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Soft-Reset Control with Max-of-Quadratics
Lyapunov Certificates

R. Bertollo, Student Member, IEEE , A.R. Teel, Fellow, IEEE , L. Zaccarian, Fellow, IEEE

Abstract

We further develop a novel control paradigm encoding the core behavior of a reset control system within a continuous-
time feedback, described by a differential inclusion. A tuning knob allows adjusting how close the continuous-time
feedback resembles the behavior of the underlying reset controller. The Lyapunov conditions that we derive naturally
lead to a sum-of-squares formulation allowing for the design of max-of-quadratics Lyapunov certificates certified by
polynomial multipliers. A few application examples confirm the practical effectiveness of the proposed solutions.

Index Terms

Reset control, hybrid systems, stability of hybrid systems, computational methods, computer-aided control design.

I. INTRODUCTION

Reset control is a hybrid control strategy that was first introduced by Clegg [1] and later revisited by Horowitz [2] in the
context of linear feedback. After a few quiescent decades, the advent of modern representations of hybrid dynamics and hybrid
Lyapunov theory generated, in the early 2000, renewed interest in this field (see the surveys in [3], [4]). Among other things, a
motivation for reset control is that it has the potential to overcome fundamental limitations of classical feedback laws [5], [6].
Follow-up works essentially branch out in the direction of rigorous Lyapunov-based guarantees for control systems involving
reset controllers and continuous-time plants [7]–[9], together with frequency-domain-based studies that are aimed at reducing
the gap between theory and control applications [3], [10]. To further motivate and sustain the practical relevance of these
techniques, several control applications have been shown to benefit from reset control designs, as testified in [11]–[18], just to
cite a few.

A key idea in modern reset control schemes, well described in [7], is to apply an aggressive (possibly exponentially unstable)
first-order continuous control action, providing exponentially diverging transients, which is suitably reset to zero in order to
obtain hybrid trajectories that exponentially converge to the origin. The stabilizing properties of the controller, known as FORE
(first-order reset element), have been thoroughly analyzed in works like [3], [4] and [7].

One of the challenges in tuning these reset controllers is that the resulting trajectories may jump indefinitely, without
converging to zero, so some kind of regularization needs to be introduced, as shown in [7], to avoid these nonconverging Zeno
phenomena. Moreover, the introduction of the hybrid framework may result in a less intuitive system as compared to classical
continuous-time feedback. In the last years, different solutions have been proposed to obtain controllers able to achieve better
performance when compared to the well-established linear controllers, while still producing a continuous controller output.
In [19], the introduction of a lead-lag pair generates discontinuous state trajectories, but the controller output signals are
continuous. In [20], the underlying idea of reset controllers (namely, keeping the sign of the output equal to the sign of the
input) is used to propose a new class of controllers known as hybrid integrator-gain systems (HIGS), whose solutions are, by
construction, continuous. Lastly, to avoid the need for time regularization, a continuous-time control scheme stemming from a
reset control solution, named soft-reset controller, has been proposed in [21] (and further developed in [22]). In [21] it is shown
that a weak smooth Lyapunov function, which does not even avoid non-converging Zeno solutions with the reset controller, is
already enough to ensure exponential stability of the novel soft-reset scheme.

Following the ideas of [21], in this paper we revisit those results when using nonsmooth functions, which are key for
obtaining stability certificates that are not too conservative. In addition, we illustrate here the role of a suitable feedback gain,
suggested in [21], that allows modulating the strength of the reset-induced action on the closed-loop system.

Our main results first establish sufficient conditions for global exponential stability of the origin and then show that certain
bilinear matrix inequalities (BMI) conditions can be used to provide non-smooth Lyapunov certificates. In particular, we observe
that these BMIs are best addressed in association with polynomial multipliers stated as sum of squares (SOS). Indeed, practical
experience shows that constant multipliers lead to conditions that are too conservative. This is not surprising, since already in
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[23] it was recognized that stability properties of the homogeneous hybrid dynamics stemming from reset control mechanisms
are best addressed with the use of nonquadratic certificates (such as homogeneous higher order polynomials as in [23]). Similar
observations can also be found in [24].

To solve our BMI-max-of-quadratics formulations we propose an iterative sum-of-squares algorithm that constructs such
nonsmooth Lyapunov functions. The iterative part of the algorithm is inspired by the path-following technique proposed in
[25]. The SOS certificates allow using polynomial multipliers in our BMI conditions, resulting in a less conservative equivalent
formulation.

The paper is organized as follows: in Section II we introduce some preliminary results on non-smooth strongly convex
functions. In Section III we present the soft-reset closed loop, and we state and prove asymptotic stability of the continuous-
time dynamics with nonsmooth Lyapunov certificates. In Section IV we identify BMI conditions with polynomial multipliers,
which ensure the main stability result using a max-of-quadratics Lyapunov function and SOS constraints. In Section V we
present an iterative algorithm to construct these max-of quadratics Lyapunov certificates. Lastly, in Section VI we present an
application of our work to a second-order system, resembling the dynamics of a class of mechatronic systems.

Notation: |x| :=
√
x>x denotes the Euclidean norm; Br(x) ⊂ Rn denotes a ball of radius r > 0 centered at x ∈ Rn;

Sn−1 ⊂ Rn denotes the unit sphere in Rn; λm(P ) denotes the minimum eigenvalue of a symmetric matrix P , while λM(P )
denotes its maximum eigenvalue.

II. PRELIMINARIES ON NON-SMOOTH STRONGLY CONVEX FUNCTIONS

As a preliminary mathematical background, we recall here some properties of non-smooth strongly convex functions, which
are well known in the smooth case [26]. Due to [26, Lemma 3.1.2] and [27, Prop. 2.2.6], nonsmooth convex functions are
Lipschitz in the interior of their domain. To rule out the defective cases of [26, Ex. 3.1.1(6) and 3.1.2(4)] we consider functions
W : Rn → R with domW = Rn, so that convexity implies Lipschitz continuity.

We recall that a function W : Rn → R is convex (and Lipschitz) if, for each x1 and x2 in Rn, we have

W (tx1 + (1− t)x2) ≤ tW (x1) + (1− t)W (x2) , ∀t ∈ [0, 1] ,

and that a function V is strongly convex with parameter η > 0 when x 7→W (x) := V (x)− η
2x
>x is convex.

For a convex function V : Rn → R, which is not necessarily differentiable, instead of the gradient, we use the subdifferential
∂V of V : a set-valued map defined as follows

∂V (x) := {ζv ∈ Rn : V (y)− V (x) ≥ 〈ζv, y − x〉,∀y ∈ Rn}.

While the above is the standard definition of subdifferential, in this paper we use the following equivalent definition stemming
from the Clarke generalized gradient [27], which is also defined for nonconvex Lipschitz functions1:

∂V (x) := co{ lim
i→∞

∇V (xi) : xi → x, xi /∈ S}, (1)

where co(·) denotes the convex hull and S ⊂ Rn is any set of measure zero including the points where V is not differentiable
(due to Rademacher’s theorem, V is differentiable everywhere except possibly on a set of measure zero). We use here formalism
(1), because it allows stating Lemma 2 and Lemma 3 in a more general way, so that the results may be extended to nonconvex
functions in the future (see Remark 3 at the end of Section III).

