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Hybrid Control of Self-Oscillating Resonant
Converters with Three-Level Input

Nicola Zaupa, Carlos Olalla, Isabelle Queinnec, Luis Martı́nez-Salamero, Luca Zaccarian

Abstract— We propose a hybrid feedback law inducing
self-oscillating behavior in second-order resonant convert-
ers. With our controller, the converter switches at the res-
onant frequency of its tank, without the need of external
oscillators. In addition, the output amplitude can be ad-
justed by a reference signal ranging from zero to π/2. The
amplitude modulation is then performed while maintaining
an approximately constant switching frequency. Theoretical
results show uniqueness and almost global asymptotic
stability of a nontrivial hybrid limit cycle. Experimental
results show that a circuit implementing the new controller
successfully matches the desirable simulated behavior.

Index Terms— Stability of hybrid systems, Lyapunov
methods, Power electronics.

I. INTRODUCTION

CONTROL of resonant converters is a well-known prob-
lem in power electronics associated with several so-

lutions [1]–[3]. Conventional approaches include frequency
modulation, where the switching frequency is the control input
[4], [5], and amplitude modulation, where the control input
is the phase-shift between the two legs of the switches [6],
[7]. Frequency modulation may induce desirable zero voltage
switching (ZVS) but the regulation of the operating point
may require wide frequency ranges. Conversely, amplitude
modulation desirably operates at constant switching frequency,
at the expense of losing ZVS.

This paper adopts a state-plane hybrid control approach
inducing self-oscillation of the resonant converter without the
need of external inputs. State-plane based methods that turn to
self-oscillating schemes have been proposed in the past, either
ensuring the oscillations regardless of the load condition [7],
[8], or proposing state-plane-induced input selection [9], [10].
Our approach has several advantages with respect to these
previous papers. First, we relax the conservative requirement
imposed by [9], [10] on the quality factor. Secondly, the
proposed controller has useful links with the conventional
control methods, as explained next.
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Fig. 1. Parallel resonant converter and series resonant converter.

In our previous works [11], [12], we addressed the control
of second-order parallel and series resonant converters (PRC
and SRC, respectively) with the hybrid formulation of [13] in a
unified way. To represent the switching input voltage vs of the
resonant tank we used there a discrete variable σ ∈ {−1, 1}.
The hybrid control law allowed regulation of the converter by
changing the operating frequency. Thus, the hybrid controller
provided a self-oscillating frequency modulation behavior.

Given the limitations of using wide frequency ranges in
resonant conversion, the objective of this paper is to propose
and to validate a hybrid controller that allows modulation of
the amplitude of the first harmonic of the input voltage vs.
The hybrid controller produces, in a way, a self-oscillating
amplitude modulation behavior. We introduce here a third
value for σ ∈ {−1, 0, 1} corresponding to a zero voltage input,
allowing us to operate at the resonant frequency of the tank
across a range of output amplitudes.

The fact of having a three-level input voltage is beneficial
in two ways: modulation of input voltage first harmonic is
possible and the harmonic content is reduced. The last point
is supported by [14] since PRC and SRC are topologically
similar to three-level neutral point clamped inverters (NPC)
feeding a lossless LC two-port terminated at a resistive load.
On the other hand, NPC requires an external sinusoidal refer-
ence tuned at the proper frequency. While, in our three-level
input voltage SRC and PRC it is not required because the
hybrid control induces an oscillation at the resonant frequency.

The paper is structured as follows. The system model and
the proposed controller are discussed in Section II. Section III
states and proves our main theoretical result and Section IV
reports the experimental implementation and validation on a
power converter prototype. Section V conclude the work.

