∈Ndn Pα(ξ)Pα(x)∑
α∈Ndn Pα(ξ)2

=
Kµ
n(ξ,x)

Kµ
n(ξ, ξ)

, x ∈ Rd ,

where Kµ
n : Rd × Rd → R, defined by:

(2.3) (x,y) 7→ Kµ
n(x,y) :=

∑
α∈Nnt

Pα(x)Pα(y) , x,y ∈ Rd ,

is the Christoffel-Darboux kernel associated with µ. In particular

Λµn(ξ)−1 = Kµ
n(ξ, ξ) , ∀ξ ∈ Rd .

2.2. A regularization and parametrization of the Christoffel func-
tion. Let µ be a finite Borel probability measure on a compact set Ω ⊂ Rd,
with density f w.r.t. Lebesgue measure on Ω, i.e., dµ = 1Ω(x)f(x)dx and∫
Ω f(x) dx = 1. Let L2(Ω, µ) (in short, L2(µ)) be the usual Hilbert space

of square integrable functions w.r.t. µ. Next, given ε > 0 and ξ ∈ Rd, let

B∞(ξ; ε) := {x ∈ Rd : ‖x− ξ‖∞ ≤ ε/2}(2.4)

τε := vol(B∞(ξ, ε)) = εd(2.5)

dφεξ =
1B∞(ξ,ε)(x) dx

τε
, ε > 0 ; φ0ξ := δ{ξ} .(2.6)

Proposition 2.1. With φεξ as (2.6), φεξ ⇒ φ0ξ = δ{ξ} as ε ↓ 0, i.e.,

lim
ε→0

∫
h dφεξ = h(ξ) =

∫
h dφ0ξ , ∀h ∈ C (Rn) .

Proof. Observe that as h is continuous,∫
h dφεξ = h(ζε) , for some ζε ∈ B∞(ξ, ε),

and therefore h(ζε)→ h(ξ) as ε ↓ 0. �

In Proposition 2.4, the notation φεξ ⇒ φ0ξ is standard and stands for
the weak convergence of probability measures, i.e., for the weak-? topology
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σ(M (Ω),C (Ω)) of M (Ω). With ε ≥ 0, the extended Christoffel function

Λ̃µn : Rd × R+ → R+ is defined by:

(2.7) (ξ, ε) 7→ Λ̃µn(ξ, ε) := min
p∈R[x]n

{
∫

Ω
p2dµ :

∫
p dφεξ = 1 } , ξ ∈ Rd ,

where we have included the case ε = 0 with φ0ξ = δ{ξ}. Notice that the

standard Christoffel function Λµn satisfies

Λµn(ξ) = inf
p∈R[x]n

{
∫
p2 dµ : p(ξ) = 1 }

= inf
p∈R[x]n

{
∫
p2 dµ :

∫
p dφ0ξ = 1 } = Λ̃µn(ξ, 0) , ξ ∈ Rd ,

that is, Λ̃µn(ξ, 0) = Λµn(ξ), for all ξ ∈ Rd.

An explicit form. Importantly, the extended Christoffel function Λ̃µn is
obtained as an explicit rational function of ξ and ε. More precisely, 1/Λ̃µn is
obtained as an explicit sum-of-squares (SOS) polynomial of (ξ, ε).

Lemma 2.2. Let Λ̃µn be as in (2.7) and let (Pα)α∈Ndt
be a family of polyno-

mials orthonormal w.r.t. µ. Then the unique optimal solution p∗n ∈ R[x]n
of (2.7) satisfies:

x 7→ p∗n(x) = Λ̃µn(ξ, ε)vn(x)TMn(µ)−1
∫
vn(y) dφεξ(y)(2.8)

= Λ̃µn(ξ, ε)

∫
Kµ
n(x,y) dφεξ(y) .(2.9)

In addition,

(2.10) Λ̃µn(ξ, ε)−1 = ṽn(ξ, ε)T Mn(µ)−1ṽn(ξ, ε) , ξ ∈ Rn ,

where ṽn ∈ R[x, ε]n is defined by:

(2.11) ξ 7→ ṽn(ξ, ε) :=
1

τε

∫
B∞(ξ,ε)

vn(y) dy , n ∈ N .