The following lemma is an extension of [26, Definition 2.1.2] to the Lipschitz case. The same result is also presented in
[28, Lemma 2]. A proof is reported here for completeness.

Lemma 1: A Lipschitz function V : Rn → R is strongly convex with parameter η > 0 if and only if

V (y)≥V (x) + 〈ζv, y−x〉+
η

2
|y−x|2, ∀ζv ∈ ∂V (x), (2)

for all (x, y) ∈ Rn × Rn.
Proof: From [29, Cor. 2.6(c)], strong convexity of V implies that, for all x, y ∈ Rn,

W (y) ≥W (x) + 〈ζW , y − x〉,∀ζW ∈ ∂W (x). (3)

The converse is also true. Indeed, pick any y1, y2 ∈ Rn and for any λ ∈ [0, 1] we may select x = λy1 +(1−λ)y2 and evaluate
(3) for y = y1 and y = y2 to get, for all ζW ∈ ∂W (x),

W (y1) ≥W (x) + 〈ζW , y1 − x〉,
W (y2) ≥W (x) + 〈ζW , y2 − x〉.

1The equivalence between (1) and the subdifferential, for convex Lipschitz functions, is established in [27, Prop 2.2.7 and Thm 2.5.1].
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Multiplying the first inequality by λ and the second one by (1− λ) and summing up, we get

λW (y1) + (1− λ)W (y2)

≥W (x) + 〈ζw, λy1 + (1− λ)y2 − x〉
≥W (x) + 〈ζw, 0〉 = W (λy1 + (1− λ)y2),

which is the definition of convexity.
Summarizing, we have proven that V is strongly convex if and only if (3) holds for all x, y ∈ Rn.
Continuing, apply [27, Prop. 2.3.3, p. 38] and [27, Cor. 1, p. 39], to get that ∂W (x) = ∂V (x) − ηx. Therefore (3) is

equivalent to V (y)− η
2y
>y ≥ V (x)− η

2x
>x+ 〈ζV − ηy, y − x〉, for all ζV ∈ ∂V (x). Rearranging terms, this corresponds to

(2).
Remark 1: We emphasize that condition (3) can be equivalently written as

V (y) ≥ V (x) + 〈∇V (x), y − x〉+
η

2
|y − x|2. (4)

for almost all (x, y) ∈ Rn×Rn. The fact that (2) implies (4) is trivial. The opposite implication holds because of the definition
in (1). In particular, assume that (4) holds almost everywhere. Then for each x, y ∈ Rn, consider any sequence of points where
xi where V is differentiable, such that xi → x and ζi = ∇V (xi) → ζ? ∈ ∂V (x). From the continuity of V , (2) holds with
ζv = ζ?. Moreover, (2) also holds for any ζv in the convex hull of any such limiting value ζ?, due to linearity of (2) with
respect to ζv . •

III. CONTINUOUS-TIME IMPLEMENTATION OF RESET CONTROL

A. Dynamics and main stability result
Consider the following homogeneous hybrid dynamical system with state x ∈ Rn:

H

{
ẋ = Ax, x ∈ C,
x+ = Rx, x ∈ D,

(5)

where the flow and jump sets are defined as

C := {x ∈ Rn : x>Mx ≤ 0}
D := {x ∈ Rn : x>Mx ≥ 0},

(6)

with A,R,M ∈ Rn×n, and M = M>.
Based on the preliminary results of [21], the purpose of this work is to certify, using non-smooth Lyapunov functions,

exponential stability for a continuous-time implementation of the hybrid reset control system (5)-(6), known as soft-reset
system. To this end, we assume that the hybrid data of the original system satisfy the following assumption.

Assumption 1: For system (5)-(6), there exists a Lipschitz, homogeneous of degree two, positive definite function V : Rn →
R such that

(i) V is strongly convex
(ii) there exist ε > 0 such that, defining Cε := {x ∈ Rn : x>Mx ≤ εx>x}, the following holds:

〈∇V (x), Ax〉 ≤ 0, for almost all x ∈ Cε, (7)
V (Rx)− V (x) ≤ 0, for all x ∈ D; (8)

(iii) x ∈ D implies Rx ∈ C;
(iv) no continuous solution to (5)-(6) exists that keeps V constant and nonzero.

�
Item (ii) of Assumption 1 ensures only stability of the origin for (5)-(6); items (iii) and (iv) do not give any guarantee of the
origin’s attractivity. Attractivity fails when a system allows for discrete nonzero solutions that keep V (defined in Assumption 1)
constant and nonzero. This happens in many reset control systems, and the issue is typically resolved by the introduction of
some kind of time or space regularization,see, e.g., the discussion in [7, Section I] and references therein. Simplifying the
implementation is one of the motivations for introducing, in [21], the following continuous-time system, inspired by the essential
nature of the solutions of (5)-(6):

ẋ ∈ F (x) := Ax+ γ

(
SGN

(
x>Mx

)
+ 1

)(
Rx− x

)
, (9)
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with γ > 0 sufficiently large. The continuous-time dynamics (9) is a differential inclusion because of the set-valued mapping
SGN : R ⇒ R, defined as

SGN (x) :=

{
x/|x|, if x 6= 0,

[−1, 1], if x = 0.
(10)

Consequently, the set-valued mapping F in (9) is outer semicontinuous and locally bounded with convex values.
Remark 2: As noted in [21], (9) is equivalent to (5) when x belongs to the interior of C in (6). Indeed, when x>Mx < 0,

F (x) = Ax. On the other hand, when x belongs to the interior of D and γ → ∞, we have F (x) ≈ 2γ(Rx − x), which
corresponds to a continuous-time approximation of the jump map in (5). Summarizing, the selection of γ allows tuning how
accurately the solutions of (9) approximate the projection on the continuous-time axis of the hybrid solutions of (5)-(6). •
Following the proof technique of [21], suitably generalized to the Lipschitz case, we can show here that this soft-reset dynamics
ensures global exponential stability of the origin even when the original hybrid system does not have an attractive origin. In
particular, the following holds.

Theorem 1: Under Assumption 1, the origin of (9) is globally exponentially stable for γ > 0 sufficiently large. Moreover,
if (7) holds for almost all x ∈ Rn, then the origin of (9) is globally exponentially stable for any γ > 0.
Note that item (iii) of Assumption 1 is reasonable when transitioning to a continuous-time implementation as in (9), since
it would not make sense to do so starting from a purely discrete system. Additionally, (7) together with item (iv) are
typical convergence guarantees for the continuous-time part of the hybrid system (5), although we emphasize once again
that Assumption 1 does not guarantee asymptotic stability of the origin for the hybrid system (5)-(6).

Some conditions that might appear strict are requiring that (7) holds on Cε and the strong convexity assumption on V in
item (i) of Assumption 1. Asking that (7) holds on a slightly inflated version of C is a means of guaranteeing some robustness
that is needed to pass from the hybrid implementation to the continuous-time implementation, as it will be clear in the proof of
Theorem 1. Lastly, the strong convexity assumption in item (i) can be removed by working with a direct Lyapunov construction
for the soft-reset dynamics. This last aspect is discussed in Remark 3.

