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POLYNOMIAL ARGMIN FOR RECOVERY AND APPROXIMATION OF

MULTIVARIATE DISCONTINUOUS FUNCTIONS

DIDIER HENRION1,2, MILAN KORDA1,2, JEAN BERNARD LASSERRE1,3

Abstract. We propose to approximate a (possibly discontinuous) multivariate function f(x) on
a compact set by the partial minimizer arg miny p(x, y) of an appropriate polynomial p whose
construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly
structured convex semidefinite program. In a number of non-trivial cases (e.g. when f is a piecewise
polynomial) we prove that the approximation is exact with a low-degree polynomial p. Our approach
has three distinguishing features: (i) It is mesh-free and does not require the knowledge of the
discontinuity locations. (ii) It is model-free in the sense that we only assume that the function to
be approximated is available through samples (point evaluations). (iii) The size of the semidefinite
program is independent of the ambient dimension and depends linearly on the number of samples.
We also analyze the sample complexity of the approach, proving a generalization error bound in a
probabilistic setting. This allows for a comparison with machine learning approaches.

1. Introduction

Approximation of discontinuous functions in multiple dimensions is a notoriously difficult problem
and a scientific challenge. A common strategy (e.g. described in [26]) which works well in the
univariate setting (and is implemented for example in the chebfun package [10]) consists of the
following steps : 1) detect the discontinuity locations and split the domain into a disjoint union of
regions where the function is continuous, and 2) construct approximations of the continuous pieces
on each region. However, in the multivariate case this strategy is very challenging to implement since
the discontinuity set may have a positive dimension (see, e.g, [15] where an algorithm for detecting
discontinuities in two dimensions is proposed). Numerical difficulties faced with approximating
multivariate functions are illustrated in the example sections of the paper.

A typical and important application is concerned with classification in data analysis and supervised
learning, where powerful deep learning methods have obtained impressive results and success stories.
However, such powerful methods still have some limitations (even for learning continuous functions,
let alone discontinuous functions). Indeed for instance and quoting [3], “ Despite many results that
establish the existence of Neural Nets (NNs) with excellent approximation properties, algorithms
that can compute these NNs only exist in specific cases.” That is, no training algorithm can obtain
them in the general case. For an interesting discussion about such limits (instability, accuracy,
etc.) the interested reader is referred to [2, 3] and references therein. For learning discontinuous
functions by neural networks, [14] proposes a tailored architecture; however this approach requires
the knowledge of the discontinuities locations and is limited to univariate problems.

1CNRS; LAAS; Université de Toulouse, 7 avenue du colonel Roche, F-31400 Toulouse, France.
2Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, CZ-16626 Prague, Czechia.
3Institute of Mathematics; Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France.
The research of M. Korda and J . B. Lasserre research is partly supported by AI Interdisciplinary Institute ANITI

funding, through the French “Investing for the Future PIA3” program under the Grant agreement n◦ANR-19-PI3A-
0004. This research is also part of the programme DesCartes and is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE)
programme. J.B. Lasserre also acknowledges support from ANR-NuSCAP-20-CE48-0014.

1



2 DIDIER HENRION1,2, MILAN KORDA1,2, JEAN BERNARD LASSERRE1,3

In this paper we provide an alternative approximation technique aimed at dealing with such dis-
continuities and the Gibbs phenomenon, which are large oscillations of the approximation near the
discontinuity points, see e.g. [24, Chapter 9]. In particular, we show that our class of approximants
can model exactly multivariate piecewise polynomial functions and can approximate with arbitrary
accuracy other discontinuous functions.

Prior work. The idea behind our new approximant is a non-trivial extension of our previous work
[18] that has provided an approximant which is the argument of the partial minimum (argmin),
of a sum of squares (SOS) of polynomials, in fact the reciprocal of the Christoffel function of a
measure, ideally supported on the graph of the function to recover. As explained in [18], this
recovery procedure can be seen as a non-standard application of the Christoffel-Darboux kernel.
Importantly, being in a class of functions much larger than polynomials, such an approximant is
able to approximate some discontinuous functions much better than polynomials can.

Remarkably, in non-trivial examples, recovery is possible without oscillations and Gibbs phenome-
non usually encountered in several more standard approaches. In this respect the reader is referred
to the detailed discussion in [25] on kernel variants (e.g Féjer or Jackson kernels) to attenuate the
Gibbs phenomenon encountered with polynomial approximations.

This paper can be considered both as a follow-up and a non trivial extension of [18].

Contribution. Inspired by [18] we introduce a new class of approximants for a possibly discon-
tinuous function f from X ⊂ Rn to Y ⊂ R. We propose to approximate f by the polynomial
argmin

(1.1) x 7→ f̂(x) := min{ arg min
y∈Y

p(x, y)} , x ∈ X ,

where Y ⊃ f(X) and p ∈ R[x, y] is a polynomial in (x, y).

The main features of our approach can be summarized as follows.