Notation. R (R>0) [R≥0] and Z (Z>0) [Z≥0] are the
sets of (positive) [non-negative] real and integer numbers.
Rn denotes the n-dimensional Euclidean space. Given two
vectors u ∈ Rn and w ∈ Rm, u⊤ denotes the transpose of
u, and (u,w) :=

[
u⊤ w⊤]⊤ denotes their stacking. Given

a (continuous, discrete, or hybrid) signal x, ẋ denotes its
derivative with respect to continuous time t, while x+ denotes
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Fig. 2. Jump sets (solid lines) and flow sets (sectors) for each selection of (σ, d). A sample trajectory is represented in black. Coordinate λ will be
introduced and used in the proof.

its next value with respect to discrete time j.

II. SYSTEM MODEL AND PROPOSED CONTROLLER

We address parallel and series second-order resonant con-
verters (PRC and SRC, respectively) as shown in Fig. 1. As
in [11], [12], consider the following change of coordinates

z1 :=
vC
Vg

− σ, z2 :=
1

Vg

√
L

C
iC , (1)

based on the voltage and current on the capacitor (vC and
iC) and the discrete variable σ ∈ {−1, 0, 1} representing
the switching input voltage vs of the resonant tank, so that
vs = σVg , where Vg is the external DC supply. Following
the derivation in [11, eqs. (1) to (4)], the continuous-time
dynamics of both converters is unified to

ż1 = ωz2, ż2 = −ωz1 − βz2, (2)

where ω :=
(√

LC
)−1

is the natural frequency and β > 0

is the inverse of the time constant of the exponential decay
associated with each resonant tank of Fig. 1:

βPRC :=
1

RC
, βSRC :=

R

L
. (3)

This novel approach to control (1) includes the possibility
to apply a zero voltage input σ = 0. While this extra value
does not change coordinates (1) nor their continuous dynamics
(2), it radically changes the switching possibilities, which are
here described by a hybrid model enforcing a precise periodic
sequence for σ: 1, 0, -1, 0, . . . (in practice σ is a three-level
square waveform):

ż1
ż2
σ̇

ḋ

 = f(ξ) =


ωz2

−ωz1 − βz2
0
0

 ξ ∈ C(φ), (4a)


z+1
z+2
σ+

d+

 = g(ξ) =


z1 + d
z2

−d+ σ
−d+ 2σ

 ξ ∈ D(φ). (4b)

In our new model (4), ξ := (z1, z2, σ, d) collects the four
states: two physical and two logical ones. The logical state σ
denotes the switch position, as in [11], [12]. The new logical

state d ∈ {−1, 1} plays an important role when σ = 0 as
it stores the past value of σ, so that the next value will be
assigned as the opposite one (i.e. −d), in order to generate
the correct switching pattern. Clearly, any variation of σ and
d must be instantaneous, so that σ̇ = 0 and ḋ = 0.

The angle φ ∈ [0, π/2) is a reference input affecting
the steady-state output voltage (minimum for φ = π/2 and
maximum for φ = 0). Based on φ, we select the jump and
flow sets as

C(φ) := C1(φ) ∪ C10(φ) ∪ C–1(φ) ∪ C–10(φ),

D(φ) := D1(φ) ∪ D10(φ) ∪ D–1(φ) ∪ D–10(φ),
(5a)

which correspond to the union of four jump and flow sets
graphically illustrated in Fig. 2. Selection (5a) intuitively leads
to a reduced phase mismatch between vs and iC , as shown
by the sample solution of (4), (5) represented in black. More
precisely, for each q ∈ {–1, 1}, define

Cq(φ) := {(z, σ, d) : σ = q, d = q,

d ((z1 + σ) sinφ− z2 cosφ) ≤ 0}, (5b)
Cq0(φ) := {(z, σ, d) : σ = 0, d = q,

(d (z1 sinφ− z2 cosφ) ≥ 0) ∨ (dz2 ≥ 0)}, (5c)
Dq(φ) := {(z, σ, d) : σ = q, d = q, dz2 ≥ 0,

(z1 + σ) sinφ− z2 cosφ = 0}, (5d)
Dq0(φ) := {(z, σ, d) : σ = 0, d = q, dz2 ≤ 0,

z1 sinφ+ z2 cosφ = 0}. (5e)