B. Proof of Theorem 1
For the proof of Theorem 1, we rely on the following lemmas providing two useful estimates of the generalized directional

derivative of V in the direction Ax.
Lemma 2: Under item (ii) of Assumption 1, the following holds

〈v,Ax〉 ≤ 0, ∀x ∈ C ε
2
, ∀v ∈ ∂V (x). (11)

Proof: For x = 0, inequality (11) holds trivially. Moreover, for each x ∈ Rn \ {0} satisfying x>Mx ≥ ε
2 |x|

2, it is
immediate to verify that any xi in the ball Bδ(x)(x) having radius δ(x) := ε

3(ε+2|M |) |x|, satisfies x>i Mxi ≤ ε|xi|2. This
implies, from (7) in Assumption 1,

〈∇V (xi), Axi〉 ≤ 0, for almost all xi ∈ Bδ(x)(x). (12)

Based on the definition in (1), consider any sequence xi → x contained in Bδ(x)(x) and satisfying ∇V (xi)→ v? in addition
to the left bound in (12). Due to the Lipschitz properties of V , for each x there exists L such that |∇V (z)| ≤ L for almost all
z ∈ Bδ(x)(x). This implies | limi→∞〈∇V (xi), A(xi − x)〉| ≤ limi→∞ L|A||xi − x| = 0. Using this last inequality and (12),
we get

〈v?, Ax〉 = lim
i→∞
〈∇V (xi), Ax〉+ 〈∇V (xi), A(xi − x)〉

= lim
i→∞
〈∇V (xi), Axi〉 ≤ 0.

Finally, note that linearity of the scalar product 〈v?, Ax〉 allows extending the bound above to any convex combination of such
limit vectors v?, namely to any vector v ∈ ∂V (x), as to be proven.

Lemma 3: Under item (ii) of Assumption 1, the constant κ := sup
|x̄|=1, v∈∂V (x̄)

〈v,Ax̄〉 is finite and satisfies

〈v,Ax〉 ≤ κ|x|2, ∀x ∈ Rn,∀v ∈ ∂V (x). (13)
Proof: The constant κ is finite since ∂V is locally bounded, due to (1) and the fact that ∇V is locally bounded since V

is locally Lipschitz.
To the end of proving (13) for x 6= 0 (for x = 0 it holds by inspection), consider the expression of the generalized directional

derivative V ◦(x;Ax) given in [27, p. 10, eqs (1), (3)] and note that for each x 6= 0, defining x̄ := x
|x| , using the homogeneity
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(of degree two) of V , we have

max
v∈∂V (x)

〈v,Ax〉 = V ◦(x;Ax)

= lim sup
y→x,h↘0

V (y + hAx)− V (y)

h

= lim sup
ȳ→x̄,h↘0

V (|x|ȳ + hA|x|x̄)− V (|x|ȳ)

h

= |x|2 lim sup
ȳ→x̄,h↘0

V (ȳ + hAx̄)− V (ȳ)

h

= |x|2 max
v∈∂V (x̄)

〈v,Ax̄〉 ≤ κ|x|2,

as to be proven.
By also using the results in Section II, we are now ready to prove Theorem 1; our proof generalizes the main result in [21]

to the case where the Lyapunov function is non-smooth.

Proof of Theorem 1. It is straightforward to see that F (λx) = λF (x) for all λ > 0 and x ∈ Rn. Hence global exponential
stability of the origin is equivalent to asymptotic stability of the origin; see [30, Theorem 11], for example. It remains to prove
asymptotic stability of the origin, namely Lyapunov stability + global attractivity, which are proven below.
A. Lyapunov Stability. Let us first focus on proving Lyapunov stability. From Lemma 1, the strong convexity assumed
initem (i) of Assumption 1 implies that there exists η > 0 satisfying (2). Take x = 0 in (2) and note that V (y) is lower
bounded by a quadratic form in y where the quadratic term is η

2 |y|
2. This implies radial unboundedness, which implies that

V has compact sublevel sets. Using the results in [29, §4.5] it is straightforward to check that Lyapunov stability of the origin
for ẋ ∈ F (x) is guaranteed if there exists a locally Lipschitz function V positive definite and having compact sublevel sets,
such that

|x| 6= 0 ⇒ 〈v, f〉 ≤ 0, ∀f ∈ F (x),∀v ∈ ∂V (x). (14)

To the end of proving (14), let us break the analysis into three main steps.
Step A.1: Bounding 〈∂V (x),

(
SGN(x>Mx) + 1

)
(Rx− x)〉.

Select y = Rx in (2) (which holds due to the strong convexity assumption) and using (8) and the definition of D in (6),
we have for all x 6= 0 and for all v ∈ ∂V (x),

x>Mx ≥ 0 =⇒ 〈v,Rx− x〉 ≤ −η
2
|Rx− x|2. (15)

Exploiting linearity of the scalar product, and from the definition of SGN in (10), the previous inequality implies that for
all x 6= 0, for all v ∈ ∂V (x) and for all s ∈ SGN(x>Mx),

〈v, (s+ 1)(Rx− x)〉 ≤ −(s+ 1)
η

2
|Rx− x|2. (16)

Letting σ > 0 satisfy |M(Rx + x)| ≤ σ|x| for all x ∈ Sn−1, and then using the Cauchy-Schwarz inequality, item (iii) in
Assumption 1, and M = M>, it follows that for all x 6= 0

x>Mx ≥ 0 ⇒ |Rx− x| ≥ −(Rx− x)>M(Rx+ x)

σ|x|

=
x>Mx− x>R>MRx

σ|x|

≥ x>Mx

σ|x|
. (17)

Combining (16) and (17) results in

〈v, (s+ 1)(Rx− x)〉 ≤ −ηmax
{

0, x>Mx
} x>Mx

σ2|x|2
, (18)

for all x 6= 0, all v ∈ ∂V (x) and all s ∈ SGN(x>Mx).
Step A.2: Bounding 〈∂V (x), Ax〉.
For each x ∈ Rn \ {0} satisfying x>Mx ≤ ε

2 |x|
2, Lemma 2 establishes the bound

x>Mx ≤ ε

2
|x|2 ⇒ 〈v,Ax〉 ≤ 0, ∀v ∈ ∂V (x). (19)
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For the remaining points, which satisfy x>Mx ≥ ε
2 |x|

2, we use (13) of Lemma 3 to obtain, for all v ∈ ∂V (x),

x>Mx≥ ε
2
|x|2 ⇒ 〈v,Ax〉 ≤ κ|x|2 ≤ 2κ

ε
x>Mx (20)

≤ max
{

0, x>Mx
} 4κσ2

ε2

x>Mx

σ2|x|2
.