Proof. Rewrite (2.7)

Λ̃µn(ξ, ε) = min
p∈Rs(n)

{ 〈p,Mn(µ)p〉 : 〈p ,
∫
vn(x) dφεξ 〉 = 1 } , ξ ∈ Rd ,

which is a convex quadratic optimization problem. Its unique optimal solu-
tion p∗n ∈ Rs(n) satisfies

2 Mn(µ)p∗n = λ∗
∫
vn(y) dφεξ(y) ,

for some scalar λ∗. Hence λ∗ = 2 Λ̃µn(ξ, ε), and

p∗n =
λ∗

2
Mn(µ)−1

∫
vn(y) dφεξ(y) ,
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which in turn yields

x 7→ p∗n(x) = 〈p∗n,vn(x)〉 =
λ∗

2

〈
vn(x),Mn(µ)−1

∫
vn(y) dφεξ(y)

〉
= Λ̃µn(ξ, ε)

∫
Kµ
n(x,y) dφεξ(y) ,

which yields (2.8)-(2.9). Next, using the definition (2.3) of Kµ
n, and

∫
Pα Pβ dµ =

δα=β, for all α,β ∈ Ndn,

(2.12) Λ̃µn(ξ, ε) =

∫
(p∗n)2 dµ = Λ̃µn(ξ, ε)2

∑
α∈Ndn

(∫
B∞(ξ,ε)

Pα(y)
dy

τε

)2

.

To obtain (2.10), just use that with (Pα(x))α∈Ndn = Dvn(x), by orthogonal-

ity of the (Pα)’s w.r.t. µ, the resulting change of basis matrix D ∈ Rs(n)×s(n)
satisfies DTD = Mn(µ)−1.

Finally it remains to prove that ṽn ∈ R[ξ, ε]n. With β ∈ Ndn,

(2.13)

∫
B∞(ξ,ε)

yβ
dy

τε
= ε−d

d∏
i=1

(ξi + ε/2)βi+1 − (ξi − ε/2)βi+1

βi + 1

is indeed a polynomial in (ξ, ε). To see this, in each term of the product

in (2.13), use the identity an+1
i − bn+1

i = (ai − bi) (
∑n

j=0 a
n−j
i bji ) with ai =

ξi+ε/2 and bi = ξi−ε/2, so that ai−bi = ε for ever i, which implies that the
term ε−d is annihilated. This implies that ṽn(ξ, ε) =

∫
B∞(ξ,ε) vn(y) dy/τε

is a polynomial vector in the variables (ξ, ε). �

2.3. Computation.
• If the orthonormal polynomials (Pα)α∈Nd are available then just use

(2.12) to (i) compute the polynomials qα ∈ R[ξ, ε]n defined by:

x 7→ qα(ξ, ε) :=
1

τε

∫
B∞(ξ,ε)

Pα(y) dy , α ∈ Ndn ,

and (ii), sum up
∑
α∈Ndn qα(ξ, ε)2.

• On the other hand, if the moment matrix Mn(µ) is available then

(i) compute the polynomial vector ṽn(ξ, ε) ∈ R[ξ, ε]
s(n)
n in (2.11) and (ii),

form the SOS polynomial ṽn(ξ, ε)T Mn(µ)−1ṽn(ξ, ε)/τ2ε to obtain the SOS

polynomial Λ̃µn(ξ, ε)−1.
In both cases, computing the polynomials qα or ṽn is an easy task which

can be done exactly and even symbolically in (ξ, ε), as it reduces to integrate
a polynomial on the box B∞(ξ, ε) parametrized by ξ and ε.

Therefore it is worth emphasizing that in the end, one thus obtains the
polynomial (ξ, ε) 7→ Λ̃µn(ξ, ε)−1 as an explicit SOS polynomial in the vari-
ables (ξ, ε), via ṽn(ξ, ε)T Mn(µ)−1ṽn(ξ, ε), exactly as ξ 7→ Λµn(ξ)−1 was
obtained as an explicit SOS polynomial in ξ, via vn(ξ)T Mn(µ)−1vn(ξ).
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Compared with computation of the standard Christoffel function Λµn, com-
puting the extended Christoffel function Λ̃µn only requires an extra symbolic
integration (e.g., of the vector vn(x) = (xα)α∈Ndn on the box B∞(ξ, ε)), an

easy task once (as long as the dimension d is not too large). In addition,
from inspection of (2.13) we may conclude that

ṽn(ξ, ε) =

{
vn(ξ) if n ≤ 1,

vn(ξ) +O(ε) if n > 1,

which in turn yields:

(2.14) Λ̃µn(ξ, ε)−1 = Λµn(ξ)−1 +O(ε) , ∀ξ ∈ Rd .

