
HAL Id: hal-03963365
https://laas.hal.science/hal-03963365

Submitted on 30 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint programming for the robust two-machine
flow-shop scheduling problem with budgeted uncertainty

Carla Juvin, Laurent Houssin, Pierre Lopez

To cite this version:
Carla Juvin, Laurent Houssin, Pierre Lopez. Constraint programming for the robust two-machine flow-
shop scheduling problem with budgeted uncertainty. 20th International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR), May 2023,
Nice, France. pp.354-359. �hal-03963365�

https://laas.hal.science/hal-03963365
https://hal.archives-ouvertes.fr

Constraint programming for the robust
two-machine flow-shop scheduling problem with

budgeted uncertainty

Carla Juvin1, Laurent Houssin1,2, and Pierre Lopez1

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
2 ISAE-SUPAERO, Toulouse, France

{carla.juvin, laurent.houssin, pierre.lopez}@laas.fr

Abstract. This paper addresses the robust two-machine permutation
flow-shop scheduling problem considering non-deterministic operation
processing times associated with an uncertainty budget. The objective is
to minimize the makespan of the schedule.
Exact solution methods incorporated within the framework of a two-
stage robust optimization are proposed to solve the problem. We first
prove that under particular conditions the robust two-machine permuta-
tion flow-shop scheduling problem can be solved in polynomial time by
the well-known Johnson’s algorithm usually dedicated to the determin-
istic version. Then we tackle the general problem, for which we propose
a column and constraint generation algorithm. We compare two versions
of the algorithm. In the first version, a mixed-integer linear programming
formulation is used for the master problem. In the second version, we use
a constraint programming model for the master problem. To the best of
our knowledge, the use of constraint programming for a master problem
in a two-stage robust optimization problem is innovative.
The experimental results show the very good performance of the method
based on the constraint programming formulation. We also notice that
Johnson’s algorithm is surprisingly efficient for the robust version of the
general problem.

Keywords: Flow-Shop Scheduling · Robust Optimization · Uncertainty
Budget · Mixed-Integer Linear Programming · Constraint Programming.

1 Introduction

The permutation flow-shop scheduling is a well-studied problem where a set of
jobs are to be processed on a set of machines. Each job must be processed on
every machine, with given processing times, following the same given order of
machines. Each machine can process only one job at a time and the processing
sequence of jobs is the same on each machine. This problem is strongly NP-
hard for three or more machines. However, the two-machine flow-shop scheduling
problem is solved by the well-known Johnson’s algorithm [5] for the makespan
minimization when operation processing times are assumed deterministic. In

2 C. Juvin et al.

the real world, many sources of uncertainty (processing times variation, machine
breakdown, addition of new operations, etc.) can affect the quality and even the
feasibility of a schedule.

There exist two major approaches to deal with data uncertainty: stochastic
optimization and robust optimization. While stochastic optimization considers
probability distribution, robust optimization assumes that uncertain data be-
long to a given uncertainty set and aims to optimize performance considering
the worst-case scenario within that set. The traditional robust optimization ap-
proach [8] consists in protecting against the case when all parameters can deviate
at the same time, which makes the solution overly conservative. Indeed, there
is a very low probability that all parameters take their worst value all together.
To overcome this limitation, Bertsimas & Sim introduce an uncertainty budget
approach that allows a restriction on the number of deviations that can occur
simultaneously to a given budget [2]. In order to reach a trade-off between ro-
bustness and solution quality, we exploit this approach to define the uncertainty
set. Multi-stage robust optimization has been introduced by Ben-Tal et al. [1].
In some optimization problems, only a part of the decision variables have to
be determined before uncertainty is revealed, while the other variables can be
chosen after the realization of the uncertainty and can thus be adjusted to the
scenario. The authors introduce the adjustable robust counterpart where the set
of decision variables is split into “here and now” decisions and “wait and see”
decisions. Thus, the objective is to find a solution for the “here and now” de-
cision variables such that there always exists “wait and see” variables meeting
the constraints for all values of the uncertain parameters, and minimizing the
objective value.

The purpose is to find the sequence on the machines (first stage decision),
allowing to define a start time for each operation and each scenario (second stage
decision), minimizing the makespan in the worst-case scenario considering the
budget of uncertainty.

In this paper, we propose exact solution methods to solve the robust two-
machine flow-shop scheduling problem. We first study a particular case of the
problem. Next, we provide a robust counterpart model based on constraint pro-
gramming formulation, that is embedded in a column and constraint generation
framework. A discussion is conducted on the basis of an analysis of experimental
results.