• The approach is mesh-free and does not require the knowledge of the discontinuities loca-
tions.
• It is not limited to univariate functions or tensor products thereof.
• It is model-free, working only with the samples of the unknown function.
• The approximant is constructed using a very specific class of convex optimization (semidef-

inite programming) problems whose size depends (linearly) on the number of samples but
not on the ambient dimension.
• It is simple to evaluate as it is the argmin of a univariate polynomial.
• We provide a generalization error analysis in a probabilistic setting.

We believe that these features make the approach a unique and promising tool with a wide variety
of applications in data analysis. This is corroborated by a numerical evidence where we observe a
remarkable performance on a range of examples. We also provide a solid theoretical underpinning
of the method but leave some questions open, including the optimal rate of convergence of the
argmin approximant.

A novelty and distinguishing feature with respect to [18] is that the polynomial p in (1.1) is not
restricted to be the reciprocal of the Christoffel function associated with the measure supported
on the graph of f . Indeed, our set of potential candidate polynomials p is now a suitably chosen
subspace of R[x, y], which is much larger than the set considered in [18].

While our original motivation for introducing the polynomial argmin approximant was to recover
the solution of a nonlinear partial differential equation from the knowledge of its approximate
moments [17], this strategy was made rigorous and generalized to graph recovery from moments
[18]. Then it was extended to cope with partial moment information [13]. Following our initial
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work, this argmin strategy was called “implicit model” and used in robotics applications [12] where
the polynomial p in (1.1) is replaced by a continuous function computed by training, e.g. a neural
network.

Outline. In the motivational Section 2 we show that our polynomial argmin strategy is already
efficient in some non-trivial cases. For instance, it allows exact recovery when f is a polynomial, or
an algebraic function, or a piecewise polynomial. In particular it can model exactly the indicator
function of the unit disk, sharply contrasting with classical approximants.

However, exact recovery by a polynomial argmin cannot be guaranteed in general, and in Section
3 we provide a numerical scheme to obtain the polynomial p in (1.1) when knowledge on f is only
though its finitely many values on a sample of points (x(i))i∈I ⊂ X (without a priori knowledge
on its distribution). We reformulate our polynomial argmin strategy in the framework of sum of
squares (SOS) positivity certificates so that finding p amounts to solving a semidefinite optimization
problem whose size is controlled by the degree of p in y and the sample size.

Finally, in Section 4 we also provide a set of numerical experiments to evaluate the efficiency of
our proposed polynomial argmin strategy on a sample of problems. We observe that it performs
remarkably well to approximate challenging discontinuous functions already tested in [18], as well as
non trival two-dimensional examples of functions whose set of discontinuities has positive dimension.
We have also compared with machine learning methods based on neural networks. In all our
experiments, the proposed method achieves far better accuracy with simpler representation of the
approximant.

2. Motivating examples

The purpose of this section is to demonstrate the expressive power of the polynomial argmin. We do
so by showing that for several classes of known functions, an exact (and sometimes obvious) repre-
sentation is possible. Subsequently, in Section 3, we show how a polynomial argmin approximation
can be found using convex optimization, provided that some finite sample of values of f is available.
Importantly, all polynomials of the illustrative examples below are indeed optimal solutions of the
convex program alluded to, which supports the claim that in some sense the optimization problem
is well-founded as natural obvious solutions of those illustrative examples can be recovered.

2.1. Polynomials. When f ∈ R[x] is a given polynomial, we can choose in (1.1)

p(x, y) :=
1

2
y2 − f(x)y.

Indeed, we observe that dp
dy = y− f(x) and hence y = f(x) is a stationary point. Since p is strictly

convex in y, it follows that y = f(x) is the global minimizer. The degree of p in x is equal to the
degree of f whereas the degree in y is equal to two irrespective of f .

2.2. Algebraic functions. An algebraic function f is such that qk(x, f(x)) = 0 for some given
polynomials qk ∈ R[x, y], k = 1, . . . ,m.

If for each x, (x, f(x)) is the unique common zero of the qk then we can readily choose

p(x, y) :=
m∑
k=1

qk(x, y)2

and observe that the degree of p in x and y is twice the maximal degree of the qk in these variables.
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(−∞,−1) (−1,−1/3) (−1/3, 0) (0, 1/3) (1/3, 1) (1,∞)
p1 max max min min min min
p2 min min max max max max
p3 min min max max min min

argmin p3 p2 p2 p1 p1 p3
Table 1. Nature of critical points for different intervals of variation of g(x).

Note that semi-algebraic functions1 can also be modeled like that, provided that the inequalities
are incorporated in the definitions of the domain X and image sets Y .

Example 1. The absolute value function can be expressed as

|x|= arg min
y∈Y

(x2 − y2)2

with Y := [0, 1], for all x ∈ X := [−1, 1]. Note that a more complicated degree 8 polynomial argmin
model for the absolute value function was already described in [18, Example 2].

2.3. Piecewise polynomials. Let g, p1, p2 ∈ R[x] and consider the piecewise polynomial function

f(x) :=

{
p1(x) if g(x) ∈ (0, 1)
p2(x) if g(x) ∈ (−1, 0)

for x ∈ X := {x : g(x) ∈ (−1, 0)} ∪ {x : g(x) ∈ (0, 1)}.