Example 1. Let Ω = [−1, 1] and µ = dx/
√

1− x2, so that the Chebyshev
polynomials of first kind (Tj)j∈N are orthogonal w.r.t. µ, and the family

(Pj)j∈N with P0 = T0/
√
π and Pj = Tj

√
2/π, j ≥ 1, is orthonormal w.r.t.

µ. Then Λµ0 (ξ) = 1/π = Λ̃µ0 (ξ, ε), and

Λµ1 (ξ) =
2

π

(
1

2
+ ξ2

)
= Λ̃µ1 (ξ, ε)

Λµ2 (ξ) =
2

π

(
3

2
− 3 ξ2 + 4 ξ4

)
Λ̃µ2 (ξ, ε) =

2

π

(
3

2
− 3 ξ2 + 4 ξ4 +

ε2

2
− 2 ξ2ε2

3

)
= Λµ2 (ξ) +

ε2

π
(1− 4 ξ2

3
) .

2.4. A L2(µ)-norm interpretation. Recall that dµ = f dx for some un-
known density f : Ω → R+, and f ≥ γ for some γ > 0. In particular,
x 7→ f(x)−1 is an element of L2(µ).

Lemma 2.3. Assume that f ≥ γ on Ω, for some γ > 0. Let ξ ∈ Ω and
ε > 0 be fixed.

(i) If B∞(ξ, ε) ⊂ Ω then the linear functional `εξ : R[x]→ R,

h 7→ `εξ(h) :=
1

τε

∫
B(ξ,ε)

h(x) dx , ∀h ∈ R[x] ,

is an element of L2(µ), that we still denote `εξ. Moreover, it is represented
by the function

x 7→
1B∞(ξ,ε)(x)

τε f(x)
∈ L2(µ) , ∀x ∈ Ω ,

hence with norm

(2.15) ‖`εξ‖L2(µ) =

(∫
Ω

(
1B∞(ξ,ε)(x)

τε f(x)

)2

f dx

)1/2

=

∥∥∥∥1B∞(ξ,ε)

τε f

∥∥∥∥
L2(µ)

.
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(ii) In addition, if f is continuous then

(2.16) lim
ε→0

τε ‖`εξ‖2L2(µ) =
1

f(ξ)
, ∀ξ ∈ int(Ω) .

Proof. (i) The linear functional `εξ is a Borel measure on B∞(ξ, ε) with

density 1/τε w.r.t. Lebesgue measure on B∞(ξ, ε). If B∞(ξ, ε) ⊂ Ω and
f ≥ γ > 0 on Ω, then

`εξ(h) =
1

τε

∫
B∞(ξ,ε)

h(x) dx =

∫
Ω
h(x)

1B∞(ξ,ε)(x)

τε f(x)
f(x) dx

=

∫
Ω
h(x)

1B∞(ξ,ε)(x)

τε f(x)
dµ

=

〈
h,

1B∞(ξ,ε)

τε f

〉
, ∀h ∈ L2(µ) ,

and so the linear functional `εξ is represented by
1B∞(ξ,ε)

τε f
∈ L2(µ). It is simply

the measure on Ω with density 1B∞(ξ,ε)/τεf w.r.t. µ, hence an element of

L2(µ) with norm ‖1B∞(ξ,ε)/τεf‖L2(µ).
(ii) In addition, if f is continuous then

‖`εξ‖2L2 =

∫
Ω

(
1B∞(ξ,ε)(x)

τε f(x)

)2

dµ =

∫
Ω

(
1B∞(ξ,ε)(x)

τε f(x)

)2

f dx

=

∫
B∞(ξ,ε)

1

τε f(x)

dx

τε
=

1

τε f(ζε)
,

for some ζε ∈ B∞(ξ, ε), which yields (2.16) when ε ↓ 0 (as f is continuous).
�

2.5. Relating `εξ with Λ̃µn, and asymptotic properties.

We first start with relating Λ̃µn with Λµn for a fixed degree “n”.