Step A.3: Wrapping up.
It follows from (19) and (20) together with (18) that, for each ν > 0 there exists γ > 0 sufficiently large, such that for all

x 6= 0,

〈v,Ax+ γ · (s+ 1)(Rx− x)〉 (21)

≤ −νmax
{

0, x>Mx
} x>Mx

|x|2
≤ 0,

for all v ∈ ∂V (x) and all s ∈ SGN(x>Mx). This clearly implies (14) and shows Lyapunov stability of the origin for (9).
Consider now the case where (7) holds for almost all x ∈ Rn. Then bound (19) holds everywhere and there is no need to use
bound (20). As a consequence, combining (18) and (19), we obtain (21) with ν = η

σ2 for any value of γ > 0. This implies,
once again, (14) and therefore Lyapunov stability.
Global Convergence. To prove convergence, we apply the invariance principle for differential inclusions in [31, Thm 2.11],
which applies due to the properties of F listed below (10). In particular, the origin is globally attractive if and only if there
is no solution x : R≥0 → Rn and c > 0 such that V (x(t)) = c for all t ≥ 0. Being a solution of (9), x(·) satisfies, for almost
all t,

ẋ(t) = Ax(t) + γ · (s(t) + 1)(Rx(t)− x(t)), (22a)

s(t) ∈ SGN
(
x>(t)Mx(t)

)
. (22b)

Assuming that t 7→ V (x(t)) is a non-zero constant, by the generalized chain rule presented in [32] (see also [33, Prop. 4]),
for almost all t,

0 = 〈v(t), Ax(t) + γ · (s(t) + 1)(Rx(t)− x(t))〉, (23)

for some v(t) ∈ ∂V (x(t)). According to (21), such a solution requires x>(t)Mx(t) ≤ 0 for all t ≥ 0. In turn, it follows from
(20) and (16) and the positivity of γ that, for almost all t,

0 = 〈v(t), Ax(t)〉 (24a)

0 = 〈v(t), γ · (s(t) + 1)(Rx(t)− x(t))〉. (24b)

Again with (16) and the positivity of γ and η, it follows that, for almost all t,

(s(t) + 1)|Rx(t)− x(t)|2 = 0. (25)

It then follows from (22a) that ẋ(t) = Ax(t) for almost all t, namely x(·) is also a solution of (5)-(6). In turn, it follows from
item (iv) of Assumption 1 that x(·) does not keep V equal to a nonzero constant. That is, V (x(t)) = c > 0 for all t ∈ R≥0 is
impossible. �

Remark 3: The strong convexity hypothesis in item (i) and equation (8) in item (ii) of Assumption 1 are used only once
in the proof of Theorem 1. In particular, these two conditions combined are used to prove inequality (15). For this reason,
a relaxed version of Assumption 1, not requiring strong convexity of the Lyapunov function, could be obtained by directly
assuming (15). Starting from this relaxed assumption, one could proceed as in the next sections and generate an alternative
(iterative) algorithm, imposing a numerically tractable sufficient condition for (15) for the synthesis of a nonconvex max of
quadratics Lyapunov function. However, preliminary attempts to do so led to sufficient conditions that are too conservative
and therefore ineffective. Thus, we regard these challenging directions as future work. •

IV. MAX OF QUADRATICS LYAPUNOV FUNCTIONS WITH SOS MULTIPLIERS

With quadratic Lyapunov functions, the conditions in item (ii) of Assumption 1 are either trivially satisfied or they can be
verified through linear algebra. However, they often lead to conservative results, see [34, Example 1]. Moreover, for certain
reset control feedbacks it is known that no quadratic Lyapunov function exists certifying internal stability (see, for example,
the discussion in [8, page 1142]).

To address this issue, we propose here an approach for checking Assumption 1 with max of quadratics Lyapunov functions.
Given q matrices Pi = P>i , i ∈ Q := {1, . . . , q}, a max of quadratics function is defined as

V (x) := max
i∈Q

x>Pix. (26)
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We show below that, for ensuring selected properties in Assumption 1, it is enough to search for constants α ≥ 0, β ≥ 0,
ε > 0, ε > 0, polynomial functions riΛ, riS , riF , riJ , and SOS polynomials τij , µi0, µij , λi0, λij such that, for all i ∈ Q,
the polynomials

Si(x) := x>Pix−
q∑
j=1

τij(x)x>(Pi − Pj)x

+ riS(x)(1− x>x)− εx>x, (27a)

Fi(x) := −x>(PiA+A>Pi)x−
q∑
j=1

µij(x)x>(Pi − Pj)x

+ µi0(x)x>(M − εI)x+ riF (x)(1− x>x)− 2αx>Pix, (27b)

Ji(x) := −x>R>PiRx+ e−2β

q∑
j=1

λij(x)x>Pjx

− λi0(x)x>Mx+ riJ(x)(1− x>x), (27c)

Λi(x) := 1−
q∑
j=1

λij(x) + riΛ(x)(1− x>x), (27d)

are all SOS.
Proposition 1: Assume that there exist q symmetric matrices Pi, constants α ≥ 0, β ≥ 0, ε > 0, polynomials riΛ, riS ,

riF , riJ , and SOS polynomials τij , µi0, µij , λi0, λij such that, for all i ∈ Q, all of the polynomials in (27) are SOS. Then
function V in (26) satisfies (7), (8), and, if α > 0, item (iv) of Assumption 1 holds too. Finally, if Pi > 0 for all i ∈ Q, then
V is strongly convex and satisfies item (ii) of Assumption 1.

Remark 4: The SOS certificates obtained with polynomial multipliers are a generalization of the BMI conditions that one
could obtain using the S-procedure and constant multipliers. Moreover, if matrices Pi are fixed, the conditions become LMIs
arising from SOS representations of the polynomial multipliers. This fact may be exploited when wanting to verify selected
properties of Assumption 1 for a given Lyapunov function V . Constant multipliers are more intuitive and widely used in the
literature, but we discuss in Remark 5 that in many cases they prove to be too conservative in this formulation, probably
because of the repeated use of the lossy S-procedure. •
To prove Proposition 1, we first establish a few convenient properties for the function V .

Lemma 4: Under the hypotheses of Proposition 1, there exist positive scalars c1, c2 such that function V in (26) satisfies

c1|x|2 ≤ V (x) ≤ c2|x|2, for all x ∈ Rn, (28a)
〈∇V (x), Ax〉 ≤ −2αV (x), for almost all x ∈ Cε, (28b)

V (Rx) ≤ e−2βV (x), for all x ∈ D. (28c)
Proof: We prove the three inequalities in (28) one by one.

Proof of SOS of (27a) =⇒ (28a). Let us first consider any x ∈ Rn with |x| = 1. Then, the term (1 − x>x) in (27a)
becomes zero, and since the polynomial is SOS, we have

x>Pix−
q∑
j=1

τij(x)x>(Pi − Pj)x− εx>x ≥ 0.