Lemma 2.1. There exists p ∈ R[x, y] such that f(x) = arg min
y∈Y

p(x, y) for all x ∈ X, with Y = R.

Proof: With r ∈ R[x] and q ∈ R[x, y], let p(x, y) := (y − p1(x))2(y − p2(x))2 + r(x)q(x, y)
be such that ∂q(x, y)/∂y = 6(y − p1(x))(y − p2(x)). For instance q(x, y) := 2y3 − 3(p1(x) +
p2(x))y2 + 6p1(x)p2(x)y. Now observe that for each given x ∈ X, y 7→ p(x, y) is a coercive quartic
univariate polynomial, and hence it has at most two local minima. Letting r(x) := g(x) (p1(x) −
p2(x)), the gradient ∂p(x, y)/∂y vanishes at the critical points p1(x) resp. p2(x) resp. p3(x) :=
(p1(x)(1− 3g(x)) + p2(x)(1 + 3g(x))/2. At the critical points the Hessian ∂2p(x, y)/∂y2 is equal to
2(p1(x)−p2(x))2(1+3g(x)) resp. 2(p1(x)−p2(x))2(1−3g(x)) resp. (p1(x)−p2(x))2(−1+3g(x))(1+
3g(x)). To compare the values at the critical points, we evaluate the differences p(x, p2(x)) −
p(x, p1(x)) = g(x)(p1(x) − p2(x))4, p(x, p3(x)) − p(x, p2(x)) = (1 + g(x))(1 − 3g(x))3(p1(x) −
p2(x))4/16, p(x, p3(x)) − p(x, p1(x)) = (−1 + g(x))(1 + 3g(x))3(p1(x) − p2(x))4/16. The proof
follows by evaluating the signs of the Hessian and the differences at the critical points for g(x)
within the intervals (−∞,−1), (−1,−1/3), (−1/3, 0), (0, 1/3), (1/3, 1), (1,∞), see Table 1. Note
that p3 is an auxiliary polynomial used in the proof rather than the value of f on a subset of X.�

Example 2. In [18, Example 1] a degree 8 polynomial argmin model was described for the sign
function f(x) which is equal to −1 if x ∈ (−1, 0) and +1 if x ∈ (0, 1). In this case g(x) = x,
p1(x) = +1 and p2(x) = −1 and the construction of the proof of Lemma 2.1 yields the degree 4
polynomial argmin model p(x, y) = (y + 1)2(y − 1)2 + 4xy(y2 − 3) on X = [−1, 1], see Figure 1.

Note that an even simpler argmin model of the sign function on X = (−1, 1) is p(x, y) = −xy for
Y = [−1, 1]. Similarly to Example 1, the choice of domain and image sets X,Y plays here a key
role.

Example 3. The indicator function of the bivariate unit disk {x ∈ R2 : x21 + x22 ≤ 1} can be
modeled exactly on X := {x ∈ R2 : x21 + x22 ≤ 2} with the degree 5 polynomial argmin of p(x, y) =
y2((y− 1)2 + (1− x21 − x22)(3− 2y)) obtained by letting p1(x) = 0, p2(x) = 1, g(x) = 1− x21 − x22 in
the construction of Lemma 2.1.

1A semi-algebraic function is such that its graph is described by a finite union of a finite intersection of sets defined
by polynomial equations and inequalities.
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Figure 1. Degree 4 polynomial p(x, y) whose argmin w.r.t. y models the sign
function. Represented are univariate polynomials y 7→ p(x, y) for various given
values of x. We observe that for positive values of x, the argmin is precisely +1
whereas for negative values of x, the argmin is precisely −1 as required in order to
represent the function sign(x).

3. Sample-based formulation

3.1. Notation and definitions. Let R[x, y] denote the ring of polynomials in the variables x ∈ Rn
and y ∈ R, and R[x, y]d its subset of polynomials of total degree at most d. A polynomial p is a
sum of squares (SOS) if it can be written as

∑
k p

2
k for finitely many polynomials pk. The convex

cone of all SOS polynomials of degree at most d in the variable x is denoted by Σd[x].

3.2. Nonnegativity of univariate polynomials on an interval. Certificates of non-negativity
of univariate polynomials will play a key role in our approach. The following result whose second
part is due to F. Lukács is classical (see, e.g., [23] for a discussion).

Theorem 3.1. A univariate polynomial q ∈ R[y] of degree d is nonnegative on R if and only if
q ∈ Σd[y]. A univariate polynomial q ∈ R[y] of degree d is nonnegative on the interval [a, b] ⊂ R if
and only if {

q = σ0 + σ1(b− y)(y − a), σ0 ∈ Σd[y], σ1 ∈ Σd−2[y] d even,

q = σ0(y − a) + σ1(b− y), σ0 ∈ Σd−1[y], σ1 ∈ Σd−1[y] d odd.