Proposition 2.4. Let ε > 0 fixed, and assume that f is continuous. Then
for every n ∈ N:

(2.17) Λ̃µn(ξ, ε) ≥ Λµn(ζn) for some ζn ∈ B∞(ξ, ε).

In particular, using ε := 1/n yields that for every n ∈ N,

(2.18) Λ̃µn(ξ, 1/n) ≥ Λµn(ζn) for some ζn ∈ B∞(ξ, 1/n).

Proof. With p∗n ∈ R[x]n as in Lemma 2.2,

1 =

∫
B∞(ξ,ε)

p∗n
dx

εd
= p∗n(ζn) for some ζn ∈ B∞(ξ, ε),

and so as p∗n(ζn) = 1,

Λ̃µn(ξ, ε) =

∫
(p∗n)2 dµ ≥ inf

p∈R[x]n
{
∫
p2 dµ : p(ζn) = 1} = Λµn(ζn) ,

which yields (2.17) and (2.18). �
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We next consider the asymptotic limit of Λ̃µn(ξ, ε) as n increases, when
ξ ∈ int(Ω) and ε > 0 is fixed, as well as when ε := 1/nr with r > 0.

Theorem 2.5. Assume that f ≥ γ on Ω, for some γ > 0, and let Λ̃µn be as
in (2.7). Then :

(i) With ε > 0 fixed and for all ξ ∈ Ω such that B∞(ξ, ε) ⊂ Ω:

(2.19) lim
n→∞

Λ̃µn(ξ, ε)−1 = ‖`εξ‖2L2 =

∫
B∞(ξ,ε)

1

τε f

dx

τε
.

Equivalently,

(2.20) lim
n→∞

εd Λ̃µn(ξ, ε)−1 =

∫
B∞(ξ,ε)

1

f

dx

τε
= ‖1/f‖L1(B∞(ξ,ε),dx/τε) ,

and in addition, if f is continuous on B∞(ξ, ε) then

(2.21) lim
n→∞

ε−d Λ̃µn(ξ, ε) = f(ζε) ,

for some ζε ∈ B∞(ξ, ε). In particular, limn→∞ ε
−dΛ̃µn(ξ, ε) ≈ f(ξ) when ε

is small.
(ii) For all ξ ∈ int(Ω) and all n ∈ N,

nd Λ̃µn(ξ, 1/n) ≥ inf
x
{f(x) : x ∈ B∞(ξ, 1/n)} ,

so that if f is continuous on B∞(ξ, ε) then,

(2.22) lim inf
n→∞

nd Λ̃µn(ξ, 1/n) ≥ f(ξ) .

Moreover, if r < 1 then

(2.23) lim
n→∞

nd Λ̃µn(ξ, 1/nr) = +∞.

Proof. (i) By Lemma 2.3, `εξ ∈ L2(µ). To prove (2.19), notice that

‖`εξ‖2L2 = sup
h∈L2(µ)

`εξ(h)2∫
h2 dµ

,

and therefore,

1

‖`εξ‖2L2

= inf
h∈L2(µ)

∫
h2 dµ

`εξ(h)2
= inf

h∈L2(µ)
{
∫
h2 dµ : `εξ(h)2 = 1}

= inf
h∈L2(µ)

{
∫
h2 dµ : `εξ(h) = 1}

≤ inf
h∈R[x]n

{
∫
h2 dµ : `εξ(h) = 1} , ∀n ∈ N

≤ Λ̃µn(ξ, ε) , ∀n ∈ N ,(2.24)

and therefore, with ε > 0 fixed,

(2.25) lim inf
n→∞

Λ̃µn(ξ, ε) ≥ 1

‖`εξ‖2L2

, for all ξ ∈ Ω s.t. B∞(ξ, ε) ⊂ Ω .
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On the other hand, and still with ε > 0 fixed, as B∞(ξ, ε) ⊂ Ω, let hε :=
1B∞(ξ,ε)