Note that D1(φ) and D–1(φ) are horizontally translated with
respect to the origin. Therefore, when σ = 0, solutions flow
by spanning a constant cone centered at the origin, so that
the flowing interval is constant regardless of the amplitude of
z. Secondly, the zero crossing of the current iC (proportional
to z2) happens approximately at the middle of that flowing
interval (the lower β the better this approximation, due to the
higher quality factor). This results in keeping vs and iC mostly
in phase and, for the SRC configuration, it ensures that the
input voltage and the current of the resonant tank are almost
synchronized.

Remark 1 Shifting horizontally the two jump sets D1 and
D–1 has a desirable effect on the relation between φ and
the output amplitude. First, we can reach zero amplitude
for φ = π/2. Secondly, the static relation between φ and
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Fig. 3. Amplitude of the first harmonic of z2 with respect to φ ∈
[0, π/2). Interpolating cosine function (red, solid) vs simulations results
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the steady-state amplitude of z2 is well interpolated by a
cosine function: Ass(φ) = 4

πR

√
L
C cosφ, where 4

πR

√
L
C is

the amplitude of the first harmonic of iC normalized by z2 at
the resonant frequency. See Fig. 3, showing simulation results
(blue asterisks) vs the graph of the function Ass. ◦

III. STABILITY OF THE RESONANT BEHAVIOR

A. Main result
For our main stability result we require a mild underdamped

assumption (see [12, Remark 1]) for the oscillating behavior,
requiring that flowing solutions revolve in the phase-plane of
Fig. 2, which ensures existence of a non trivial asymptotically
stable hybrid limit cycle (as defined in [12] and recalled below)
for any reference input φ ∈ [0, π/2).

Assumption 1 The relation 2ω > β > 0 is satisfied, namely
the resonant tank is underdamped. Equivalently, the roots of
s2 + βs+ ω2 = 0 are complex conjugate.

Definition 1 [12] Given an hybrid system H = (C, f,D, g),
a nontrivial hybrid periodic trajectory ζ is a complete solution
(namely, a solution that evolves forever) that is not identically
zero and for which there exists a pair (T, J) ∈ R≥0 × Z≥0

satisfying T + J > 0, such that (t, j) ∈ dom(ζ) implies (t+
T, j + J) ∈ dom(ζ) and, moreover,

ζ(t, j) = ζ(t+ T, j + J). (6)

The image of ζ is a nontrivial hybrid periodic orbit.

We state next the main theoretical result of this
work. It states the asymptotic stability of a nontriv-
ial hybrid periodic orbit with basin of attraction corre-
sponding to the whole space except for the four points
(see the green dots in Fig. 4) in the set K :=
{(0, 0, 0,−1), (0, 0, 0, 1), (−1, 0, 1, 1), (1, 0,−1,−1)}. These
points comprise weak equilibria1 and they do not belong to
the basin of attraction: for example, solutions starting from
(0, 0, 0,−1) and (0, 0, 0, 1) can flow forever staying there or
may jump to (−1, 0, 1, 1) or (1, 0,−1,−1) and then: either
flow and converge to the hybrid limit cycle, or continue to
jump among the points in K.

1A weak equilibrium is a point from which there exist constant solutions
but also non-constant ones.

Theorem 1 Under Assumption 1, for each selection of φ ∈
[0, π/2), the closed loop (4), (5) has a unique nontrivial hybrid
periodic orbit Oφ that is stable and almost globally attractive
with basin of attraction Ξ = (R2×{−1, 0, 1}×{−1, 1}) \K.

B. Preliminary observations to prove Theorem 1

Let us define the set Ω = Ω1 + Ω–1 + Ω10 + Ω–10 as the
set of points visited by any solution flowing in C from g(D).
More rigorously, denoting t 7→ ψξ0(t, 0) any flowing solution
of (4) from ξ0, for each i ∈ {1, –1, 10, –10}, we define

Ωi = {ξ ∈ C : ξ = ψg(ξ0)(t, 0) for some ξ ∈ Di, t ≥ 0}.