It is a simple observation that a polynomial σ belongs to Σd (for d even) if and only if there exists
a positive semi-definite matrix W � 0 such that σ(y) = vd/2(y)Wvd/2(y), where vd/2 is a basis

of R[y]d/2, e.g., vd/2 = [1, y, y2, . . . , yd/2]. Therefore the nonnegativity of q ∈ R[y] on R or [a, b]
is equivalent to the feasibility of a semidefinite programming (SDP) problem. Observing that the
conditions in Theorem 3.1 are affine in the coefficients of q, we conclude that one can also optimize
over the set of polynomials (of fixed degree) nonnegative over [a, b] using SDP.

3.3. A numerical scheme. Given a function f : Rn → Y with Y = [a, b] ⊂ R sampled at points

(xi, yi)
N
i=1 with yi = f(xi), we wish to construct an approximation f̂d of the form

(3.1) f̂(x) = arg min
y∈Y

p(x, y),
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where p ∈ R[x, y] is a polynomial to be determined. The set Y ⊂ R serves as a priori information
on the range of f . If no such information is available, we set Y = R (see Remark 3.3 for more
details).

Throughout this section we assume that the argmin is unique. If this is not the case, a tiebreaker
rule has to be applied (e.g., one can consider the min of the argmin). Since monomials not containing
y do not influence the argmin, we use the parametrization of p as

p(x, y) =

dy∑
k=1

hk(x)yk,(3.2)

where hk ∈ R[x]dx are polynomials of total degree at most dx to be determined. In order to find
hk, we propose to solve the following convex optimization problem parametrized by dx, dy, dγ ∈ N
and α > 0:

(3.3)

min
γ∈R[x,y]dγ , (hk∈R[x]dx )

dy
k=1

∫
X×[a,b]

γ(x, y) dxdy

s.t. p(xi, y)− p(xi, yi) + γ(xi, yi)− α(y − yi)2 ≥ 0 ,∀y ∈ [a, b], i = 1, . . . , N

γ(xi, yi) ≥ 0 , i = 1, . . . , N,

where p is parametrized using hk as in (3.2). The rationale behind (3.3) is as follows: If γ(xi, yi) = 0,
then p(xi, y)−p(xi, yi) ≥ α(y−yi)2 for all y ∈ Y = [a, b] and hence yi = arg miny∈Y p(xi, y), which

means f̂(xi) = yi. Therefore, if γ(xi, yi) = 0 for all i = 1, . . . , N we get an exact interpolation of
all data points. This, however, cannot be achieved in general in which case γ(xi, yi) > 0 for some i;
the polynomial γ therefore acts as a slack variable and is minimized in the objective function. An
alternative to using a polynomial slack variable is to assign one slack variable γi ∈ R+ to each of
the constraints; here we chose to use the polynomial slack variable in order to make the number of
decision variables of (3.3) independent of the number of samples N , which facilitates the analysis
of the generalization error in Section 3.4.

We also note that if the objective function cannot be evaluated in closed form (e.g., if the moments
of the Lebesgue measure over X× [a, b] are not known or too costly to compute), the integral can
be replaced by an approximation computed from the available data

(3.4)
1

N

N∑
i=1

γ(xi, yi).

The optimization problem (3.3) translates to SDP by equivalently reformulating the first constraint
using Theorem 3.1. For brevity, we state it explicitly only for dy even (the difference for dy odd is
the same as in Theorem 3.1):
(3.5)

min
γ∈R[x,y]dγ , (hk∈R[x]dx )

dy
k=1, (σ0,i, σ1,i)

N
i=1

∫
X×[a,b]

γ(x, y) dxdy

p(xi, y)− p(xi, yi) + γ(xi, yi)− α(y − yi)2 = σ0,i + σ1,i(b− y)(y − a), i = 1, . . . , N

σ0,i ∈ Σdy [y], σ1,i ∈ Σdy−2[y]

γ(xi,yi) ≥ 0, i = 1, . . . , N.

The problem (3.5) readily translates to SDP and it can be solved using off-the-shelf solvers such as
MOSEK or SeDuMi.
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Remark 3.2 (Simplified complexity analysis). In SOS problem (3.5), if we neglect the number of
free variables parametrizing hk and γ (polynomials of degrees typically much smaller than N), we
have 2N positive semidefinite matrices of size at most dy/2 and satisfying Ndy equality constraints.
In this simplified setup, according to [6, Section 6.6.3], the number of Newton steps of an interior-

point algorithm for finding an ε-solution of SOS problem (3.5) is of the order of log(1/ε)
√
Ndy,

and each Newton step has a complexity of the order of N3d4y +N3d3y +N2d4y.

Remark 3.3 (Range of f). If no information on the range of f is available, the first constraint
of (3.5) can be replaced by

p(xi, y)− p(xi, yi) + γ(xi, yi)− α(y − yi)2 = σ0,i i = 1, . . . , N,

with σ0,i ∈ Σdy . This is equivalent to p(xi, y)− p(xi, yi) + γ(xi, yi)− α(y − yi)2 being nonnegative
on R for each i = 1, . . . , N .

We note that, up to rescaling of p and γ, the problems (3.3) and(3.5) are invariant with respect
to the choice of the parameter α > 0. We decided to include this parameter as a simple way to
control the scaling of the coefficients of p and γ in the numerical implementation.

