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ON A PARTICULAR EXTENSION OF THE CHRISTOFFEL
FUNCTION

JBL

1. INTRODUCTION

A certain variant of the Christoffel function (see below) allows to relate to
the underlying density without scaling factor. This variant considers balls
B(&,6) around each point € € supp(u), as also do people in topological data
analysis (see the interesting paper [1]).

A preliminary result. Let © € R? be compact with nonempty interior
and such that € = int(92).

Lemma 1.1. Let ¢,¢p € A (S2)1 be two finite Borel measures on Q with
M, (¢), M, (1) = 0 for alln € N. Let A > 0 be such that M, (¢) = AM,,(¢)
for alln € N. Then v» < \¢ and there exists 0 < h € L>®(, ¢) such that

(1.1) dy = h(x)ded and |[|hllec < A
Moreover,
(1.2) Ihlloo = f{A: Mn(s) X AMn(¢), VneN}

2. MAIN RESULT

Let p be a finite Borel probability measure on © with density f € L*>(Q2),
Le., du = f(x)lo(x)dx and [q f(x)dx = 1.
Next, given & € R? let B(§;6) := {x € R? : ||x — &|| < 6}, and let

doe = mlB(ﬁﬁ)dx' Given h € L>®(£2) let ||h]|5% be the infinity-norm
on QN B(E,9).

Consider the extended Christoffel function:

@1 Ao = wmin { [ Pdns [ pPdoe=1),
pER[x]n JQ B(&,6)

)

and observe that if § = 0 then Al (¢¢) = AL (d¢) coincides with the standard
Christoffel function & — AL ().

Lemma 2.1. Let AL (¢¢) be as in (2.1) and € € int(Q2). Then:

(2'2) AZ((?&) = )\min(Mn(M)a Mn(¢€))7 Vn e N.
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Equivalently:

Ag(éﬁ)_l = Amax(Mn(¢€)7Mn(M))
(2.3) = if{A: Ma(gg) = AMy(u)} < 17118,

and moreover,

(2.4) Tim Afi(ee) ™t = 1118

Proof. Observe that (2.1) reads

(25)  Ai(des) = pg{ig(ln)ﬂMn(u)’ppT% (M (¢¢),pp") = 1}.

By Barvinok [] the semidefinite relaxation

0 = %é%{<Mn(lu')7X> : <Mn(¢€)7X> = 1}7

of (2.5) has a rank-one optimal solution X* = qq’ > 0 for some q € Rs(n)
and therefore x — ¢(x) := q7v,(x) € R[x],, is an optimal solution of (2.1),
which also yields 6 = AL(¢e). As 0 < X := I/trace(M,(¢¢)) is a feasible

solution, Slater’s condition holds and therefore by standard conic duality:

AZ(QSE) = Sl)l\P{)‘z )‘Mn(QSE) = M,(n)} = Amin(Mn(N)’Mn(gbé)),

which yields (2.2) and also the two equalities in (2.3). To get the inequality
just use Lemma 1.1.

Next by (2.3), the sequence (Ah(¢¢) ')nen is monotone increasing and
is bounded above. Therefore lim,,_,o, AL (¢¢)™! = p* for some p* < Hngoé
But then by construction, M, (¢¢) < p* M, (1) for all n € N, which implies

p* > |If1I52, and which in turn yields the desired result. O
As an immediate consequence, we obtain the following result.

Lemma 2.2. For every n € N define:

(26)  Aboe) = min { [ Pdus [ pPase=1).
PER[X] JQ B(&,1/n)
If f is piecewise continuous and & € int(§2) is not a point of discontinuity
then:
1

. im i K > .
(2.7) liminf A7 (d¢) > G
Proof. If € € int(Q2) then B(&,1/n) C int(2) provided that n is sufficiently
large, say n > mng. So let AL(€) be as in (2.6) with n > ng. If f is not
a point of discontinuity then || f ||§51/ " | f(&) as n increases. Moreover by
(2.3):

limsup A (¢e) ™" < limsup [|£|&™ = £(€),
n—oo

n—oo

which yields the desired result (2.7). O



ON A PARTICULAR EXTENSION OF THE CHRISTOFFEL FUNCTION 3

In topological data analysis, they analyze clouds NV of finitely many points
by approximating the cloud with Jgcp B(€, ).

Notice that from KKT-optimality conditions, an optimal solution p of
(2.1) satisfies: M, (1) p = AL (¢¢) My, (¢¢) p and so
p = AZ(QSg)Mn(M)‘l/ Va(y) va(y)'p doe(y).
Q ~——

=p(y)
and using Vn(X)TMn(:U')ilvn(y) = Za Po(x)Po(y), yields:

xoplx) = val)Tp = ARG 3 Palx) [ Paly)ply) doe(y)

CVGN% B(gv(s)

— A%(de) /B ey 2 o) Pal3) () doe(y)

aeNd
= A(¢e) /B ) K(x,y)p(y) doe(y)

So the optimal solution p € R[x], is reproduced by the kernel K(x,y) on
B(¢,0) (whereas K is a RKHS on L%(u) (and not on L?(¢g)). Moreover:

2
Mi(ge) ™ = > </B(§6) Po(y)p(y) d¢g(y)> ,

aeNd
which coincides with AL (€)™! = K(€,&) when ¢¢ = ¢ (as then p(€) = 1).
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