2 Problem Statement

An instance of the two-machine flow-shop scheduling problem implies a set of
jobs J and two machines M = {M1,M2}. Each job i ∈ J consists of two
operations Oi,1 and Oi,2. The first one, Oi,1, must be processed by machine M1

with a duration of pi,1 and then, Oi,2 must be processed by machine M2 with
a duration of pi,2. Each machine can process only one job at a time and each
job can only be processed on one machine at a time. The objective is to find a
permutation of jobs, denoted σ, minimizing the makespan.

CP for robust two-machine flow-shop scheduling 3

When processing times are deterministically known, the problem can be
solved in polynomial time by means of Johnson’s rule [5], which states that
job i must be processed before job j if min(pi,1, pj,2) < min(pj,1, pi,2).

Here, we consider that the processing times of operations are uncertain. Each
processing time pi,m of an operation Oi,m, i ∈ J ,m ∈ {M1,M2}, belongs to the
interval [p̄i,m, p̄i,m+p̂i,m], where p̄i,m is the nominal value and p̂i,m the maximum
deviation of the processing time from its nominal value.

Let Γ be the budget of uncertainty, that is the maximum number of op-
erations whose processing time deviation can occur simultaneously. For each
scenario ξ in the set of feasible scenarios UΓ , the processing time of operation
Oi,m is then given by:

pi,m(ξ) = p̄i,m + ξi,m · p̂i,m

where ξi,m is equal to 1 if the processing time of the operation deviates, 0 oth-
erwise.

In this study we consider two types of uncertainty budget:

1. A global budget Γ which denotes the number of operations that can deviate
on both machines combined. In this case, the set of feasible scenarios is
expressed as:

UΓ =
{
(ξi,m)i∈J ,m∈{M1,M2} |

∑
i∈J

2∑
m=1

ξi,m ≤ Γ, ξi,m ∈ {0, 1}
}

2. A machine-dependent budget Γ = (Γ1, Γ2) where Γ1 and Γ2 denote the
number of operations whose processing time deviation can occur simultane-
ously on machines M1 and M2, respectively. In this case, the set of feasible
scenarios is expressed as:

UΓ =
{
(ξi,m)i∈J ,m∈{M1,M2} |

∑
i∈J

ξi,1 ≤ Γ1,
∑
i∈J

ξi,2 ≤ Γ2, ξi,m ∈ {0, 1}
}

2.1 Worst-case evaluation

For a given sequence of jobs σ, there exists a worst-case scenario, maximizing the
value of the makespan. Levorato et al. [6] developed a polynomial-time (O(n2))
worst-case determination procedure, using dynamic programming, for machine-
dependent budget Γ = (Γ1, Γ2). The same idea is now used when considering a
global budget Γ .

Given a machine m ∈ M, and two integer numbers i ∈ [1, |J |] and γ ∈
[0, Γ], let Cγ

i,m(σ) be the maximum completion time of the ith job of sequence
σ, on machine m, considering at most γ deviations. This value is defined by the
following recurrence relations:

Cγ
i,1(σ) = max(Cγ

i−1,1(σ) + p̄σ[i],1, Cγ−1
i−1,1(σ) + p̄σ[i],1 + p̂σ[i],1) (1)

4 C. Juvin et al.

Cγ
i,2(σ) = max(Cγ

i−1,2(σ) + p̄σ[i],2, Cγ
i,1(σ) + p̄σ[i],2, Cγ−1

i−1,2(σ)

+p̄σ[i],2 + p̂σ[i],2, Cγ−1
i,1 (σ) + p̄σ[i],2 + p̂σ[i],2)

(2)

with Cγ
i,m(σ) = −∞ if γ < 0, Cγ

0,m(σ) = 0 if γ ≥ 0 and C0
i,2(σ) = p̄σ[i],2 +

max(C0
i−1,2(σ), C0

i,1(σ)).
The worst-case makespan, under sequence σ, for a global uncertainty budget

Γ , is given by CΓ
|J |,2(σ).