Consider now any i ∈ Q such that V (x) = x>Pix ≥ x>Pjx, ∀j ∈ Q. Then the previous inequality, together with τij ≥ 0
and ε > 0, yields V (x) = x>Pix >

∑q
j=1 τij(x)x>(Pi − Pj)x ≥ 0. Since the set where |x| = 1 is compact, we may define

c1 := min|x|=1 V (x) > 0 and c2 := max|x|=1 V (x) > 0 and get

c1|x|2 = c1 ≤ V (x) ≤ c2 = c2|x|2, ∀x ∈ Rn : |x| = 1. (29)

Consider now any x ∈ Rn \ {0} and pick any i ∈ Q such that V (x) = x>Pix. Then V (x) = |x|2(x/|x|)>Pi(x/|x|) =
|x|2V (x/|x|), which may be used in (29) to get

c1|x|2 ≤ V (x/|x|)|x|2 = V (x) ≤ c2|x|2, ∀x ∈ Rn \ {0} (30)

Inequalities (30), together with V (0) = 0 (trivially implied by (26)) prove (28a).
Proof of SOS of (27b) =⇒ (28b). For this proof we exploit the results in [35]. First, consider x ∈ Cε such that |x| = 1

and V is differentiable at x. Then, proceeding as in the previous case, Si(x) in (27b) being SOS implies

x>(PiA+A>Pi)x+

q∑
j=1

µij(x)x>(Pi − Pj)x

− µi0(x)x>(M − εI)x ≤ −2αx>Pix.

(31)
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Now, using the notation in [35, Def. 4], consider any i ∈ αV (x), where αV (x) denotes the essentially active index set
map, which is not empty and ensures x>Pix ≥ x>Pjx for all j ∈ Q due to [35, Lemma 1]. Since V is differentiable at
x by construction, then we have ∇V (x) = ∇(x>Pix) = 2Pix. Summarizing, we have V (x) = x>Pix by definition and
x>(M − εI)x ≤ 0 because x ∈ Cε. Consider now (31) together with x>(Pi − Pj)x ≥ 0 and µij(x) ≥ 0, to get

V̇ (x) = x>(PiA+A>Pi)x ≤ −2αx>Pix = −2αV (x).

Homogeneity of the system is then exploited, similarly to (30), to extend the result to almost all x ∈ Cε, as to be proven.
Proof of SOS of (27c) and (27d) =⇒ (28c). Consider x ∈ D such that |x| = 1. Then, polynomials Ji(x),Λi(x) in (27c),

(27d) being SOS implies that

x>RPiRx− e−2β

q∑
j=1

λij(x)x>Pjx+ λi0(x)x>Mx ≤ 0,

q∑
j=1

λij(x) ≤ 1. (32)

Now pick any pair i, k ∈ Q such that V (x) = x>Pkx ≥ x>Pjx for all j ∈ Q and V (Rx) = (Rx)>Pi(Rx). Then we may
use (32), together with x>Mx ≥ 0 (because x ∈ D), and λij(x) ≥ 0 for all i, j ∈ Q, to get

V (Rx) = x>R>PiRx ≤ e−2β

q∑
j=1

λij(x)x>Pjx

≤ e−2β

q∑
j=1

λij(x)x>Pkx ≤ e−2βx>Pkx = e−2βV (x).

Lastly, homogeneity is exploited once more to extend the result to any x ∈ D, thus completing the proof.
Based on Lemma 4 we can now prove Proposition 1.

Proof of Proposition 1. We exploit inequalities (28) proven in Lemma 4, to establish the statement of the proposition.
First of all note that, using inequalities (28a), (28b) and following similar steps to the ones reported in the proof of Lemma 2,

we obtain that 〈v,Ax〉 ≤ −2αV (x),∀x ∈ C ε
2
,∀v ∈ ∂V (x). This, together with standard comparison theory (see, e.g., [36,

Lemma 8.1]), implies that any flowing solution to (5)-(6) must be associated to a decrease of V with exponential rate 2α,
therefore proving item (iv) of Assumption 1 whenever α > 0. Moreover, (28b) directly implies (7) because α ≥ 0 and
inequality (28c) directly implies (8) because β ≥ 0. Finally, about item (ii), all quadratic functions are homogeneous of degree
two, so the same holds for V in (26), and positive definiteness of V follows from (28a). Strong convexity is guaranteed when
Pi > 0. Indeed, each quadratic function Vi(x) := x>Pix is strongly convex with parameter ηi = 2λm(Pi) in (2), and for
each x, y ∈ Rn such that V is differentiable at x, with i, k ∈ Q satisfying i ∈ αV (x) (this implies ∇V (x) = ∇Vi(x) and
V (x) = Vi(x)) and V (y) = Vk(y) we have, from (2),

V (y) = Vk(y) ≥ Vi(y)

≥ Vi(x) + 〈∇Vi(x), y − x〉+
η

2
|y − x|2

= V (x) + 〈∇V (x), y − x〉+
η

2
|y − x|2

where η = min
i∈Q

ηi = 2 min
i∈Q

λm(Pi), which proves (4). This, in turn, is equivalent to (2) (as stated and proven in Remark 1),
which implies strong convexity due to Lemma 1. �

Remark 5: One simpler certificate for the conditions in Assumption 1 for the max of quadratics function V in (26) could
be obtained using constant multipliers, in place of the polynomial SOS multipliers in (27). In particular, we may simplify the
constraints in the statement of Proposition 1 as follows

Pi −
q∑
j=1

τij(Pi − Pj) > 0, (33a)

PiA+A>Pi +

q∑
j=1

µij(Pi − Pj) (33b)

− µi0(M − εI) + 2αPi ≤ 0,

R>PiR− e−2β

q∑
j=1

λijPj + λi0M ≤ 0. (33c)
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Equations (33) come from multiple applications of the (lossy) S-procedure, which is known to be a conservative technique,
where the conditions (33) are sufficient but not necessary to prove (28). This proved to be an issue in many numerical examples.
Indeed, when using constant multipliers, the iterative algorithm presented in the next section does not converge for any of the
examples that we considered. •

V. AN ITERATIVE ALGORITHM TO SYNTHESIZE MAX OF QUADRATICS LYAPUNOV FUNCTIONS

Algorithm 1 ITERATIVE ALGORITHM TO OBTAIN A SUM OF SQUARES CERTIFIED MAX-QUADRATICS LYAPUNOV FUNCTION.

1: Initialize parameters: δmin, h, Nmax;
2: repeat
3: for i ∈ Q do . BEGIN(Initialization step)
4: Pi = R>R/λmax(R>R), where R ∈ Rn×n is chosen randomly; . Initialize the max-quadratics function
5: end for
6: constrα = SOS

{
Fi, µij , µi0

}
from (27), ∀(i, j) ∈ Q2;

7:
(
α, µij

)
← solvesos

(
constrα,−α

)
;

8: constrβ = SOS
{
Jlin,i,Λlin,i, λlin,ij , λi0

}
from (34), ∀(i, j) ∈ Q2;

9:
(
βlin, λlin,ij

)
← solvesos

(
constrβ , βlin

)
;

10: λij = λlin,ij/βlin, ∀(i, j) ∈ Q2;
11: Initialize iteration counter: c = 0;
12: Initialize maximum increment norm: δ = 10−2; . END(Initialization step)
13: repeat
14: constrlin = [ 0 ≤ α̃ ≤ δ, −δ ≤ β̃lin ≤ 0, |P̃i| ≤ δ, |µ̃ij | ≤ δ, |λ̃lin,ij | ≤ δ ]; . BEGIN(Path following step)
15: constrSOS = SOS