τεf
∈ L2(µ). As Ω is compact, R[x] is dense in L2(µ) and therefore

there exists a sequence (hn)n∈N ⊂ R[x] such that ‖hn − hε‖L2(µ) → 0 as n
increases. Moreover,

φεξ(|hn − h|) =

∫
B∞(ξ,ε)

|hn − hε|
dx

τε
=

∫
B∞(ξ,ε)

|hn − hε|
τε f

f dx

=

∫
Ω

1B∞(ξ,ε) |hn − hε|
τε f

dµ

≤
√
µ(Ω)

τε f∗

(∫
Ω

(1B∞(ξ,ε) (hn − hε))2 dµ
)1/2

≤
√
µ(Ω)

τε f∗

(∫
Ω

(hn − hε)2 dµ
)1/2

=

√
µ(Ω)

τε f∗
‖hn − hε‖L2(µ) ,

where f∗ = min {f(x) : x ∈ Ω} (> 0 as f is continuous and f > 0 on Ω
compact). Therefore, φεξ(hn)→ φεξ(h) as n increases. Then from

Λ̃µn(ξ, ε) ≤
∫
h2n dµ

(
∫
hn dφεξ)

2
, ∀n ,

and since limn→∞ φ
ε
ξ(hn) = φεξ(h), limn→∞

∫
h2n dµ =

∫
h2 dµ, we conclude

that for all ξ ∈ Ω with B∞(ξ, ε) ⊂ Ω,

lim sup
n→∞

Λ̃µn(ξ, ε) ≤ lim
n→∞

∫
h2n dµ

(
∫
hn dφεξ)

2
=

∫
h2 dµ

(
∫
h dφεξ)

2
=

1

‖`εξ‖2L2

,

which, combined with (2.25), yields (2.19). Finally, as f > 0 on Ω and f
is continuous,

∫
B∞(ξ,ε)

1
f
dx
τε

= f(ζε)
−1 for some ζε ∈ B∞(ξ, ε), which yields

(2.20). Moreover, f(ζε)→ f(ξ) as ε ↓ 0 and so f(ζε) ≈ f(ξ) for ε > 0 fixed
and small.

(ii) Finally let ξ ∈ int(Ω) and let εn := n−r with r > 0 so that as n
increases, B∞(ξ, 1/nr) ⊂ Ω for all n sufficiently large, and τεn = εdn = n−rd.
Recall that with n fixed sufficiently large,

‖`εnξ ‖
2
L2 = 1/(τεnf(ζεn)) = nrd/f(ζεn) ,

for some ζεn ∈ B∞(ξ, 1/nr). Then for each n fixed, and with same argu-
ments as in (2.24), one obtains

n−rd f(ζεn) =
1

‖`εnξ ‖2L2

= inf
h∈L2(µ)

∫
h2 dµ

`εnξ (h)2

= inf
h∈L2(µ)

{
∫
h2 dµ : `εnξ (h) = 1}

≤ inf
h∈R[x]n

{
∫
h2 dµ : `εnξ (h) = 1}

≤ Λ̃µn(ξ, 1/nr) ,(2.26)
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from which we deduce that with r = 1, nd Λ̃µn(ξ, 1/n) ≥ f(ζεn), for every
n ∈ N, and thus

nd Λ̃µn(ξ, 1/n) ≥ inf{f(x) : x ∈ B∞(ξ, 1/nr)} , ∀n ∈ N .
If f is continuous then f(ζεn)→ ξ as n→∞, and we obtain (2.22). Finally,

nd Λ̃µn(ξ, 1/nr) ≥ nd(1−r)f(ζεn), for every n ∈ N, which yields (2.23). �

So Theorem 2.5 states that for fixed ε > 0, asymptotically when n in-
creases, Λ̃µn(ξ, ε)−1 converges to the L2(µ)-norm of the linear functional
`εξ ∈ L2(µ) which can be viewed as an ε-average (or ε-regularization) of the

point evaluation δξ 6∈ L2(µ). However, and as expected, ‖`εξ‖L2 increases

with 1/ε.
On the other hand, for the standard Christoffel function, Λµn(ξ)−1 is the

L2(µ)-norm of the the point evaluation linear functional δξ viewed as an
element of the finite dimensional subspace (R[x]n, 〈·, ·〉L2) of L2(µ). But
then of course this norm is unbounded as n increases because δξ 6∈ L2(µ).