Notations and definitions

J : Set of jobs
M : Set of machines
Oi,m : mth operation of job i (i ∈ J) to be executed on machine m ∈ M
pi,m : processing time of operation Oi,m (i ∈ J ,m ∈ M)
σ : sequence of jobs
σ[i] : ith job of sequence σ
Γ : uncertainty budget
Γm : uncertainty budget on machine m ∈ M
UΓ : uncertainty set for a given uncertainty budget Γ
ξ : scenario
Cγ

i,m(σ) : maximum completion time of the ith job of sequence σ,
on machine m ∈ M, considering at most γ deviations

3 Special Cases

3.1 Global budget and preserved order of processing times

Proposition 1. If the order of processing times is preserved through deviation,
i.e., ∀(i, i′) ∈ J 2, ∀(m,m′) ∈ M2, p̄i,m < p̄i′,m′ ⇔ p̄i,m + p̂i,m < p̄i′,m′ + p̂i′,m′ ,
then a schedule following the Johnson’s rule is optimal for any global uncertainty
budget Γ .

Proof. Suppose that σ is an optimal sequence for a given global uncertainty
budget Γ , with four consecutive jobs, σ[i− 1], σ[i] = j, σ[i+1] = k and σ[i+2]
meeting one of the following conditions:

(i) p̄j,1 > p̄j,2 and p̄k,1 < p̄k,2
(ii) p̄j,1 < p̄j,2, p̄k,1 < p̄k,2 and p̄j,1 > p̄k,1
(iii) p̄j,1 > p̄j,2, p̄k,1 > p̄k,2 and p̄j,2 < p̄k,2

Note σ′ the sequence obtained from σ by pairwise interchange jobs j and k.
It suffices to show that under any of the three conditions the makespan of the
schedule under σ′ is not greater than under σ.

The maximal start time of job σ[i + 2] = σ′[i + 2], on machine M1, consid-
ering at most γ deviations, is the same under σ and σ′, namely, Cγ

i+1,1(σ) =
Cγ

i+1,1(σ
′) = max(a1, a2, a3) with:

a1 = Cγ
i−1,1(σ) + p̄j,1 + p̄k,1

CP for robust two-machine flow-shop scheduling 5

a2 = Cγ−1
i−1,1(σ) + p̄j,1 + p̄k,1 +max(p̂j,1, p̂k,1) if γ ≥ 1, 0 otherwise

a3 = Cγ−1
i−1,1(σ) + p̄j,1 + p̂j,1 + p̄k,1 + p̂k,1 if γ ≥ 2, 0 otherwise

Thus, the rest of the schedule on machine M1 is not affected by the pairwise
interchange. We now study the effect of the change on the schedule on machine
M2, in particular, the date of availability of machine M2 to process job σ[i+2],
i.e., Cγ

i+1,2(σ) under the original schedule and Cγ
i+1,2(σ

′) after the interchange.
The completion time of job σ[i+1] = k under original schedule σ is Cγ

i+1,2(σ) =
max(b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11) with:

b1 = Cγ
i−1,2 + p̄j,2 + p̄k,2

b2 = Cγ−1
i−1,2 + p̄j,2 + p̄k,2 +max(p̂j,2, p̂k,2) if γ ≥ 1, 0 otherwise

b3 = Cγ−2
i−1,2 + p̄j,2 + p̂j,2 + p̄k,2 + p̂k,2 if γ ≥ 2, 0 otherwise

b4 = Cγ
i−1,1 + p̄j,1 + p̄j,2 + p̄k,2

b5 = Cγ−1
i−1,1 + p̄j,1 + p̄j,2 + p̄k,2 +max(p̂j,1, p̂j,2, p̂k,2) if γ ≥ 1, 0 otherwise

b6 = Cγ−2
i−1,1 + p̄j,1 + p̄j,2 + p̄k,2 +max(p̂j,1 + p̂j,2, p̂j,1 + p̂k,2, p̂j,2 + p̂k,2) if γ ≥ 2, 0

otherwise
b7 = Cγ−3

i−1,1 + p̄j,1 + p̂j,1 + p̄j,2 + p̂j,2 + p̄k,2 + p̂k,2 if γ ≥ 3, 0 otherwise
b8 = Cγ

i−1,1 + p̄j,1 + p̄k,1 + p̄k,2

b9 = Cγ−1
i−1,1 + p̄j,1 + p̄k,1 + p̄k,2 +max(p̂j,1, p̂k,1, p̂k,2) if γ ≥ 1, 0 otherwise

b10 = Cγ−2
i−1,1 + p̄j,1 + p̄k,1 + p̄k,2 +max(p̂j,1 + p̂k,1, p̂j,1 + p̂k,2, p̂k,1 + p̂k,2) if γ ≥ 2,