{
F̃i, J̃i, Λi, µij + µ̃ij , µi0, λij + λ̃ij , λi0

}
from (35), ∀(i, j) ∈ Q2;

16: P̃i ← solvesos
(
[constrSOS , constrlin, (Pi + P̃i) > 0],−α̃+ β̃lin

)
;

17: if (problem is not feasible) then
18: break; . If for numerical reasons the linearization is not feasible, quit the current iteration
19: else
20: P+

i = (Pi + P̃i)/maxj σM (Pj + P̃j); . END(Path following step)
21:

(
α+, µ+

ij

)
← solvesos

(
constrα,−α

)
, where Pi = P+

i ; . BEGIN(Verification step)
22:

(
β+

lin, λ
+
lin,ij

)
← solvesos

(
constrβ , βlin

)
, where Pi = P+

i ;
23: if (a problem is not feasible) then
24:

(
α+, β+

lin, τ
+
ij , µ

+
ij , (λlin,ij)

+
)

=
(
α, βlin, τij , µij , λlin,ij

)
; . All the parameters remain unchanged

25: δ+ = δ/2; . Approximation is too big: reduce the maximum increment norm
26: else
27: δ+ = 1.1 · δ; . Approximation is good enough: try to increase the maximum increment norm
28: if |α+ − α| < h and |β+

lin − βlin| < h then
29: c+ = c+ 1; . Count how many times in a row α and βlin change of less than h
30: else
31: c+ = 0;
32: end if
33: end if . END(Verification step)
34: λ+

ij = λ+
lin,ij/β

+
lin;

35: end if
36: until δ < δmin or c ≥ Nmax . Exit the current iteration when the upper bound on the increment norm becomes
37: less than δmin, or α, βlin did not change by more than h for Nmax times in a row
38: until α > 0 and βlin ≤ 1 . Run the algorithm with a new initialization, until it gives acceptable values for α, β
39: β = − ln(βlin)/2;

As discussed in Remark 4, the conditions in (27) correspond to a semi-definite program only when the matrices Pi or the
polynomial multipliers are fixed. In this section, we formulate an iterative algorithm to progressively improve α and β, based
on the local linearization of (27), inspired by the path following algorithm to solve BMIs presented in [25].

The algorithm, which is summarized in Algorithm 1, reported at page 9, is divided into three main steps: initialization, path
following and verification. The three steps are described in more detail hereafter.

The notation SOS{fi, gi} means that we require the polynomials fi(x), gi(x) to be SOS, for all i ∈ Q.
Initialization step. The algorithm starts with a random choice of q positive definite matrices Pi. The random initialization is
due to the fact that the optimization problem is not necessarily convex, so we use the Monte Carlo method to increase the
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chances that a global minimum (or a good approximation of it) is found. After this choice, we can retrieve the maximum
value for α, β such that we can solve SOS{Λi, Fi, Ji, µij , µi0, λij , λi0}. To do so, we first perform the change of variable
βlin = e−2β , then, to avoid the bilinear terms βlinλij(x) in (27c), we equivalently reformulate (27d) and (27c) as

Λlin,i(x) = βlin −
q∑
j=1

λlin,ij(x) + riΛ(x)(1− x>x); (34a)

Jlin,i(x) = −x>R>PiRx+

q∑
j=1

λlin,ij(x)x>Pjx

− λi0(x)x>Mx+ riJ(x)(1− x>x). (34b)

Since all the Pi’s are fixed, the polynomials Fi(x), Jlin,i(x),Λlin,i(x) are linear, because the decision variables are only α, β
and the polynomial multipliers (see the discussion in Remark 4). We can then solve SOS{Fi, µij , µi0} maximizing α, and
SOS{Λlin,i, Jlin,i, λlin,ij , λi0} minimizing βlin. This gives us a feasible initial condition for the algorithm, where λij = λlin,ij/βlin.
Note that, in view of Proposition 1, we use positive definite matrices Pi, and the SOS requirement on polynomials Si(x) is
automatically satisfied.
Path following step. Starting from a feasible solution obtained from the previous step, we can rewrite polynomials (27a)-(27c)
using an incremental form (nominal value plus increment). Then we construct convex approximate conditions by imposing a
bound on the increments and neglecting the bilinear terms. The explicit expression for the approximated incremental polynomials
F̃i, J̃i (where we drop the dependance on x of the polynomial multipliers) is

F̃i(x) := −x>
(
(Pi + P̃i)A+A>(Pi + P̃i)

)
x

−
q∑
j=1

((
µij + µ̃ij

)
x>(Pi − Pj)x+ µijx

>(P̃i − P̃j)x
)

+ µi0x
>(M − εI)x+ riF (1− x>x) (35a)

− 2(α+ α̃)x>Pix− 2αx>P̃ix,

J̃i(x) := −x>R>(Pi + P̃i)Rx+ (βlin + β̃lin)

q∑
j=1

λijx
>Pjx

+ βlin

q∑
j=1

(
λ̃ijx

>Pjx+ λijx
>P̃jx

)
− λi0x>Mx+ riJ(1− x>x), (35b)

whereas Λi in (27d) remains unchanged because it does not involve bilinear terms. Note that some of the polynomial multipliers,
e.g. µi0(x), are not decomposed incrementally, because they are not involved in any bilinear term. Solving SOS{Λi, F̃i, J̃i, µij+
µ̃ij , µi0, λij + λ̃ij , λi0}, while imposing that the increments have norms smaller than a selected value δ, we obtain a new
Lyapunov function, which improves the initial values of α and βlin by minimizing the objective function obj(α̃, β̃lin) = −α̃+β̃lin,
under the additional constraints α̃ ≥ 0, β̃lin ≤ 0. This ensures that the algorithm never selects optimization directions leading
to worse values of α and βlin. However, this solution is designed for the approximate problem and should be verified on the
original conditions in the verification step below.
Verification step. Since the path following step provides an approximate solution, it is necessary to verify the exact conditions
(27). Using the increments P̃i from the previous step, we fix P+

i = χ−1(Pi + P̃i), where the normalization factor χ =
maxj λM(Pj + P̃j) ensures that P+

i ≤ I, ∀i ∈ Q and helps numerically, without affecting feasibility, due to the homogeneity
of (27). In particular, the feasibility of the SOS requirement is checked in Yalmip [37] by analyzing the numerical residuals
when expressing a given polynomial through sums of squared terms. The problem is then feasible if these residuals are smaller
than some tolerance 0 < εnum � 1. Moreover, strict inequalities are not supported, therefore some constraints like positive
definiteness are expressed using the same tolerance, e.g. Pi ≥ εnumI .

After the normalization, we can solve the same problem we described in the initialization step, which is once again a
semi-definite program.