Sets Ω1 and Ω–1 correspond to two cones centered at the
origin. Set Ω10 (resp. Ω–10) corresponds to a cone minus an
area limited by what we may call boundary solution, which
flows from the cone vertex zv = (1, 0) (resp. zv = (−1, 0)).
About this boundary solution, it is well defined for any φ ∈
[0, π/2) since the vector field at the vertex is vertical, therefore
the solution is forced to initially flow inside the cone and then,
due to Assumption 1, it revolves clockwise while flowing, until
it reaches D–1 (resp. D1). We define the scalar λm > 0 as
the distance between the vertex (1, 0) (resp. (−1, 0)) and the
point where the boundary solution intersects D–1 (resp. D1)
after flowing in the cone.

Fig. 4 depicts λm, the set Ω, the set P := (D1 ∪D–1)∩Ω,
and the coordinate λ ∈ [λm,+∞) defined as

λ = Λ(ξ) := |[ 1 0 0 0
0 1 0 0 ] g(ξ)| , ∀ξ ∈ P, (7)

see also the first and third diagram in Fig. 2.
The following lemma is an immediate property of solutions

and is stated without proof.

Lemma 1 Set Ω is forward invariant and all solutions from Ω
are unique. Moreover, all solutions from (C ∪D)\K converge
to Ω in uniform finite time.

Introduce now the function ϕP(ξ0) : Ω → P returning
the value ψξ0(tP , jP) ∈ P , where ψξ0 is the solution to (4)
starting at ξ0 (unique by Lemma 1), and (tP , jP) is

(tP , jP) = argmin
(t,j)∈domψξ0

(t+ j) s.t. ψξ0(t, j) ∈ P. (8)

Intuitively speaking, for any ξ0 ∈ Ω, ϕP(ξ0) denotes the value
of the unique solution starting at ξ0 the first time that it belongs
to P .

C. Proof of Theorem 1

We first prove existence and global asymptotic stability
(GAS) from Ω of a hybrid periodic orbit Oφ contained in
the interior of Ω, based on a Poincaré analysis. Then by
the uniform convergence established in Lemma 1, the result
follows.

After the first jump, all solutions must transit through set
P . Therefore, we may define a Poincaré map characterizing
a solution half-cycle as ξ+ = ϕP(g(ξ)) ∈ P for any ξ ∈ P .
Due to the central symmetry of the dynamics, we can also
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parameterize the Poincaré map in terms of λ, as defined in
(7), through description

λ+ = Φ(λ), λ ∈ [λm,+∞), (9)

with Φ(λ) := Λ(ϕP(ξλ)), and Λ−1(λ) denoting a selection of
ξλ ∈ P ensuring Λ(ξλ) = λ. The discrete dynamics (9) plays
the role of a Poincaré map for (4) restricted to Ω. We show
below that there exists a unique globally asymptotically stable
equilibrium λ⋆ = Φ(λ⋆) for (9).

Energy function. Due to Lemma 1, we consider next only
points ξ ∈ P . Then, the proof of existence and uniqueness
focuses on the behavior of the z components of the unique
solution to (4) inducing Φ, in terms of the energy function

E(z) :=
1

2
|z|2. (10)

Due to this fact, to simplify our notation, in the sequel,
we use g to denote the z component of the jump map g.
Also, we will employ overlines on the jump and flow sets,
to denote their projection on the z plane. With a slight abuse
of notation, we will only refer to the z component of the
solutions, whenever the σ and d components are clear from
the (flow or jump) set under consideration.