Importantly, in all the examples in Sections 2.1, 2.3 and 2.3 where an obvious solution p exists such
that f(x) = arg miny∈Y p(x, y), this solution p is an optimal solution of (3.3) and(3.5) with α = 0.
For some examples (e.g., the example of Section 2.1, Example 2 and Example 3), a rescaling of p
is optimal with any positive value of α. In other words, our blind data driven approach is able to
recover exactly obvious optimal solutions in nontrivial cases for which a Gibbs phenomenon would
occur with more classical approaches.

Remark 3.4. We remark that with α > 0 the argmin in (3.1) is unique on a given data point xi
provided that γ(xi, yi) = 0 (i.e., there is a zero error on the data point). Outside of the data set,
we cannot guarantee the uniqueness of the argmin in which case a tiebreaker rule must be applied
(e.g., taking the min of the argmin). Importantly, the results below are independent of whether the
argmin is unique or not since they apply to the entire set of minimizers.

The following result bounds the error on data points of any feasible solution to (3.3) and (3.5).

Lemma 3.5 (Error on data points). Let p, γ and α be feasible in (3.3) or (3.5) and let

zi ∈ arg min
y∈[a,b]

p(xi, y).

Then we have

|zi − yi|≤
√
γ(xi, yi)

α
and therefore

|f̂(xi)− f(xi)|≤
√
γ(xi, yi)

α
for i = 1, . . . , N .

Proof. Let (xi, yi) be fixed. Observe that for any zi ∈ arg miny∈[a,b] p(xi, y), we have p(xi, zi) −
p(xi, yi) ≤ 0. Therefore we have by the first constraint of (3.3) or (3.5)

γ(xi, yi)− α(zi − yi)2 ≥ p(xi, zi)− p(xi, yi) + γ(xi, yi)− α(zi − yi)2 ≥ 0.

Therefore

|zi − yi|≤
√
γ(xi, yi)

α
.

The last statement of the lemma follows by the facts that f̂(xi) ∈ arg miny∈[a,b] p(xi, y) with p
optimal in (3.3) and (3.5) and yi = f(xi). �
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3.4. Generalization error. In this section we study the generalization error of the argmin esti-
mator in a probabilistic setting. We assume that the samples xi, i = 1, . . . , N , are independent
identically distributed, drawn from a probability distribution P on X that is unknown to us. We
study the generalization error using the tools of scenario optimization, which allows for analysis
with minimal underlying assumptions on f . The generalization bounds obtained have no explicit
dependence on the dimension of the ambient space n and on regularity of f . They depend only the
number of decision variables in (3.3), which, however, may depend implicitly on n.

We first observe that Problem 3.3 can be equivalently rewritten in the form

(3.6)

min
θ∈Rnθ

c>θ

s.t. inf
y∈[a,b]

{pθ(xi, y)− pθ(xi, yi) + γθ(xi, yi)− α(y − yi)2} ≥ 0, i = 1, . . . , N

γ(xi, yi) ≥ 0, i = 1, . . . , N,

where θ ∈ Rnθ gathers all the decision variables of (3.3), i.e., the coefficients of (hk)
dy
k=1 and γ, and

c ∈ Rnθ is a constant vector such that c>θ =
∫
γ dxdy.

Problem (3.6) can be rewritten as

(3.7)

min
θ∈Rnθ

θ>c

s.t. θ ∈
N⋂
i=1

Θi,

where the set Θi is defined by

Θi :=
{
θ | inf

y∈[a,b]
{pθ(xi, y)− pθ(xi, yi) + γθ(xi, yi)− α(y − yi)2 ≥ 0}, γθ(xi, yi) ≥ 0

}
.

We also define

Θx :=
{
θ | inf

y∈[a,b]
{pθ(x, y)− pθ(x, f(x)) + γθ(x, f(x))− α(y − f(x))2 ≥ 0}, γθ(x, f(x)) ≥ 0

}
.

We observe that (3.7) is the so-called scenario counterpart of the robust optimization problem

(3.8)

min
θ∈Rnθ

θ>c

s.t. θ ∈
⋂
x∈X

Θx.

In other words, the feasible set in (3.7) is a sub-sampled version of the feasible set of (3.8), where
only N constraints, drawn independently, are enforced. Crucially, we remark that both Θi and Θx

are convex and so are the feasible sets of (3.7) and (3.8). With these notations, we can state the
following theorem:

Theorem 3.6. Let nθ denote the number of decision variables in (3.7). Suppose that ε ∈ (0, 1),
δ ∈ (0, 1) and N ∈ N are chosen such that

(3.9)

nθ−1∑
k=0

(
N
k

)
εk(1− ε)N−k ≤ δ

or

(3.10) N ≥ 1

ε

(
nθ − 1 + ln

1

δ
+

√
2(nθ − 1) ln

1

δ

)



POLYNOMIAL ARGMIN FOR RECOVERY AND APPROXIMATION OF MULTIVARIATE DISCONTINUOUS FUNCTIONS9

hold ((3.10) is a sufficient condition for (3.9)). Let (p, γ) be an optimal solution to (3.5) with N
iid samples from a probability distribution P on X and denote

γmax := sup
(x,y)∈X×[a,b]

γ(x, y).