0 otherwise
b11 = Cγ−3

i−1,1 + p̄j,1 + p̂j,1 + p̄k,1 + p̂k,1 + p̄k,2 + p̂k,2 if γ ≥ 3, 0 otherwise

while the completion time of job σ′[i+1] = j on machine M2 under sequence σ′

is Cγ
i+1,2(σ

′) = max(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11), with:

c1 = Cγ
i−1,2 + p̄k,2 + p̄j,2

c2 = Cγ−1
i−1,2 + p̄k,2 + p̄j,2 +max(p̂k,2, p̂j,2) si γ ≥ 1, 0 otherwise

c3 = Cγ−2
i−1,2 + p̄k,2 + p̂k,2 + p̄j,2 + p̂j,2 if γ ≥ 2, 0 otherwise

c4 = Cγ
i−1,1 + p̄k,1 + p̄k,2 + p̄j,2

c5 = Cγ−1
i−1,1 + p̄k,1 + p̄k,2 + p̄j,2 +max(p̂k,1, p̂k,2, p̂j,2) si γ ≥ 1, 0 otherwise

c6 = Cγ−2
i−1,1 + p̄k,1 + p̄k,2 + p̄j,2 +max(p̂k,1 + p̂k,2, p̂k,1 + p̂j,2, p̂k,2 + p̂j,2) if γ ≥ 2,

0 otherwise
c7 = Cγ−3

i−1,1 + p̄k,1 + p̂k,1 + p̄k,2 + p̂k,2 + p̄j,2 + p̂j,2 if γ ≥ 3, 0 otherwise
c8 = Cγ

i−1,1 + p̄k,1 + p̄j,1 + p̄j,2

c9 = Cγ−1
i−1,1 + p̄k,1 + p̄j,1 + p̄j,2 +max(p̂k,1, p̂j,1, p̂j,2) if γ ≥ 1, 0 otherwise

c10 = Cγ−2
i−1,1 + p̄k,1 + p̄j,1 + p̄j,2 +max(p̂k,1 + p̂j,1, p̂k,1 + p̂j,2, p̂j,1 + p̂j,2) if γ ≥ 2, 0

otherwise
c11 = Cγ−3

i−1,1 + p̄k,1 + p̂k,1 + p̄j,1 + p̂j,1 + p̄j,2 + p̂j,2 if γ ≥ 3, 0 otherwise

It is clear that b1 = c1, b2 = c2 and b3 = c3.
Under condition (i): with p̄j,1 > p̄j,2 we get c4 ≤ b8, c5 ≤ b9, c6 ≤ b10 and
c7 ≤ b11; with p̄k,1 < p̄k,2 we get c8 ≤ b4, c9 ≤ b5, c10 ≤ b6 and c11 ≤ b7.
Under condition (ii): with p̄k,1 < p̄j,1 we get c4 ≤ b4, c5 ≤ b5, c6 ≤ b6 and

6 C. Juvin et al.

c7 ≤ b7; with p̄k,1 < p̄k,2 we get c8 ≤ b4, c9 ≤ b5, c10 ≤ b6 and c11 ≤ b7.
Under condition (iii): with p̄j,1 > p̄j,2 we get c4 ≤ b8, c5 ≤ b9, c6 ≤ b10 and
c7 ≤ b11; with p̄k,2 > p̄j,2 we get c8 ≤ b8, c9 ≤ b9, c10 ≤ b10 and c11 ≤ b11.

Thus under each condition, Cγ
i+1,2(σ

′) ≤ Cγ
i+1,2(σ), and therefore the make-

span of the schedule under σ′ is not greater than under σ. □

Consequently, it is possible to find an optimal sequence for the robust two-
machine permutation flow-shop scheduling problem, with global uncertainty
budget and preserved order of processing times, in polynomial time.

3.2 Machine-dependent budget Γ = (Γ1, Γ2)

In general, Johnson’s rule does not lead to an optimal robust schedule when
considering a machine-dependent uncertainty budget.

Example 1. Consider a robust two-machine flow-shop problem with 3 jobs with
machine-dependent uncertainty budget Γ = (1, 2). The intervals [p̄i,m, p̄i,m +
p̂i,m] of processing times pi,m of operations Oi,m, i ∈ J ,m ∈ M, are given in
Table 1.

Table 1. Numerical example of an instance of a two-machine flow-shop problem: pre-
served order of operation processing times.

M1 M2

J1 [6,9] [8,12]
J2 [10,15] [4,6]
J3 [4,6] [3,5]

Applying Johnson’s rule to this instance yields the sequence σ = {J1, J2, J3}.
Given the sequence σ, and considering an uncertainty budget Γ = (1, 2), the
worst case, for this solution, is that the processing time of job J2 on machine
M1 and jobs J2 and J3 on machine M2 deviate and take their greatest value.
Figure 1 depicts the Gantt chart in this case. The objective function value of
this solution reaches a makespan equal to 32.