Remark 2.6. In Theorem 2.5(i) one restricts to ξ ∈ int(Ω) such that
B∞(ξ, ε) ⊂ Ω. The reason is that if ξ ∈ int(Ω) but µ(B∞(ξ, ε)∩(Rd\Ω)) >
0, then for all h ∈ L2(µ),∫

B∞(ξ,ε)
h
dx

εd
=

∫
Ω
h

1B∞(ξ,ε)∩Ω

εdf
dµ = 〈h ,

1B∞(ξ,ε)∩Ω

εdf
〉 ,

and therefore, (2.20) becomes

(2.27) lim
n→∞

εd Λ̃µn(ξ, ε)−1 =

∫
B∞(ξ,ε)∩Ω

1

f

dx

εd
,

while if f is continuous then (2.21) becomes

lim
n→∞

ε−d Λ̃µn(ξ, ε) = f(ζε)
τε

vol(B∞(ξ, ε) ∩Ω)
,

for some ζε ∈ B∞(ξ, ε) ∩Ω. So now the limit in (2.27) is the product of
- the nice term f(ζε) related to the density of f in B∞(ξ, ε), with
- the multiplicative term εd/vol(B∞(ξ, ε) ∩ Ω), which may be hard to

compute for arbitrary Ω.
On the other hand, the limit in (2.27) still converges to f(ξ) when ε ↓ 0.

Comparing with asymptotics of the standard Λµn. Recall that s(n) =(
d+n
d

)
= O(nd). Notice that under some restrictive conditions, if ξ ∈ int(Ω),

(2.28) lim
n→∞

s(n) Λµn(ξ) =
f(ξ)

ωE(x)
,

where ωE(x) is the (in general unknown) density of the equilibrium mea-
sure of Ω. See for instance some examples in [1, §9.7], [2, 3, 13] and [8, §4.2] .

Then Eq. (2.28) is to be compared with (2.21), i.e.,

lim
n→∞

ε−d Λ̃µn(ξ, ε) = f(ζε) , for some ζε ∈ B∞(ξ, ε),
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when ε > 0 is fixed, B∞(ξ, ε) ⊂ Ω, and with (2.22)-(2.23), i.e.:

lim inf
n→∞

nd Λ̃µn(ξ, 1/n) ≥ f(ξ) ; lim
n→∞

nd Λ̃µn(ξ, 1/nr) = +∞ if r < 1 ,

when ε = 1/n or ε = 1/nr is not fixed anymore.
So (2.28) is more precise but requires strong assumptions on f , and is not

very helpful for practical computation since the density ωE of the equilibrium
measure of Ω is not known in general.

On the other hand, (2.21) is obtained with a rather weak assumption on
f , and provides an information of the density f in the box B∞(ξ, ε), as well
as an approximation of f(ξ) when ε is small. However it holds for points
ξ ∈ int(Ω) whose ‖ · ‖∞-distance to the boundary ∂Ω is at least ε/2 > 0.

Notice that as indicated in (2.23), varying ε with n as ε = 1/nr, with r <

1, is not a good idea if one would like to compare the limit of nd Λ̃µn(ξ, 1/nr)
with that of nd Λµn(ξ) in (2.28). To obtain a meaningful bounded limit would
require at least ε = 1/n.

Support inference. As already mentioned in the introduction, one strik-
ing property of the Christoffel function Λµn is the dichotomy of its asymptotic
behavior with n, depending on whether ξ ∈ int(Ω) or ξ 6∈ Ω. As we next

show, Λ̃µn inherits the same highly desirable property.

1. Inside Ω. First with ε > 0 fixed, by Theorem 2.5(i), for every ξ such
that B∞(ξ, ε) ⊂ Ω,

lim
n→∞

ε−d Λ̃µn(ξ, ε)−1 →
∫

B∞(ξ,ε)
(1/f)

dx

τε
,

so that the sequence (Λ̃µn(ξ, ε))n∈N is bounded (as it converges). So clearly,

(Λ̃µn(ξ, ε))−1 is bounded, uniformly in n. Next, when ε is allowed to vary
with n, like ε = 1/nr with r > 0, then from (2.26) in the proof of Theorem
2.5,

Λ̃µn(ξ, 1/nr)−1 ≤ nrd

γ
, ∀ξ ∈ int(Ω) ,

that is, the growth of Λ̃µn(ξ, 1/nr)−1 is at most polynomial in n.