Let φ ∈ [0, π/2) be fixed and, for each λ ≥ λm, consider
any pair of points zF (λ) ∈ g(D1) and zB(λ) ∈ g(D–1) both of
them at the same distance λ from the origin, where “F ” stands
for “Forward” and “B” stands for “Backwards”. A pictorial
representation of these points and related solutions is shown
in Fig. 4. Due to the symmetry of the jump sets, we have
E(zF (λ)) = E(zB(λ)) =

1
2λ

2. Consider the points ζF (λ) ∈
g(D10) and ζB(λ) ∈ g(D10) obtained, respectively, from the
forward flowing solution (unique from Lemma 1) starting at
zF (λ) and the backward solution starting at zB(λ), jumping
back to the unique point zB(λ)− ∈ D–1 and then (uniquely)
flowing backwards in time in C–1 until they both reach g(D10).

Forward solution. About zF (λ) and ζF (λ), the forward so-
lution flows in C10 and then jumps after it reaches D10 (which
necessarily happens after a finite time, due to the revolving
nature of flowing solutions, as induced by Assumption 1). In
particular, since C10 is a cone, regardless of λ, the solution
flows for a fixed time T and the energy dissipation during such
a flowing interval corresponds to ΣF (λ) =

1
2λ

2(1 − µ(φ)2),
where µ(φ) (the dependence on φ is dropped in the following)
is a constant that can be easily computed from the flowing
solution of ż = Az, by solving the equality eAT λ

[ cosφ
sinφ

]
=

λµ
[ cosφ

– sinφ

]
, resulting in µ =

[ cosφ
− sinφ

]⊤
eAT

[ cosφ
sinφ

]
∈ (0, 1].

After this flowing interval, the solution belongs to D10 and
must jump (from eAT zF (λ) = λµ

[ cosφ
– sinφ

]
to ζF (λ)). This

jump is associated with an increase δF of the energy E,
amounting to

δF (λ) =
1

2

(
|(eAT zF )+|2 − |eAT zF |2

)
=

1

2
+ λµ cosφ.

(11)
Overall, we may characterize the energy at point ζF (λ) as

EF (λ) := E(ζF (λ)) =
1

2
λ2 − ΣF (λ) + δF (λ). (12)

Backward solution. Consider now zB(λ) and ζB(λ), and
also here notice that the backward solution of interest
jumps backwards to a point in D–1 denoted as zB(λ)− =

λ
[− cosφ
− sinφ

]
+[ 10 ] =

[
1−λ cosφ
−λ sinφ

]
. The variation of energy across

this backward time jump corresponds to

δB(λ) =
1

2

(
|zB(λ)−|2 − |zB(λ)|2

)
=

1

2
− λ cosφ. (13)

Continuing in the backwards motion of this solution, for any
λ ≥ λm, we see a flowing interval in the set C–1 where the
solution reaches (in finite backwards time) the set g(D10), due
to the revolving properties induced by Assumption 1.

Applying [12, Lemma 2] such a flowing interval is asso-
ciated with an energy increase (in backwards time) corre-
sponding to ΣB(λ) :=

β
ωΠ(zB(λ)

−), where Π(zB(λ)
−) is the

(unsigned) area hatched between the graph of the backwards
trajectory and the axis z2 = 0. Note that ΣB is a positive and
quadratically increasing function of λ.

Overall, we may characterize the energy at point ζB(λ) as

EB(λ) := E(ζB(λ)) =
1

2
λ2 +ΣB(λ) + δB(λ). (14)

Energy balance. Consider the mismatch function

Ẽ(λ) := EF (λ)− EB(λ) = δ(λ)− Σ(λ), (15)

where Σ is a quadratically increasing function of λ (it is
strongly convex):

Σ(λ) := ΣB(λ) + ΣF (λ) = ΣB(λ) +
1

2
λ2(1− µ2), (16)

and δ is a linearly increasing function of λ:

δ(λ) := δF (λ)− δB(λ) = λ(1 + µ) cosφ. (17)

Lemma 2 There exist a unique value λ⋆ > λm such that
Ẽ(λ⋆) = 0. Moreover, λ⋆ is a fixed point for Φ in (9).