J1 J2 J3

J1 J2 J3

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 1. Example 1 and sequence {J1, J2, J3}: worst case under Johnson’s schedule,
Γ1 = 1, Γ2 = 2.

CP for robust two-machine flow-shop scheduling 7

Another possible sequence is σ′ = {J3, J1, J2}. The worst case for this new
solution is such that the processing time of job J2 on machine M1 and jobs J1
and J2 on machine M2 deviate from their nominal value. Figure 2 depicts the
Gantt chart in this case; it leads to a solution with a worst-case makespan equal
to 31.

J1 J2J3

J1 J2J3

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 2. Example 1 and sequence {J3, J1, J2}: worst case under optimal robust schedule,
Γ1 = 1, Γ2 = 2.

Although the order of processing times is preserved, Johnson’s rule does
not allow to obtain the optimal sequence for this instance when considering a
machine-dependent uncertainty budget Γ = (1, 2).

3.3 Unpreserved order of processing times

In general, Johnson’s rule does not lead to an optimal robust schedule when
considering an instance with unpreserved order of processing times, even when
we consider a global uncertainty budget.

Example 2. Consider a robust two-machine flow-shop problem with 3 jobs with
the global uncertainty budget Γ = 3. The intervals [p̄i,m, p̄i,m+p̂i,m] of processing
times pi,m of operations Oi,m, i ∈ J ,m ∈ M, are given in Table 2.

Table 2. Numerical example of an instance of a two-machine flow-shop problem: un-
preserved order of operation processing times.

M1 M2

J1 [1,5] [2,3]
J2 [2,3] [1,5]
J3 [2,20] [4,5]

Applying Johnson’s rule to this instance yields the sequence σ = {J1, J3, J2}.
Given the sequence σ, and considering an uncertainty budget Γ = 2, the worst
case, for this solution, is such that the processing time of job J3 on machine
M1 and job J2 on machine M2 deviate and take their greatest value. Figure 3
depicts the Gantt chart in this case. The objective function value of this solution
reaches a makespan equal to 30.

8 C. Juvin et al.

J1

J1

J3

J3

J2

J2

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 3. Example 2 and sequence {J1, J3, J2}: worst case under Johnson’s schedule,
Γ = 2.

Another possible sequence is σ′ = {J2, J3, J1}. The worst case for this solu-
tion is such that the processing time of job J2 on machine M1 and job J1 on
machine M2 deviate from their nominal value. Figure 4 depicts the Gantt chart
in this case; it leads to a solution with a worst-case makespan equal to 29.

J2

J2

J3

J3

J1

J1

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 4. Example 2 and sequence {J2, J3, J1}: worst case under optimal robust schedule,
Γ = 2.

Although the considered uncertainty budget is global, Johnson’s rule does not
allow to obtain the optimal sequence for this instance whose order of processing
times is not preserved.

4 General Case

As discussed in the previous section, in the general case, Johnson’s rule is not
guaranteed to find an optimal robust sequence. However, Mixed-Integer Linear
Programming (MILP) or Constraint Programming (CP) allow the development
of exact solution methods.

4.1 Mixed-integer linear programming robust counterparts

Levorato et al. [6] proposed two mixed-integer linear programming robust coun-
terparts for the two-machine permutation flow-shop problem.

The first one is adapted from the integer programming model for the three-
machine deterministic flow-shop by Wagner [9]. It uses rank decision binary
variables, which determine whether a job is placed at a given position in the
sequence. It also uses two types of idle times variables. The first ones represent
the time each job waits between the end of its execution on machine M1 and
its starting on machine M2. The others represent the time machine M2 idles
between the execution of each pair of consecutive jobs. These idle times variables

CP for robust two-machine flow-shop scheduling 9

are duplicated for each considered scenario. Precedence constraints are addressed
with job-adjacency and machine-linkage constraints, which exploit the special
structure of the problem to describe the relation between idle times, both on
machines and jobs, and processing times.

The second robust counterpart proposed by Levorato et al. is based on the
formulation presented by Wilson [10]. It also uses rank decision binary variables
to determine whether a job is placed at a given position in the sequence. Prece-
dence constraints are based on start time variables defined for each job operation
and each machine.