If this step fails, then the maximum increment norm δ is reduced, otherwise it is increased.
Overall algorithm. We summarize the above-commented iterations in the pseudo-code shown in Algorithm 1. There, the
instruction solvesos

(
constr, f(x)

)
is consistent with the instruction defined by Yalmip, so it minimizes f(x) subject to

constr, which is a set of constraints including SOS requirements.
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We now discuss some examples of reset-controlled systems, for which the iterative algorithm provides a max of quadratics
Lyapunov function that satisfies Assumption 1. For these examples we also provide comparison between the hybrid solutions
and the continuous-time solutions with (9), for various values of γ.

Example 1: In this example, we consider an unstable first-order reset element (FORE) performing set-point regulation of of
a plant consisting of an integrator (see, e.g., [5]): according to the structure in (5)-(6), the system can be described through
the matrices

A :=

[
0 1
−bc ac

]
, R :=

[
1 0
0 0

]
, M :=

[
0 1
1 0

]
.

where the state is given by x = [−e xc]>, with e being the difference between the integrator (plant) output and the reference
value. We consider a FORE with a mildly exponentially unstable eigenvalue in unit feedback, namely ac = 0.1, bc = 1.

We can show that it is not possible to select a unique quadratic Lyapunov function V (x) = x>Px to certify the stability of
this system. Indeed, defining P = [ p11 p12p12 p22 ] > 0, the condition 〈∇V (x), Ax〉 < 0 evaluated in xa = (0, 1) and xb = (−1, 0)
would require both p12 > 0 and p12 + 0.1p2 < 0, which can not hold at the same time since p2 > 0 for any positive definite
matrix. Conversely, we can select a max of quadratics Lyapunov function V (x), as defined in (26), that satisfies (27), where
we select ε = 10−3.

The iterative algorithm is initialized with q = 2 and d = 2, and the resulting max of quadratics Lyapunov function is
identified by the matrices

P1 := [ 0.927 0.260
0.260 0.073 ] , P2 :=

[
0.607 −0.050
−0.050 0.130

]
.

Matrices Pi are all positive definite, with the smallest eigenvalue being λ1(P1) ≈ 3 · 10−6, which is larger than the numerical
tolerance (set to εnum = 10−6), and satisfy SOS{(27)} with α ≈ 0.280, β = 0. Figure 1 shows the level set of the max of
quadratics Lyapunov function, corresponding to V (x) = 1.

Figure 2 shows the evolution of the error e, starting from an initial condition x0 = [−1 0]>, comparing the evolution
obtained from the hybrid implementation to the evolution obtained from the soft-reset implementation in (9). As we can see,
higher values of γ generate a continuous-time system whose solutions approach the continuous-time evolution of the hybrid
trajectory.

Once we obtain the max of quadratics Lyapunov function from Algorithm 1, we can check the minimum value of γ that
guarantees stability of (9), using that specific V . This can be done by exploring the unit circle (i.e. considering any x such
that x>x = 1) and computing the minimum value γ such that 〈v, f〉 ≤ 0 for all v ∈ ∂V (x) and all f ∈ F (x) in (9). Then,
we can extend the result to the whole state space Rn exploiting the homogeneity of the problem. These values γ are reported
in Figure 3, as a function of the number q of quadratics used to run Algorithm 1. Note that γ does not appear anywhere in
the algorithm, therefore its value can be computed only after each iteration and it is not the object of the optimization. As
different executions of Algorithm 1 result in different selections of matrices Pi, the blue dots in Figure 3 correspond to the
minimum values obtained over a certain number of executions. These values still do not characterize the actual stability limit
for (9) in this example (see e.g. Figure 2, where values of γ below the ones identified with this method generate converging
solutions). An alternative algorithm that aims at the minimization of γ is an interesting subject of future work. ◦

Remark 6: In Example 1 and in the following ones a hybrid implementation of the resetting scheme is effective only
after introducing a time regularization mechanism (as described in [7, Section I] and references therein), in order to prevent
non-converging, Zeno solutions. One of the advantages of performing the soft-reset implementation in (9) is that no time
regularization is needed to ensure global exponential stability. •

Remark 7: A plot of the minimum value of γ obtained as a function of the value ε has not been included in the analysis.
Indeed, numerical evidence shows that ε has negligible effects on the resulting value of γ, especially when compared with the
significant effect of q reported in Figure 3. •

Example 2: Consider Example 2 in [38], where a second-order plant is controlled by a FORE. The example shows that an
accurately tuned hybrid controller can induce a significant overshoot reduction in the plant step response. The specific case
we consider here is the one where the bound on the control input is set to κM = 5. The system can be described as in (5)-(6),
where the matrices2 correspond to

A :=
[−0.6 0.6 −1
−0.4 0.4 1

0 −1 −1

]
, R :=

[
1 0 0
0 1 0

0.062 −4.818 0

]
,

M :=
[−0.004 −0.392 −0.020
−0.392 0.830 1.010
−0.020 1.010 0

]
.

The iterative algorithm, run with q = 3 and d = 2, gives a max of quadratics Lyapunov function defined by the matrices

P1 :=
[

0.049 0.075 0.006
0.075 0.255 0.042
0.006 0.042 0.037

]
, P2 :=

[
0.049 0.065 0.003
0.065 0.275 0.027
0.003 0.027 0.030

]
,

P3 :=
[

0.050 0.010 −0.005
0.010 0.999 0.032
−0.005 0.032 0.002

]
2Due to a typo in [38], one element of matrix A was reported with the opposite sign, and it is corrected in this example.
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Fig. 1. Level set of the max of quadratics function in Example 1, corresponding to V (x) = 1.
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Fig. 2. Evolution of the output error for Example 1, hybrid implementation and CT implementation for different values of γ.
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Fig. 3. Minimum value γ that certifies stability of (9) in Example 1, using the Lyapunov function obtained from Algorithm 1, as a function of q.

The matrices are all positive definite, with the smallest eigenvalue being λ1(P3) ≈ 6 · 10−6, which is again larger than the
numerical tolerance εnum = 10−6, and the resulting Lyapunov function satisfies SOS{(27)} with α ≈ 0.016, β = 0. Figure 4
shows the level set of the max of quadratics Lyapunov function, corresponding to the points where V (x) = 1.

The evolution of the system output (corresponding to the second state of the closed loop) is reported in Figure 5. The evolution
of the hybrid system (with time regularization) is once again compared to the evolution of the soft-reset implementation in (9)
of this example, showing again that increasing values of γ lead to solutions approaching the continuous-time evolution of the
hybrid feedback.

Algorithm 1 has been executed several times, and the minimum γ guaranteeing stability of the solutions of (9) has been
identified for each execution. In Figure 6 these values of γ are plotted against the number q of quadratics used in the algorithm.

◦

VI. APPLICATION TO RESET CONTROL OF CERTAIN SECOND-ORDER MECHATRONIC SYSTEMS

In many lightweight robotics applications, the plant dynamics can be expressed as an underdamped second order linear
dynamical system, often with some input delay, see for example the experimental setup described in [39] or a precision
positioning system analyzed, e.g., in [40]. While the control task for such systems is usually set-point regulation (or trajectory
tracking), we can introduce an adaptive feedforward action in the controller, like in [41], and analyze the problem as a feedback
stabilization one. Neglecting the pure time delay, which can be compensated for by using a Smith predictor, the plant dynamics
can be described by the following state-space representation

ẋp = Apxp +Bpu,
yp = [1 0]xp
yv = [0 1]xp,

(36)

Ap :=
[

0 1
−ω2

r −2ξsωr

]
, Bp :=

[
0
kω2

r

]
,

where xp ∈ R2 includes the plant position yp and the plant velocity yv .
In considering an effective reset stabilizer for this system, let us look into the setting where we may use an accurate position

measurement, to be considered for our continuous feedback, and a velocity measurement that should only be used as a trigger
for the reset actions.