2. Outside Ω.

Lemma 2.7. Let ξ 6∈ Ω and fix ε > 0. Then the growth of Λ̃µn(ξ, ε)−1 is

at least exponential in n. Similarly, the growth of Λ̃µ2n(ξ, 1/n)−1 is at least
exponential in n.

A proof is postponed to §4.2.

So, similarly as for the standard Christoffel function Λµn(ξ), we also obtain

for Λ̃µn(ξ, ε) a dichotomy in its asymptotic behavior as n increases, depending
on whether ξ 6∈ Ω (exponential decrease to zero) or ξ ∈ Ω and at ‖ · ‖∞-
distance ε of the boundary ∂Ω (convergence to a nonzero value). A similar



14 JEAN B. LASSERRE

result holds for Λ̃µ2n(ξ, 1/n) when ε > 0 is allowed to vary with n, like e.g.,
ε = 1/n.

3. Conclusion

We have introduced an extended version Λ̃µn(x, ε) of the standard Christof-
fel function Λµn(x) for a measure µ on a compact set Ω ⊂ Rd. One main mo-
tivation was to improve the asymptotic behavior of Λµn(x) as n increases and
x ∈ int(Ω), from a computational point of view. Indeed, when s(n)Λµn(x)
converges (under certain assumptions), the limit is of the form f(x)/ωE(x)
where f (resp. ωE) is the density of µ (resp. of the equilibrium measure of
Ω) w.r.t. Lebesgue measure. As ωE is in general unknown, this result is of
limited value from a computational viewpoint. In contrast, if f is continu-
ous, then with ε > 0 fixed and as n grows, ε−dΛ̃µn(x, ε) → f(ζε) for some
ζε ∈ B∞(x, ε). So if ε is small, one obtains an approximation of f(x) which
converges to f(x) if ε ↓ 0. In addition, the extended Christoffel function still
inherits highly desirable properties of 1/Λµn, namely (i) the dichotomy of its
symptotic behavior (at most polynomial growth versus at least exponential
growth) depending on whether x is inside or outside Ω, and (ii) an efficient
computation of its closed form expression as a polynomial of (x, ε).

4. Appendix

4.1. Affine invariance of the Christoffel function. Let Ω ⊂ Rd be com-
pact and let ξ ∈ Rd be fixed. With r > 0, consider the linear transformation
T : Rd → Rd defined by

(4.1) x 7→ T (x) := (x− ξ)/r , x ∈ Rd .
If µ is a Borel measure on Ω, let ν be the pushforward measure of µ by the
mapping T , that is,

ν(C) := µ(T−1(C)) , ∀C ∈ B(Ω) .

The support of ν is the set T (Ω), and∫
T (Ω)

p(y) dν(y) =

∫
Ω
p(T (x)) dµ(x) , ∀p ∈ R[x] .

Lemma 4.1. Let T be as in (4.1) and with µ supported on Ω, let ν be its
pushforward by T (hence supported on T (Ω)). Then

Λνn(T (x)) = Λµn(x) , ∀x ∈ Rd(4.2)

Λ̃νn(0, ε/r) = Λ̃µn(ξ, ε) , ∀ξ ∈ Rd .(4.3)

Proof.

Λνn(T (x)) = min
p∈R[y]n

{
∫
T (Ω)

p(y)2 dν(y) : p(T (x)) = 1 }

= min
p∈R[y]n

{
∫

Ω
p(T (y))2 dµ(y) : p(T (x)) = 1 } = Λµn(x) ,
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where we have used that {p ◦ T : p ∈ R[x]n} generates R[x]n. Moreover,
observe that ∫

B(0,ε/r)
p(u)

du

(ε/r)d
=

∫
B∞(T (ξ),ε)

p(T (x))
dx

εd
,

and since T (ξ) = 0, we also obtain

Λ̃νn(0, ε/r) = min
p∈R[y]n

{
∫
T (Ω)

p(y)2 dν(y) :

∫
B∞(0,ε/r)

p(u)
du

(ε/r)d
= 1 }

= min
p∈R[y]n

{
∫

Ω
p2(T (x)) dµ(x) :

∫
B∞(ξ,ε)

p(T (v))
dv

εd
= 1 }

= Λ̃µn(ξ, ε) .