Then with probability at least 1 − δ (taken over the sample x1, . . . ,xN with joint distribution
P⊗ . . .⊗ P︸ ︷︷ ︸

N times

, we have

(3.11) P
(
{x ∈ X : |f̂(x)− f(x)|≤

√
γmax

α
}
)
> 1− ε,

where f̂(x) is any measurable selection satisfying f̂(x) ∈ Argminy∈Y p(x, y).

Remark 3.7. We remark that if the points xi are sampled uniformly in X, the probability in (3.11)
is nothing but the normalized Lebesgue measure on X.

Remark 3.8 (Parameter choice). Theorem 3.6 can be used as a guiding tool for selecting the pa-
rameters dx, dy. Specifically, these can be increased incrementally until a desired accuracy measured
by γmax is obtained. This is especially appealing when the degree of γ is zero (i.e., γ is a real num-
ber) in which case the value of γmax is readily available. Otherwise, this value can be upper-bounded
using the moment-sum-of-squares hierarchy [16] or other methods providing rigorous bounds on the
range of a polynomial.

Proof of Theorem 3.6. Any optimal solution (p, γ) of (3.5) induces an optimal solution θ to (3.7)
and vice-versa. Given such an optimal solution, [7, Theorem 1] asserts that if (3.9) holds, then
with probability at least 1− δ

P({x | θ 6∈ Θx}) ≤ ε
or equivalently

P({x | θ ∈ Θx}) > 1− ε.
Using the definition of Θx, this implies that

P(A) > 1− ε,

where

A := {x ∈ X | inf
y∈[a,b]

{p(x, y)− p(x, f(x)) + γ(x, f(x))− α(y − f(x))2 ≥ 0}.

Given any x ∈ A and taking f̂(x) ∈ arg miny∈[a,b] p(x, y), we have

γ(x, f(x))− α(f̂(x)− f(x))2 ≥ p(x, f̂(x))− p(x, f(x)) + γ(x, f(x))− α(f̂(x)− f(x))2 ≥ 0,

where we used the fact that p(x, f̂(x)) − p(x, f(x)) ≤ 0, f̂(x) ∈ [a, b] and that x ∈ A. It follows
that

(f̂(x)− f(x))2 ≤ γ(x, f(x))

α
≤ γmax

α

for all x ∈ A. Taking square roots and recalling that P (A) > 1 − ε, we obtain the result. The
condition (3.10) is a sufficient condition for (3.9) derived in [1, Corollasserry 1]. �

Remark 3.9. When the integral in the objective function 3.3 is replasserced by its empirical av-
erage (3.4) computed from the same data set that is used to enforce the constraints, it is currently
unknown whether the generalization bound of Theorem 3.6 remains valid [8]. A simple remedy is
to use an independent sample for the objective and for the constraints, for example by splitting the
data set in two.
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3.5. Beyond polynomials. In this section we briefly discuss how the proposed method extends
to approximants of the form

f̂(x) = arg min
y∈Y

p(x, y),

where p is not necessarily a polynomial. The key observation to make is that when parametrizing
p as

p(x, y) =

dy∑
k=1

hk(x)yk,(3.12)

the functions hk appear in (3.3) and (3.5) only via their evaluations at the data points xi. Therefore,
parametrizing each hk as hk(x) =

∑nk
i=1 ck,iβk,i(x), where βk,i are possibly non-polynomial basis

functions, the optimization problem (3.5) remains a semidefinite programming problem with the
decision variables ci,k ∈ R and the coefficients of γ. The function γ can be parametrized by
non-polynomial basis functions in (x, y) since only evaluations of γ at the samples (xi, yi) appear
in (3.5).

If a non-polynomial parametrization of p in y was sought, one would have to resort to certificates
of nonnegativity for the given function classerss akin to Theorem 3.1. Currently, this is well
understood for trigonometric polynomials [11] but we envision broader function classes may be
considered, given the univariate nature of the nonnegativity certificate required in (3.5) which is
significantly less challenging than its multivariate counterpart.

4. Numerical examples

In this section we present several examples demonstrating the effectiveness of the polynomial argmin
data structure for regression of functions possessing discontinuities. All examples were solved on
a MacBook Air 1.2 GHz Quad-Core Intel Core i7 with 16GB RAM, MOSEK SDP solver. The
problems were modeled using Yalmip [21]. The range of all functions was normalized to Y = [−1, 1]
and the parameter α was taken to be 0.01 in all examples. The parameters that vary in the examples
are dx and dy in the parametrization of p in (3.2) (i.e., dx and dy are the degrees of p in x and y
respectively). Matlab prototype codes reproducing the numerical experiments can be downloaded
from https://homepages.laas.fr/henrion/software/polyargmin

4.1. Univariate: Approximation of discontinuous functions. We start by showing the ef-
fectiveness of the method on four discontinuous functions depicted in Figure 2 alongside their
polynomial argmin approximations. The functions are

f1 =

{
−1, x ∈ [−0.75, 0.75]

1, x ∈ [−1,−0.75) ∪ (0.75, 1],
f2 =

{
−1, x ∈ [−0.75,−0.25] ∪ [0.25, 0.75]

1, x ∈ [−1,−0.75) ∪ (−0.25, 0.25) ∪ (0.75, 1].

f3 = x2f1, f4 = sin(2x)f1.