Proof: Let us show that Ẽ(λm) = δ(λm)−Σ(λm) > 0,
which from (15) is equivalent to showing that EF (λm) −
EB(λm) > 0. For λ = λm, a) the forward solution reaches
ζF (λm) with energy EF (λm) = 1

2 + 1
2λ

2
mµ

2 + λmµ cosφ;
b) by definition of λm, the backward solution reaches the
vertex ζB = (1, 0) with energy EB(λm) = 1

2 . Therefore
EF (λm)−EB(λm) = 1

2λ
2
mµ

2+λmµ cosφ, which is the sum
of two positive scalars. Since function λ 7→ ψ̃(λ) := −Ẽ(λ) is
negative at λm and strongly convex, then, from [12, Lemma
1], there exists a unique positive value λ⋆ > λm such that
Ẽ(λ⋆) = 0. Finally, we can express the energy difference, in
terms of λ, between the final and initial points Φ(λ) and λ,
as Ẽ(λ) = 1

2 (Φ(λ)
2 − λ2). From which we conclude that λ⋆

is a fixed point for (9).
The corresponding points ξ⋆ ∈ P that satisfy Λ(ξ⋆) = λ⋆,

and the image of the unique solution originating from those
points is a unique nontrivial hybrid periodic orbit in the interior
of Ω (because λ⋆ > λm), characterized as

Oφ = {ξ ∈ Ω : Λ(ϕP(ξ)) = λ⋆}. (18)

Lyapunov function.
In order to prove GAS of the hybrid periodic orbit we

reduce the stability analysis to the Poincaré map (9). We have
already shown that there exists a unique equilibrium point
λ⋆ = Φ(λ⋆). Then, we introduce the quadratic Poincaré-like
Lyapunov function,

V (λ) := (λ− λ⋆)2. (19)

Similar to the final part of the proof of [15, Lemma 2], to
prove global asymptotic stability, we show that:

V (Φ(λ))− V (λ) < 0 ∀λ ≥ λm, λ ̸= λ⋆,

or, equivalently,

(Φ(λ)− λ)(Φ(λ) + λ− 2λ⋆) < 0 ∀λ ≥ λm, λ ̸= λ⋆. (20)

To show this, let us divide the study for λ > λ⋆ and λ <
λ⋆. From the proof of Lemma 2, for λ > λ⋆, we have that
Ẽ(λ) < 0, which implies Φ(λ) − λ < 0, in other terms λ >
Φ(λ) > λ⋆ where Φ(λ) > λ⋆ comes from the uniqueness of
flowing solutions so that they cannot cross. Next, we assess
the positivity of the second term in (20) as Φ(λ)+λ− 2λ⋆ >
2(Φ(λ)−λ⋆) > 0. For the case λ < λ⋆, similar considerations
hold, leading to (20). Finally, continuity of Φ follows from
similar reasonings to [15, Lemma 2] and the stability of λ⋆ for
(9) proved above, imply global asymptotic stability of Oφ in
(18) from Ω, following the steps in [15, Proposition 1], which
are here omitted due to length restrictions. Finally, GAS of
Oφ from Ξ follows from the uniform convergence established
in Lemma 1.

IV. EXPERIMENTAL VALIDATION

The results of Theorem 1 are validated on an experimental
SRC prototype and via simulations. The experimental setup
consists in an SRC designed for a 50 kHz resonant frequency.
The DC power supply is Vg = 24V, the resonant tank
components are L = 94.5µH and C = 100 nF. The control
law is implemented in an FPGA where we use ADCs to

-5 0 5
-5

0

5

z 2

' = 0

-4 0 4
-4

0

4
' = :=6

-3 0 3

z1

-3

0

3

z 2

' = :=4

-2 0 2

z1

-2

0

2
' = :=3

Fig. 5. Phase portraits in the (z1, z2) coordinates: simulations (blue
circles) and experiments (orange solid line) with different values of φ.
The φ-tilted dotted black lines represents the jumps sets. The load is
R = 10.1 Ω.