The numerical experiments in [6] highlight the superiority of Wagner’s for-
mulation over Wilson’s method. Consequently, we only focus on Wagner’s for-
mulation and MILP always refers to this formulation in the following.

4.2 Constraint programming robust counterparts

Another alternative is to use constraint programming. To present the CP model,
we use the IBM CP Optimizer solver, which allows the use of specific decision
variables and constraints. In particular, we use interval and sequence variables
defined as follows:

– taski,m,ξ: interval variable between the start and the end of the processing
of job i ∈ J on machine m ∈ {M1,M2} in scenario ξ ∈ UΓ ;

– seqsm,ξ: sequence variable of operations scheduled on machine m ∈ {M1,M2}
in scenario ξ ∈ UΓ .

The CP model developed for the the two-machine robust flow-shop problem
is as follows:

minCmax (3)

s.t. Cmax ≥ taski,2,ξ.end ∀i ∈ J , ξ ∈ UΓ (4)

EndBeforeStart(taski,1,ξ, taski,2,ξ) ∀i ∈ J , ξ ∈ UΓ (5)

NoOverlap(seqsm,ξ) ∀m ∈ {M1,M2}, ξ ∈ UΓ (6)

SameSequence(seqs1,1, seqsm,ξ) ∀m ∈ {M1,M2}, ξ ∈ UΓ (7)

Constraints (4) allow the determination of the makespan, which is equal to the
end of the last job on machine M2 in the worst-case scenario. Constraints (5)
ensure the precedence relations between the two operations of a same job. Con-
straints (6) ensure that, in each scenario, each machine performs at most one
operation at a time. Constraints (7) ensure that the sequence is the same on
both machines, and the same for each scenario. The first scenario ξ = 1 is used
as reference, and the constraint is duplicated for each scenario and each machine.

10 C. Juvin et al.

4.3 Column and constraint generation algorithm

The column and constraint generation method has been introduced by Zeng
and Zhao [12] to solve two-stage robust optimization problems. The procedure
splits the problem into a master problem and an adversarial subproblem. The
idea is to solve the robust counterpart problem (or master problem), for a limited
subset of scenarios, that fixes the first stage variables, and then to identify which
scenarios, if any, make the solution found in the master problem infeasible, using
an adversarial subproblem. Then, these scenarios are included in the master
problem by generating the corresponding recourse decision variables on the fly.
This process repeats until a solution that is feasible for all scenarios is found
[3, 4, 6, 7]. Figure 5 depicts the scheme of the column and constraint generation
algorithm.

Levorato et al. [6] propose a column and constraint generation framework
for the two-machine permutation flow-shop problem. It consists in relaxing one
of the MILP formulations presented in Section 4.1 by considering only a subset
of scenarios. Then, given a sequence, a polynomial time dynamic algorithm (see
Section 2.1) is used to identify the worst-case makespan considering a given
uncertainty budget.

Since constraint programming is often very efficient for scheduling problems,
we try to improve this framework by replacing the master problem by a relaxed
version of the constraint programming model presented in Section 4.2. For this
purpose, each robust constraint (4–7) is defined only for a subset of scenarios.
The rest of the algorithm remains identical to the version proposed by Levorato
et al.

Master Problem

Adversarial subproblem

Optimal Add scenario :
variables and constraints

fixed σ

all scenarios feasible infeasible scenario

Fig. 5. Column and constraint algorithm.

CP for robust two-machine flow-shop scheduling 11

5 Experimental Results

We evaluate the performance of the column and constraint generation algorithm
for both the MILP and the CP models. Experiments are performed on three
cluster nodes with Intel Xeon E5-2695 v4 CPU at 2.1 GHz. The algorithms are
implemented in C++, CPLEX 12.10 is used as the solver for the MILP master
problem and CP Optimizer (CPO) 12.10 for the CP master problem. We limited
time to 2 hours, with 4 CPU and a total of 16 GB of RAM, per instance.

5.1 Instances from literature

The instances we used in this section are the same as in [6], based on instances
generated by Ying [11]. They are composed of six groups of instances of dif-
ferent size, where the number of jobs |J | belongs to {10, 20, 50, 100, 150, 200}.
The nominal processing time p̄i,m, i ∈ J ,m ∈ {M1,M2} is generated from the
uniform distribution U [10, 50] and the processing time deviation p̂i,m is a ratio
of the nominal processing time αp̄i,m with α = 10, 20, 30, 40 and 50%. Thus, the
order of processing times is preserved through deviation. Ten sets of values for
nominal duration were generated for each size |J |, and all deviations ratios α
were applied to each of them, giving a total of 300 test instances. The uncertainty
budgets, Γ1 and Γ2, are set to 20 %, 40 %, 60 %, 80% and 100 % of |J |.