In each case we used 200 data points sampled uniformly at random in [−1, 1] and solved (3.5). We
observe a remarkably precise recovery of the discontinuous functions. In (3.2), the minimal degrees
dx and dy required to obtain an approximation of this accuracy are reported in the figure. For
comparison, in Figure 3 we depict the performance on the same task with a neural network with
five hidden layers with 20 neurons per layer with the hyperbolic tangent activation functions, trained
using Matlab’s neural network toolbox with gradient descent; these parameters were selected by
manual hyperparameter tuning.

https://homepages.laas.fr/henrion/software/polyargmin
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4.2. Univariate: Parameter dependence. Here we investigate the dependence of the approxi-
mation quality on dx which is the degree of the polynomials hk parametrizing the polynomial p in
(3.2). We do so on the function from Eq. (66) in [19] that possesses 7 discontinuities. For data, we
use two hundred equidistantly spaced samples in the interval [−1, 1]. The results are depicted in
Figure 4. As expected the approximation quality improves as the degree of hk increases, obtaining
a very precise accuracy for deg hk = 7. For comparison, Figure 5 depicts also the results with a
neural network approximation.

dy = 1

dx = 2

f1 f2

f3 f4

dy = 4

dx = 4

dy = 4
dx = 4

dy = 4
dx = 4

Figure 2. Polynomial argmin approximations of different functions with discontinuities.

4.3. Univariate: Challenging continuous functions. For completeness we briefly report re-
sults for approximation of continuous functions. We do so on two functions. The first one is
f(x) =

√
|sin x| which is a transcendental function with Hölder exponent 1/2 whose derivative

grows unbounded near the origin. The second one is the Runge function f(x) = (1+25x2)−1 which
is a smooth function that exhibits the Runge phenomenon (oscillations near the boundary) when
approximated by polynomials through interpolation. The results are depicted in Figure 6. As in
the previous examples, we observe an accurate fit and no oscillations with low degrees of p in x
and y.

4.4. Bivariate: Approximation of discontinuous functions. On Figure 7 we represent the
chebfun2 approximation to the indicator function2 of a bivariate disk

I{x∈R2:‖x‖≤1/2}

2The indicator function of a set is equal to one on the set and zero outside.
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f1
f2

f3 f4

Figure 3. Polynomial argmin approximation versus neural network.

obtained with the following chebfun [10] commands:
[x1,x2]=meshgrid(linspace(-1,1,100));

plot(chebfun2(double(x1.^2+x2.^2<=1/4)));

We observe that the approximation is corrupted by the typical Gibbs phenomenon encountered
when approximating a discontinuous function with polynomials [24, Chapter 9], namely large os-
cillations near the discontinuity set.

On Figure 8 we demonstrate the performance of our argmin approximation on this indicator func-
tion. For data, we chose one thousand randomly sampled points in [−1, 1]2. Contrary to the
Chebyshev polynomial approximation in Figure 7 we observe no Gibbs phenomenon and far bet-
ter accuracy of the approximation despite a more parsimonious parametrization. Indeed, we used
degrees dy = 6 and deg hk = 6 whereas the Chebyshev polynomial approximation in Figure 7 is of
degree 100.

On Figure 9, we approximate the more challenging weighted sum of indicator functions of three
disks

I{‖x‖≤1/2} +
1

2
I{‖x−[3/4,3/4]‖≤1/4} +

1

2
I{‖x+[3/4,3/4]‖≤1/4}.

With the same parameters as in the single disk example we observe a perfect match of our polyno-
mial argmin approximation.
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dx = 4 dx = 5

dx = 6 dx = 7

Figure 4. Polynomial argmin approximation on a function with 7 discontinuities with
dy = 6 for different values of dx.

5. Discussion and conclusion

We have presented a simple method based on the argmin of a polynomial for approximation of
discontinuous functions. The approach is model-free and mesh-free in the sense that it does not
require prior knowledge about the function being approximated as it works only with samples of its
values. It is grounded in powerful tools from univariate sum of squares optimization, hence based
only on a very specific class of convex semidefinite programming, and so it is simple to use. It shows
a great promise in numerical examples and we believe that it can become a valuable tool in data
analysis. We have also proved that exact recovery is possible on certain examples of discontinuous
functions and have provided theoretical analysis of in-sample and out-of-sample error in a proba-
bilistic setting. In the argmin approach [18] based on the Christoffel-Darboux polynomial, such an
exact recovery is not possible in general as an ε-regularization term is introduced to guarantee that
the associated moment matrix is non-singular. In addition, the size of the moment matrix to invert
strongly depends on the dimension of data while in our optimization-based appproach, the size and
the number of resulting matrices to be positive semidefinite does not depend on the dimension of
the data (their number is linear in the sample size).