In particular, for the continuous-time feedback, we use a biproper controller with constant gain kc and a phase lead induced
by a pole-zero pair having the same time constant τ , with the pole pc = 1/τ being unstable and the zero zc = −1/τ being
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Fig. 4. Level set of the max of quadratics function in Example 2, corresponding to V (x) = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

y p

Hybrid system
CT: γ = 0.1
CT: γ = 0.5
CT: γ = 1
CT: γ = 10

Fig. 5. Evolution of the plant output for Example 2, hybrid implementation and CT implementation for different values of γ.
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Fig. 6. Minimum value γ that certifies stability of (9) in Example 2, using the Lyapunov function obtained from Algorithm 1, as a function of q.

minimum phase, namely K(s) = kc
1+τs
1−τs , whose state-space representation corresponds to

ẋc =
1

τ
(xc − yp) ,

u = kc (2xc − yp) .
(37)

The net continuous-time effect of this controller is to provide a pure phase lead without a constant effect kc on the loop gain.
The continuous-time component of this controller is only in feedback from the position measurement yp.

kc
1+τs
1−τs

kω2
r

s2+2ξωrs+ω2
r

yv

ypu

yR

[1 τ ]

Fig. 7. Pure lead biproper reset filter proposed in Section VI.

To include suitable resetting actions on the biproper controller, we exploit the velocity measurement yv in such a way to
build the “reset” output defined as:

yR := τyv + yp = [1 τ ]xp, (38)

which ensures that the transfer function between u and yR be relative degree 1. Intuitively speaking, for this reset action, we
virtually moved the minimum phase zero of K(s) into the plant. Combining (36) with (37), the continuous dynamics state
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kc
1−τs

kω2
r(1+τs)

s2+2ξωrs+ω2
r

yRu

Fig. 8. Equivalent representation of the scheme in Figure 7 as a FORE in feedback with a minimum phase relative degree one plant.

matrix A of the closed-loop system in Figure 7, with state x = (xp, xc), corresponds to (5)-(6) with

A :=

[
Ap −Bpkc[1 0] 2Bpkc[
− 1
τ 0

]
1
τ

]
, (39)

and where R and M are to be chosen. Consider now selecting

R :=

[
I 0[

1
2 0
]

0

]
, M :=

 −1 −τ/2 1
−τ/2 0 τ

1 τ 0

 , (40)

where R stems from x+
c = yp/2 and M stems from jumping in the set where yRxc ≥ 0. The motivation behind selection (40)

is that we can perform a change of coordinates from x = (xp, xc) to x = Tx, where

T :=

 1 0 0
0 1 0
−1 0 2

 ,
so as to obtain the following description (in the x coordinates):

A :=

[
Ap Bp

[− 1
τ −1 ] 1

τ

]
,

R :=

[
I 0

0 0

]
, M :=

[
0 [ 1

τ ]

[ 1 τ ] 0

]
,

(41)

where A = TAT−1, R = TRT−1 and M = T−>MT−1. Using a block diagram representation, we may interpret (41) as
rewriting the scheme in Figure 7 as a feedback interconnection between a relative degree 1 minimum phase second-order plant
(this corresponds to the dynamics from u to yR) and a first-order reset element having an unstable pole at 1

τ and a loop gain
kc, as shown in Figure 8. We may then include a time regularization mechanism, and conclude from [7, Theorem 2] global
exponential stability of the origin for the reset system (39), (40) if kc is chosen large enough.

Notice that the jump and flow dynamics of this closed loop correspond to an output feedback control law only using yp,
however the knowledge of the velocity output yv is required only to trigger jumps (notably, a similar setting was present in
the work [42]).

While [7, Theorem 2] provides a guarantee that a large enough kc exists ensuring global exponential stability of the origin, no
immediate tools are available to determine that value. Here we use the plant parameters given in [40], using non-SI measurement
units to obtain numerically balanced state matrices; namely, the parameters are expressed using millimeters, milliseconds and
grams. Moreover, we select the controller parameters somewhat arbitrarily as τ = 1ms and kc = 10−2g/ms2. Then we check
global exponential stability using our Theorem 1 and Algorithm 1.

Running the algorithm with q = 3 and d = 2, gives a max of quadratics Lyapunov function defined by the matrices

P1 :=
[

0.444 0.084 −0.415
0.084 0.084 −0.064
−0.415 −0.064 0.671

]
, P2 :=

[
0.126 0.002 0.045
0.002 0.158 0.251
0.045 0.251 0.413

]
,

P3 :=
[

0.424 0.081 −0.389
0.081 0.094 −0.043
−0.389 −0.043 0.666

]
.

The matrices are all positive definite, with the smallest eigenvalue being λ1(P2) ≈ 3 · 10−5, which is larger than the numerical
tolerance. The constraints SOS{(27)} are satisfied by the resulting Lyapunov function, with α ≈ 0.02 and β = 0. Figure 9
shows the unit level set of the Lyapunov function, corresponding to the points where V (x) = 1.

Figure 10 shows the continuous-time evolution of the plant position for different simulation scenarios. The evolution of the
hybrid closed loop with time regularization (blue) is compared to the evolution of the soft-reset implementation in (9) for
different values of γ. It is possible to see that the trajectories of the sof-reset implementation appear increasingly similar to
the trajectories of the hybrid reset system for increasing values of γ.
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Fig. 9. Level set of the max of quadratics function for the precision positioning system, corresponding to V (x) = 1.

VII. CONCLUSIONS

In this work we presented a soft-reset control paradigm, where an arbitrarily chosen positive scalar regulates how close the
resulting closed-loop evolutions are to the flowing behaviour with the original hybrid controller. We proved asymptotic stability
properties of the proposed control scheme, which in the original hybrid scheme can be obtained only through the introduction
of time regularization. The proof relied on the use of nonsmooth Lyapunov functions, which led to the formulation of sufficient
BMI conditions based on strongly convex max-of-quadratics Lyapunov functions with polynomial multipliers. We also proposed
a numerical iterative algorithm which synthesizes such max-of-quadratics functions. The effectiveness of the numerical method
was proved through its application to different examples and a case study stemming from mechatronic systems. Future work
includes establishing stability conditions not requiring strong convexity, thereby allowing for more general Lyapunov certificates,
proposing alternative design algorithms explicitly characterizing (and possibly optimizing) the minimum stabilizing gain γ and
investigating a possible relation between the piecewise quadratic formulation and the original reset control flow and jump sets.

Acknowledgements: The authors would like to thank Milan Korda for the helpful tips on SOS programming.
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