We summarize the results in Table 3 where the performance over instances
of different sizes is displayed. We report the percentage of instances solved to
optimality before reaching the time limit (Solved (%)). For the instances solved to
optimality, we display the average execution time, in seconds, to reach optimality
(Avg. time (sec)). Lastly, we display the average percentage gap of non-optimally
solved instances (Avg. gap (%)), where the gap is given by:

gapmethod =
UBmethod − LBmethod

UBmethod
. (8)

We notice that the CP model outperforms the MILP one. Indeed, even for the
largest instances (200 jobs) the CP-based method manages to solve almost all
(98.83 %) of the instances optimally, while the MILP-based method solves fewer
and fewer instances as they grow (down to 68.92 % for 200 jobs). We also observe
that the time needed to reach the optimum is much lower for the CP method,
whatever the size of the instances. Finally, we can see that for both methods,
the gap is quite low (less than 1 %, regardless of instance size).

Note that the few differences between the results reported here and those
presented in [6] concerning the MILP method is probably due to a difference in
the implementation of the method and the tools (software and hardware) used
for the tests. However, we obtain very comparable results in terms of number of
instances optimally solved.

We now examine the quality of the solution obtained by applying Johnson’s
rule on these instances. Table 4 presents the percentage of best known solution

12 C. Juvin et al.

Table 3. Methods performance comparison grouping by instance sizes.

|J | CP MILP
Solved (%) Avg. time (sec) Avg. gap (%) Solved (%) Avg. time (sec) Avg. gap (%)

10 100 0.42 – 100 14.7 –
20 100 0.76 – 100 191.59 –
50 100 1.47 – 98.75 194.9 0.44
100 99.58 0.99 0.09 85.5 319.17 0.64
150 98.92 3.12 0.03 74.67 341.65 0.77
200 98.83 8.49 0.1 68.92 390.73 0.74

found (Best known sol. (%)) and the average percentage gap (Avg. gap (%)) of
non-optimally solved instances (UBmethod > LB∗), where the gap is computed
as follows:

gapmethod =
UBmethod − LB∗

UBmethod
(9)

and LB∗ is the best bound found among the two versions of the column and
constraint generation algorithm.

We note that the polynomial time algorithm enables to find high quality
solutions. Indeed, for almost all the instances (94.46 %), Johnson’s rule provides
a robust solution with the same objective value as the best known solution, and
the optimality gap is very low.

Table 4. Johnson’s rule performance (instances from literature grouping by size).

|J | Best known sol. (%) Avg. gap (%)
10 92.58 1.13
20 92.67 0.4
50 98.5 0.29
100 97.67 0.04
150 89.67 0.04
200 95.67 0.04

In view of these results, we notice that these instances are easy to solve, due
to their particular structure that preserves the order of the processing times. To
overcome this, we generated new instances and the results obtained are presented
in the following section.

5.2 New instances

In this section, we generated new instances which are also based on the ones
from [11]. The nominal processing times p̄i,m, i ∈ J ,m ∈ {M1,M2} remain the
same as in the original instances [11]. However, the processing time deviations
p̂i,m are randomly generated to avoid the order preserving of processing times.
Let p̄max be the maximum nominal processing time for all operations. For each

CP for robust two-machine flow-shop scheduling 13

operation Oi,m, i ∈ J ,m ∈ {M1,M2}, we randomly generate a value for p̂i,m
within a range from 25 % to 80 % of the value of p̄max. We generate in total 60
instances that we use for our tests. Again, the uncertainty budgets, Γ1 and Γ2,
are set to 20%, 40%, 60%, 80% and 100% of |J |.

Table 5 presents the same performance indicators as Table 3 for the new
generated instances.

By comparing these two tables, it can be seen that the new instances are
more difficult to solve than the ones from literature. Indeed, there is a lower
proportion of instances solved optimally, a higher average time needed to reach
the optimum, as well as a higher average gap for the unsolved instances, for
both methods. However, focusing on the information provided by Table 5, it is
noticeable that the CP model still outperforms the MILP one, for all observed
indicators.