While we have used general purpose semidefinite solvers to construct our argmin approximants,
more efficient approaches can be envisioned. Indeed our formulation boils down to optimization over
the cone of univariate non-negative polynomials, a very specific class of semidefinite optimization
problems. For example, non-symmetric solvers may perform faster on these problems [22]. Another
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dx = 4 dx = 5

dx = 6 dx = 7

Figure 5. Polynomial argmin approximation of a function with 7 discontinuities for dif-
ferent values of the degree of hk, k = 1, . . . , 6 in comparison with a neural network.

√
|sinx|

(1 + 25x2)−1

Figure 6. Polynomial argmin approximations of two continuous functions with dx = 4,
dy = 4. Left: transcendental function with unbounded derivatives near the origin. Right:
Runge function.

option could be to bypass numerical optimization and use tailored numerical linear algebra as in
[20].
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Figure 7. Chebyshev polynomial approximation of the indicator function of a bi-
variate disk obtained by chebfun2.

Figure 8. Polynomial argmin approximation of the indicator function of a bivariate
disk.

An additional interesting feature of the approximant is that its evaluation at a given point x ∈ X
reduces to finding the global minimum of a univariate polynomial on an interval, which can be done
efficiently e.g. by matrix eigenvalue computation. A numerically stable algorithm is described in
[5, Section 7] and implemented in the roots function of the chebfun package [10]. It is based on
the application of the QR algorithm for finding the eigenvalues of a balanced companion matrix
constructed by evaluating the polynomial at Chebyshev points.

This paper is a first step that introduces the argmin approximant and illustrates its promising
potential on non trivial numerical examples. We hope that it could inspire some further develop-
ments. In particular, we have left open the question of optimal rates of convergence of the argmin
approximant or more generally its worst-case performance when considering pre-defined classes of
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Figure 9. Polynomial argmin approximation of the weighted sum of three indicator func-
tions of disks.

functions to approximate, e.g. in terms of the manifold width discussed in [9], which is a general-
ization of the classical Kolmogorov width. Based on Section 2.1, it is clear that the rates are at
least as good as those of polynomial approximation whenever the degree of p in y is at least two.
However, we conjecture that the rates are better for discontinuous functions.

As a final remark, the main goal of the paper is to introduce a new tool for function approximation
with remarkable properties in the traditional noiseless setting when exact data is available. Of
course, to validate its potential and efficiency in the more general setting of statistical learning
where data can be corrupted by noise (in the x and/or the value f(x)), a further detailed analysis
is needed but beyond the scope of the present paper. We believe that relations to the max-margin
support vector machine [27, 4] could facilitate this analysis.

6. Acknowledgement

The authors would like to thank Francis Bach for pointing out the links to max-margin support
vector machines.

References

[1] T. Alamo, R. Tempo, A. Luque, D. R. Ramirez. Randomized methods for design of uncertain systems: Sample
complexity and sequential algorithms. Automatica 52:160-172, 2015.

[2] V. Antun, N. M. Gottschling, A. C. Hansen, B. Adcock. Deep learning in scientific computing: understanding
the instability mystery. SIAM News 54:2, 2021.

[3] V. Antun, M. J. Colbrook, A. C. Hansen. Proving existence is not enough: mathematical paradoxes unravel the
limits of neural networks in artificial intelligence. SIAM News 55:4, 2022.

[4] F. Bach. Learning Theory from First Principles. The MIT Press, 2023. https://www.di.ens.fr/~fbach/ltfp_
book.pdf

[5] Z. Battles, L. N. Trefethen. An extension of Matlab to continuous functions and operators. SIAM J. Sci. Comp.
25(5):1743–1770, 2004.

[6] A. Ben-Tal, A. Nemirovski. Lectures on modern convex optimization. MPS-SIAM Series on Optimization, SIAM,
2001.

https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://www.di.ens.fr/~fbach/ltfp_book.pdf


POLYNOMIAL ARGMIN FOR RECOVERY AND APPROXIMATION OF MULTIVARIATE DISCONTINUOUS FUNCTIONS17

[7] M. C. Campi, S. Garatti. The exact feasibility of randomized solutions of uncertain convex programs. SIAM
Journal on Optimization 19(3):1211-1230, 2008.

[8] M. Campi. Personal communication.
[9] A. Cohen, R. DeVore, G. Petrova, P. Wojtaszczyk. Optimal Stable Nonlinear Approximation. Foundations of

Computational Mathematics, 22:607–648, 2022.
[10] T. A. Driscoll, N. Hale, L. N. Trefethen (editors). Chebfun Guide. Pafnuty Publications, 2014.
[11] B. Dumitrescu. Positive trigonometric polynomials and signal processing applications. Springer, 2007.
[12] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mordatch, J. Tompson.

Implicit behavioral cloning. Proc. 5th Conf. on Robot Learning, PMLR 164:158-168, 2022.
[13] D. Henrion, J. B. Lasserre. Graph recovery from incomplete moment information. Constructive Approximation

56:165-187, 2022.
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