�

4.2. Proof of Lemma 2.7.

Proof. Let T : Rd → Rd be as in (4.1) with r > 0 such that T (Ω) ⊂ B2(0, 1)
(where B2(ξ, τ) := {x : ‖x− ξ‖2 < τ}), and let the measure ν on T (Ω) be
the pushforward of µ by T . Observe that T (ξ) = 0 6∈ T (Ω) since ξ 6∈ Ω. By
the Bernstein-Markov property of Lebesgue measure on the box B∞(0, ε/r),
for every η > 0 there exists a constant Cη > 0, such that for all p ∈ R[x],

sup{|p(x)| : x ∈ B∞(0, ε/r)} ≤ Cη (1 + η)deg(p)
∫

B∞(0,ε)
p(x)2

dx

τε/r
,

see [8, p. 51]. Therefore if p(0) = 1 then,∫
B∞(0,ε/r)

p(x)2
dx

τε/r
≥ C−1η (1 + η)−deg(p) .

Next, for every δ ∈ (0, 1), the needle polynomial q ∈ R[t2]n(δ) introduced in
Króo and Lubinsky [3], satisfies:

(4.4) q(0) = 1 ; |q(‖x‖2)| ≤ 2 · 2−δ n(δ) ∀x ∈ B2(0, 1) \B2(0, δ) ,

and in particular,

q(‖x‖2)2 ≤ 4 · 2−δ 2n(δ) , ∀x ∈ T (Ω) ,

whenever B2(0, δ)∩T (Ω) = ∅ (which happens whenever δ is sufficiency small
as 0 6∈ T (Ω)). So with q as in (4.4), letting v = q2 ∈ R[x]2n(δ), one obtains
v(0) = 1 and ∫

B∞(0,ε/r)
v(x)

dx

τε/r
≥ C−1η (1 + η)−n(δ) .

Therefore, we deduce that

Λ̃ν2n(δ)(0, ε/r) ≤

∫
T (Ω) v

2 dν∫
B∞(0,ε/r) v dx/τε/r

≤ Cη (1 + η)n(δ)
∫
T (Ω)

v2 dν ,
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whenever B2(0, δ) ∩ T (Ω) = ∅, and therefore

Λ̃ν2n(δ)(0, ε/r) ≤ 16Cη (1 + η)n(δ) 2−δ 4n(δ) .

So recalling that ξ 6∈ Ω (hence 0 6∈ T (Ω)), fix δ ∈ (0, 1) such that B2(0, δ)∩
T (Ω) = ∅. Then by choosing η such that a := (1 + η)/24δ < 1, e.g. η <
4δ ln 2, one obtains:

Λ̃ν2n(δ)(0, ε/r) ≤ 16Cη a
n(δ) ,

which combined with Lemma 4.1 yields

Λ̃µ2n(δ)(ξ, ε) ≤ 16Cη (
√
a)2n(δ) ,

which in turn shows that Λ̃µ2n(ξ, ε) decreases exponentially fast to zero with
n, whenever ξ 6∈ Ω.

Next, if ε = 1/n for every n, then agin let δ > 0 be such that B2(0, δ) ∩
T (Ω) = ∅. As we did above with ε fixed,

Λ̃ν2n(δ)(0, 1/n(δ)r) ≤ 16Cη (1 + η)n(δ) 2−δ 4n(δ) .

Again, by choosing η such that a := (1 + η)/24δ < 1, e.g. η < 4δ ln 2, one
obtains:

Λ̃ν2n(δ)(0, 1/n(δ)r) ≤ 16Cη a
n(δ) ,

which combined with Lemma 4.1 yields

Λ̃µ2n(δ)(ξ, 1/n(δ)) ≤ 16Cη (
√
a)2n(δ) ,

which shows that Λ̃µ2n(ξ, 1/n) decrease exponentially fast to zero whenever
ξ 6∈ Ω. �
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