Table 5. Methods performance comparison grouping by instance sizes (new instances).

|J | CP MILP
Solved (%) Avg. time (sec) Avg. gap (%) Solved (%) Avg. time (sec) Avg. gap (%)

10 100 12.3553 – 100 46.7694 –
20 80 167.114 2.16398 75 1002.05 2.67698
50 60 86.8549 2.65432 49 902.686 4.06579
100 56 310.299 2.49723 45 600.667 5.57048
150 48 271.321 2.32075 32 667.885 5.97788
200 54 99.5653 2.68595 30 827.082 6.03535

Tables 6 and 7 detail the percentage of solved instances according to uncer-
tainty budget Γ = (Γ1, Γ2) for the CP-based and the MILP-based column and
constraint generation method, respectively.

By comparison of these two tables with each other, we notice that, for all
combinations of Γ1 and Γ2, except one (Γ1 = 40%, Γ2 = 20%), the CP model
outperforms the MILP one. We also see that the problem is more difficult to
solve for medium uncertainty budgets (40 % or 60%), for both methods. This
can be explained by the fact that these uncertainty budgets generate a greater
number of scenarios. However, the number of scenarios is not the only difficulty
factor, as we can see, the methods are more efficient in solving instances with a
large uncertainty budget. For example, instances with an uncertainty budget of
80 % are better solved than those with a budget of 20%, while the number of
possible scenarios are the same.

6 Conclusion

In this paper, we investigate the robust two-machine flow-shop scheduling prob-
lem where the operation processing times are subject to uncertainty. A two-stage
robust optimization is used to deal with this uncertainty, where the first stage is

14 C. Juvin et al.

Table 6. Percentage of solved instances according to uncertainty budget Γ = (Γ1, Γ2)
for the CP-based column and constraint generation method.

Γ2

Γ1 20% 40 % 60% 80% 100%

20% 28.33 25 41.67 70 100
40% 35 21.67 26.67 81.67 100
60% 36.67 28.33 28.33 83.33 100
80% 60 71.67 75 88.33 100
100% 100 100 100 100 –

Table 7. Percentage of solved instances according to uncertainty budget Γ = (Γ1, Γ2)
for the MILP-based column and constraint generation method.

Γ2

Γ1 20% 40 % 60% 80% 100%

20% 26.67 26.67 33.33 58.33 100
40% 23.33 18.33 23.33 65 100
60% 23.33 21.67 26.67 65 98.33
80% 35 35 40 60 100
100% 76.67 83.33 91.67 98.33 –

devoted to fixing the sequencing decisions whilst the second stage determines the
start time of the operations. As a main contribution, we show that under specific
conditions the problem can be solved in polynomial time. For the general case,
we introduce a constraint programming formulation, which we embed in a col-
umn and constraint generation decomposition scheme. This method provides the
best results compared to a literature algorithm based on a MILP formulation.

References

1. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust so-
lutions of uncertain linear programs. Mathematical Programming 99(2), 351–376
(2004)

2. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53
(2004)

3. Duarte, J.L.R., Fan, N., Jin, T.: Multi-process production scheduling with variable
renewable integration and demand response. European Journal of Operational Re-
search 281(1), 186–200 (2020)

4. Hamaz, I., Houssin, L., Cafieri, S.: The cyclic job shop problem with uncertain
processing times. In: 16th International Conference on Project Management and
Scheduling (PMS 2018). pp. 119–122. Rome, Italy (2018)

5. Johnson, S.M.: Optimal two-and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly 1(1), 61–68 (1954)

6. Levorato, M., Figueiredo, R., Frota, Y.: Exact solutions for the two-machine robust
flow shop with budgeted uncertainty. European Journal of Operational Research
300(1), 46–57 (2022)

CP for robust two-machine flow-shop scheduling 15

7. Silva, M., Poss, M., Maculan, N.: Solution algorithms for minimizing the total
tardiness with budgeted processing time uncertainty. European Journal of Opera-
tional Research 283(1), 70–82 (2020)

8. Soyster, A.L.: Convex programming with set-inclusive constraints and applications
to inexact linear programming. Operations Research 21(5), 1154–1157 (1973)

9. Wagner, H.M.: An integer linear-programming model for machine scheduling. Naval
Research Logistics Quarterly 6(2), 131–140 (1959)

10. Wilson, J.: Alternative formulations of a flow-shop scheduling problem. Journal of
the Operational Research Society 40(4), 395–399 (1989)

11. Ying, K.C.: Scheduling the two-machine flowshop to hedge against processing time
uncertainty. Journal of the Operational Research Society 66(9), 1413–1425 (2015)

12. Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-
and-constraint generation method. Operations Research Letters 41(5), 457–461
(2013)