-40

-20

0

20

40

'
=

0

-40

-20

0

20

40

'
=
:
=
6

20 30 40 50

t (7s)

-40

-20

0

20

40

'
=
:
=
4

20 30 40 50

t (7s)

-40

-20

0

20

40

'
=
:
=
3

Fig. 6. Input current (×15 A) (blue line) and input voltage vs (V) (red
line) from the experimental prototype for the values of φ shown in Fig. 5.

sense the current and the voltage on the capacitor (needed
to compute (z1, z2) as illustrated in [11]).

The control law is implemented in the FPGA as an automa-
ton with four states, corresponding to the four parts in which
one period can be decomposed, based on the variables σ and
d: (σ, d) ∈ {(1, 1), (0, 1), (−1,−1), (0,−1)}. (see Fig. 2). The
jump sets are modeled as half-planes to ensure robustness and
simplicity in the implementation. The automaton is allowed
to go to the next sequential state whenever 1) jump signal
is active and 2) the automaton is in the preceding state (e.g
(σ, d) = (1, 1) and D1 active: (z1 + 1) sinφ− z2 cosφ ≥ 0).
Differently from [12], to evaluate the jump conditions, a
generic scaled version of (z1, z2) is not enough: we need to
know the scaling factor in the acquisition chain and compen-
sate for it. This is due to the sets D1 and D–1 being shifted
with respect to the origin.

Multiple experiments have been run for two load selections:
R = 10.1Ω and R = 21.8Ω. Fig. 5 compares the simulated
and experimental steady-state responses for different values of
φ. We emphasize that no startup controller is needed due to the
(almost) global attractivity established in Theorem 1, thus the
device starting at rest effectively spirals out to reach the pre-



scribed oscillating behavior. The corresponding experimental
time waveforms are reported in Fig. 6. Note that, the input cur-
rent (i.e. the capacitor current, due to the SRC configuration)
is approximately in phase with the input voltage. Having the
first harmonics aligned implies improved performance in terms
of efficiency, since more power is transmitted to the load and
less power is dissipated in the resonant tank. Finally, Figs. 7
and 8 compare the simulated and experimental frequencies
and amplitudes. The black horizontal dotted lines show the
resonant frequencies evaluated by characterizing the resonant
tank, with the load, at low power. The physical controller
presents some limits for low amplitudes (large φ) due to
the resolution of the ADCs and the amplitude of the noise.
Therefore, only a subset of values for φ has been validated
experimentally.

The experiments confirm the simulation results. The fre-
quency mismatch visible in both figures amounts to an ac-
ceptable 4%. Minor amplitude discrepancies are also visible,
probably due to model uncertainties (e.g. nonlinear depen-
dence of the inductor on the current, parasitic effect on the
PCB, sampling effects) but the reliable closed-loop behavior
illustrates the robustness of the proposed control.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a novel state-plane control approach
modulating the first harmonic of the input voltage as an
emergent self-oscillating behavior: an amplitude modulation
approach. Through a reference input φ ∈ [0, π/2) we can con-
trol the amplitude of the converter output and we can always
generate a self-oscillating hybrid limit cycle in underdamped
conditions. The expected theoretical and simulated response
has been confirmed by experiments on an SRC prototype.

The proposed hybrid controller opens interesting possibili-
ties for future research. First, it can be anticipated that using
the reference input for regulation of the converter will present
advantageous dynamic properties. Secondly, novel conditions
on the hybrid control law ensuring zero voltage switching
would reduce the switching losses and open new possibilities
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Fig. 7. Simulated and experimental responses with R = 10.1 Ω. The
black dotted line is the estimated resonant frequency f̂0 = 50 kHz.

on operating the power converters at their best efficiency
points.
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Fig. 8. Simulated and experimental responses with R = 21.8 Ω. The
black dotted line is the estimated resonant frequency f̂0 = 45.8 kHz.


